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ABSTRACT Controlled islanding is the last remedial action to prevent cascading outages or blackouts in
power systems. Conventional methods presented for controlled islanding strategy determination, particularly
those calculating load shedding values using optimization methods, are not fast enough in online applications
for modern power systems. In this paper, a novel learning-based approach is introduced for online coherency-
based controlled islanding in transmission systems. The proposed approach presents a prediction and
optimization model, which is faster than conventional optimization-based models in two ways. Firstly, the
proposed approach uses a classification model to predict the splitting scheme in a short time following
the occurrence of a disturbance, and secondly in the proposed approach, a simpler optimization problem
with fewer variables is solved to find the load shedding amount required in each area. In the proposed load
shedding approach, some candidate system partitioning schemes are calculated beforehand and therefore,
the load shedding optimization problem is simplified significantly compared to similar optimization-based
approaches. Note that appropriate features, which are used in this paper as the input of the classifier, are
acquired by processing post-disturbance phase angle variations, which are measured across the network.
The proposed approach is simulated on the 16-machine, 68-bus system, and its accuracy and efficacy have
been demonstrated.

INDEX TERMS Controlled islanding, load shedding, online coherency identification, supervised learning.

I. INTRODUCTION
Controlled islanding is considered the last remedial action
to prevent power systems moving toward an unstable oper-
ating condition following the occurrence of a disturbance
in the system [1]. However, applying an appropriate online
islanding scheme in transmission systems, which consider
both dynamics and statics of the system, has always been a
challenge. Fortunately, with the advent of new technologies
like synchronized measurement technology (SMT), this task
can be performed online using innovative techniques that
using real time informative data obtained through SMT.

In general, two categories of methods have been proposed
in the literature to solve the controlled islanding problem.

The associate editor coordinating the review of this manuscript and
approving it for publication was Emilio Barocio.

The first category includes methods that use the Graph theory
to split a large power system into islands [2], [3], [4], [5],
while the methods in the second category use mixed integer
programming to solve an optimization problem whose solu-
tion is an optimal islanding strategy [6], [7], [8], [9], [10].
There are also recent works like [11] that employs both meth-
ods to achieve a low computational approach for controlled
islanding. As a preliminary requirement, in both categories,
the use of slow-coherency or online coherency concepts
for maintaining the dynamics of each island has also been
addressed [12], [13], [14]. Traditionally, online controlled
islanding methods, which are placed in the second category,
encompass two stages. In the first stage, coherent generators
are determined using online coherency evaluation techniques,
and then an optimization problem is solved to find the best
splitting strategy, so that the least amount of load shedding is
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required in the system. However, this kind of online splitting
has two disadvantages; (i) it needs to observe a rotor angle
or speed of generators for a time duration even greater than
15 seconds after the occurrence of a disturbance to find
coherent generators, (ii) the optimization problem includes
extra variables related to the connectivity of coherent gener-
ators and the disconnectivity of lines that makes the problem
sophisticated and the process of finding a solution time-
consuming, particularly for large power systems.

To overcome the above shortcomings, this paper proposes
the use of classifiers to predict splitting schemes fast using
the first oscillation of voltage phase angles. Nowadays, deep
learning and pattern recognition techniques are suggested
to be used or are already implemented in various scientific
fields. In power system studies, the techniques have increas-
ingly attracted the attractions of researchers to be used in vari-
ous applications [15], [16]. In [17], it has been stated that deep
learning can be used to effectively solve numerous current
power system problems, particularly those in which a huge
volume of informative data is available. The history of using
deep learning techniques, such as decision trees, neural net-
works, and Bayesian networks, in power system studies dates
back to the 1990s [18]. During decades, the techniques have
been proposed to tackle problems, such as instability predic-
tion [19], and load and renewable energy forecasting [20].
A survey on the literature indicates that although various stud-
ies have been reported on the use of deep learning and pattern
recognition for the controlled islanding strategy detection in
distribution systems, the use of these concepts has been less
examined in transmission systems than in distribution sys-
tems. Some examples are mentioned below. In [21], decision
trees are used to predict controlled islanding. In their work,
the authors assumed that islands and their borders were fixed
and therefore, a decision tree (DT) was built for each island
whose input was the Thevenin impedance observed from
generators. In another work presented in [22], the authors
proposed the use of three DTs to predict the probability of
the need for controlled islanding and the islanding strategy,
which appeared to be difficult to be implemented. In [23],
the authors used the slow-coherency concept to find possible
generators grouping schemes. Then, a DT was assigned to
each of the splitting schemes whose output was whether this
grouping would occur or not. This method is ineffective for
large systems or for online coherency evaluation, since a large
number of DTs will be required in this case. In a recent
work, several DTs are proposed to be trained to enhance
the evaluation of the power system dynamic security, which
is needed for the proper selection of controlled islanding
strategies [24]. Note that DTs are not the only classifiers
used in this filed. For example, the authors in [25], [26],
and [27] proposed machine-learning-based controlled island-
ing approaches, which used artificial neural networks and
label propagation.

In this paper, a classifier is built using supervised learn-
ing techniques to be then employed for online controlled
islanding. One advantage of this approach is that all data

required in this approach are obtained only through process-
ing voltage phase angle variations and thus extra measure-
ments or processing for achieving data like rotor angle vari-
ations are not required in this approach. Another advantage
is that the proposed approach makes the problem of online
controlled islanding faster in two ways. Firstly, it uses the
classifier, which can predict the splitting scheme in less than
half a second, being extremely fast compared to the tradi-
tional approaches. Secondly, it uses a simpler optimization
approach to find the least amount of load shedding, which can
be solved very quickly due to the lower number of variables
included in the problem.

Figure 1 depicts a comparison between the traditional
approaches and the proposed approach in terms of the time
needed to reach a solution. The figure shows the post dis-
turbance variations of generators’ speeds. Please note that
this is only an illustration used for comparison and therefore
the time duration of each step is not exact. As the figure
illustrates, conventional methods usually reach a solution
using two steps c1 and c2 and within time duration of more
than 10 seconds after the occurrence of a disturbance. How-
ever, the proposed approach is considerably fast and reaches
the solution within a time duration less than two seconds.
Section IV-E presents an example of the time duration of each
of steps p1 to p2 and c1 to c2. It should be noted that the
splitting strategy that is identified in step p2 as the output
of the classifier determines solely the borders of areas and
provides no information regarding the load shedding schemes
in them. Hence, as Figure 1 shows, a third step, step p3,
is needed. In step p3, a simpler load shedding optimization
problem is solved to determine the amount of load shedding
that will be required to be applied to each load bus.

II. ONLINE COHERENCY EVALUATION FOR SIMPLER
CONTROLLED ISLANDING
Coherency evaluation is now an essential task for establish-
ing a controlled islanding strategy. Traditionally, coherency
evaluation was suggested to be conducted based on the slow-
coherency concept. According to this concept, a splitting
scheme will be obtained, which is fixed for all disturbances
occurring in the system. However, with the advent of the
synchronizedmeasurement technology, coherency evaluation
has moved toward a data-driven approach in which the data
gathered all over the system are used to detect online coherent
generators. In data driven approaches, it is assumed that the
degree of coherency between generators is not fixed and
changes for different disturbances. A relatively up-to-date
review on coherency evaluation techniques can be found
in [28].

A. COHERENCY EVALUATION IN THE COMPLEX DOMAIN
In this paper, coherency evaluation is suggested to be con-
ducted in the complex domain. In this regard, areas will be
determined based on the similarity between the modes exited
in the system. For this purpose, first, it should be noted
that to establish a faster and simpler way of reaching the
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FIGURE 1. Comparison of traditional and proposed approaches.

controlled islanding solution, traditional controlled islanding
approaches have been revised here. Accordingly, instead of
adding constraints related to the islands’ border identifica-
tion to the main optimization problem (which adds numeri-
ous additional variables to the problem), several candidate
splitting schemes will be determined in advance and then
a simpler load shedding problem is solved to find the best
splitting scheme. In the proposed approach, first, discrete
Fourier transform (DFT) is applied to the voltage phase angle
variations at all buses using (1).

Fi (f ) =
N−1∑
i=0

δi (k) e
−

(
j 2π fkN

)
f = 0, 1, . . . ,N − 1 (1)

where δi is the phase angle of the voltage phasor at the ith bus
and N is the number of samples in the time frame. Note that
coherency is conventionally evaluated between generators.
However, as suggested by the authors in [29] and [30], the
assessment of coherency between the phase angles of voltage
phasors is also a meaningful way to determine the borders
of areas. According to (1), Fi(f ) obtained for the ith bus is
a vector of N complex elements. To assess the similarity of
two vectors related to buses i and j, the correlation coefficient
defined in (2) is calculated.

cci,j =
Fi (f ) .Fj (f )√∑N

f=1 |Fi (f )|
2∑N

f=1

∣∣Fj (f )∣∣2 (2)

The value cci,j of obtained from (2) is a complex value whose
location in the complex plane will be somewhere in a circle
with a radius equal to 1 and centered at the center of the
complex plane. For two highly coherent buses, the value of

cci,j will be close to the point 1 + j0. To understand it better,
consider the eight data points illustrated in the complex plane
shown in Figure 2. The data point located at the point 1+ j0,
i.e. Ci,I, is the self-coefficient between bus i and itself. The
rest of data points represent the locations of CCs between
each of buses in the 8-bus system and the ith bus. Figure 2
depicts the locations of CCs obtained with respect to the ith

bus. According to the figure, bus i is coherent with bus j
and forms cluster C1, while two other groups of coherent
buses (clusters C2 and C3) can be seen. Furthermore, one
can observe that clusters C2 and C3 are more close to each
other, so that they may form a larger group of buses; however,
further analysis is needed to be assured of that.

Considering the above concept illustrated in Figure 2,
it is suggested in this paper to find some candidate splitting
schemes in advance according to the dynamic response of
the system to the disturbance. Then, a simpler load shedding
scheme will be solved to find the best scheme. To find the
candidate schemes, firstly, area centers should be determined
based on post disturbance variations of phase angles. This can
be achieved by calculating a density value using (3).

D
i
=

NB∑
j=1

e
−

[
di,j
ra/2

]2
i = 1, . . . ,NB (3)

In (3), ra is a positive constant used to represent the desired
neighboring radius. In addition,NB is the number of buses and
di,j = 1 − cci,j is the dissimilarity index. Looking at (3) one
can conclude that the value ofDi depends on the similarity of
the ith bus with the rest of buses. In other words, for a bus that
has post disturbance similarity with a high number of buses,
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FIGURE 2. An example of coherency concept in the complex plane.

the value of Di will be high. Hence, the first area cluster will
be detected as the bus with the highest density value. In the
next step, a subtractive procedure is carried out to find the rest
of centers. For this reason, the formula defined in (4) is used
to revise the density values in the hth iteration with regard to
the density value of the area center determined in the (h-1)th

iteration.

Dhi = Dh−1i −Dh−1c × e
−

[
di,ch−1
rb/2

]2
i = 1, . . . ,NB (4)

In (4), is the density value of the area center that have
been determined in the (h-1)th iteration and is the dissimilarity
between the ith bus and the previous area center. Moreover, rb
is another positive constant used to define the neighborhood
that has measurable reductions in density values. Note that
the ratio of rb to ra must be greater than 1. The stopping
criteria for the above subtractive procedure could be as in
(5). According to (5), the procedure will be stopped in the
hth iteration if the ratio of the density value of the area center
that was found in the hth iteration and the density value of the
center that was identified in the first iteration is lower than λ.

Dhc
D1
c
≥ λ (5)

One note to be considered here is that in the coherency-
based system splitting for controlled islanding, it is required
to have at least one generation in each area. Otherwise, the
islanding strategy would mathematically suggest to trip out
all buses in the area lacking generation. To avoid these cir-
cumstances, choosing a proper value for λ is essential. [29]
recommends that the value of λ should be set on 0.2.

After determining the NC number of area centers, it is
now possible to illustrate NC illustrations similar to Fig-
ure 2. Indeed, the aim is to form an area and to examine the

coherency among other buses in the rest of system observed
from the area center. Therefore, it is also required to cluster
the data points in each of NC illustrations. In the next step,
a clustering technique is used to cluster the data points in
each complex plane. Since a complex plane is a 2-D space
and there is no prior assumption on the number of areas,
density-based spatial clustering of applications with the noise
(DBSCAN) algorithm is a good choice in this case [31].
DBSCAN has several advantages over other clustering tech-
niques, such as fuzzy c-means (FCM) and k-means (KM)
algorithms; (i) it does not need a prior assumption on the
number of clusters. This is a key feature, since from a mea-
surement viewpoint, groups of coherent buses are not fixed
for different disturbances, (ii) it needs fewer parameters to
be set, (iii) it does not use any random selection operation,
and therefore its solution is deterministic. Note that when
using DBSCAN, two parameters, i.e. a radius for determining
the neighborhood (α shown in Figure 2), and the minimum
number of data points required to exist in the α-neighborhood
of a data point to form a cluster (minPt), are needed to be
tuned.

After applying DBSCAN to NC complex plains, NC
schemes for clustering the buses of the system will be
obtained (Note that some of these schemes may be similar).
Now, a load shedding problem is required to be solved to
balance the load-generation in areas in each splitting scheme.
Therefore, the best solution would be the one for which the
least amount of load shedding has been obtained.

B. LOAD SHEDDING PROBLEM
The load shedding problem suggested for this step is
extremely simple, since the borders of islands are determined
in advance. In the proposed approach, the aim is to achieve a
controlled islanding solution quickly with a desirable level
of accuracy. Therefore, in this stage, the linearized model
of AC non-linear load flow constraints will be considered to
form a linear optimization problem. It worth noting that in the
proposed approach, the dynamics of the system is considered
prior to solving the optimization problem. Particularly, when
encountering severe disturbances, we clearly know that under
a severe disturbance, the resulted dynamics may propagate
through weak connections or interties. Therefore, under a
severe cascading outage and when other remedial actions
fail to stop such propagation, it is required to disconnect
such weak connections before the slow interactions become
significant. To this end, most works, such as [6] and [8],
adopted a linear model to ensure the disconnectivity of non-
coherent generators. This model uses auxiliary variables and
a fictitious DC power flow equation, which are entered
into the main linear optimization problem as additional con-
straints and variables. However, in our proposed approach,
as described in Section II-A, we introduced a novel technique
to determine the border of islands. Thus, the constraints and
variables related to the disconnectivity of borders and con-
nectivity of coherent generators have been omitted, causing
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the main problem to be even simpler to be used in online
applications.

Moreover, it should be noted that the use of original AC
power flowmight be time-consuming for online applications.
Therefore, linearized models of AC power flow equations
are used here to establish a trade-off between accuracy and
computational efficiency. To be specific, the constraints of
this optimization problem are the linearized version of the
AC power flow in lines and power flow summation at buses.
These linearized equations are obtained from the Taylor series
expansion of the full AC power flow equations assuming
usual operating conditions, i.e. Vi = Vj ≈ 1, δij ≈ 0. This
is a highly constructive assumption, since in an area with
coherent generators, the difference between post-disturbance
phase angle variations of any pair of adjacent buses is approx-
imately 0.

The purpose of this optimization problem is to find the
minimum amount of load shedding required in each area
while the load flow requirement for the area is met. Accord-
ingly, the objective function would be as follows:

min
NA∑
s=1

∑
i∈�s

1PshL,i (6)

where�S is the set of buses in the sth area,NA is the number of
areas and1PshL,i represents the amount of active load curtailed
at the ith bus. AC active and reactive power flow equations are
defined in (7) and (8).

Pij = Vi Vj
(
Gij cos δij+Bij sin δij

)
− V 2

i Gij (7)

Qij = Vi Vj
(
Gij sin δij−Bij cos δij

)
+ V 2

i

(
Bij−

Bshij
2

)
(8)

In (7) and (8), is the voltage at the ith bus, Pij and Qij are the
active and reactive powers flowing from bus i to j, respec-
tively, Gij and Bij are the conductance and susceptance of the
line, respectively, δij is the phase angle difference between the
two sides of the line. A linearized model of equations in (7)
and (8), which is used to simplify the load shedding problem,
can be obtained as in (9) and (10).

Pij = Gij
(
Vi+Vj−1

)
+ Bij δij+Gij(1− 2Vi) (9)

Qij = Gij δij−Bij
(
Vi+Vj−1

)
+ (2Vi−1)+

(
Bij−

Bshij
2

)
(10)

The linearized equations in (9) and (10) are then used to form
the power balance equations at buses as follows:

Pi =
∑

Pij = PG,i+1P
up
G,i−1PdownG,i −PL,i+1PshL,i

(11)

Qi =
∑

Pij = PG,i+1P
up
G,i−1PdownG,i −PL,i+1PshL,i

(12)

where 1QshL,i is the amount of reactive load curtailment, PG,i
and QG,i are the active and reactive generation before load

shedding,1PupG,i and1P
down
G,i are the active and reactive loads

before load shedding, 1PupG,i and 1P
down
G,i are the amounts

of increase and decrease in active power generations, 1QupG,i
and 1Qdown

G,i are the amounts of increase and decrease in
reactive power generations all at the ith bus. There are also
constraints on the output of generators in each area that
should be satisfied. The constraints are as follows:

Pmin
G,i ≤ PG,i+1P

up
G,i−1PdownG,i ≤ P

max
G,i (13)

Qmin
G,i ≤ QG,i+1QupG,i−1QdownG,i ≤ Q

max
G,i (14)

0 ≤ 1P
up
G,i ≤ 1P

up,max
G,i (15)

0 ≤ 1PdownG,i ≤ 1Pdown,max
G,i (16)

0 ≤ 1QupG,i ≤ 1Qup,max
G,i (17)

0 ≤ 1QdownG,i ≤ 1Qdown,max
G,i (18)

Constraints in (13) and (14) assure that the output of gen-
erators remain in the operational limits of generators, while
constraints defined in (15) – (18) limit the amount of increas-
ing and decreasing in output powers within a feasible limit.
It is also required tomaintain all voltages within secure limits.
Hence, the following constraint should be applied:

Vmin
i ≤ Vi ≤ Vmax

i (19)

In addition to the above operational and secure power flow
constraints, it is also necessary to follow a rule stating that the
amount of load shedding at a bus cannot exceed the original
load amount. Accordingly, the amount of load shedding is
limited to the following range:

0 ≤ 1PshL,i ≤ 1QL,i (20)

0 ≤ 1QshL,i ≤ 1PL,i (21)

The formula presented in this section shows that no extra
variables related to the connectivity of coherent generators
and disconnectivity of border buses are needed here, since
coherent generators and areas’ borders have been determined
beforehand.

III. PROPOSED APPROACH FOR FAST AND ONLINE
SPLITTING STRATEGY DETERMINATION
In this paper, supervised learning is proposed to build deci-
sion trees as classifiers for the fast determination of the most
suitable splitting scheme following disturbances. Note that
the output of the DT determines only areas without providing
any information about the load shedding scheme in each
area. Therefore, knowing the splitting strategy, the optimiza-
tion problem described in Section II-B will be then solved
quickly. Figure 3 depicts the overall structure of the proposed
approach.
To build a classifier, it is crucial to generate a training

data set with a sufficient number of scenarios. By sufficiency,
we mean that the training data set should include almost
all situations as far as possible. In case of online coherency
evaluation, there are several parameters that can affect the
degree of coherency between generators and buses. These are
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FIGURE 3. Overall structure of the proposed supervised learning approach.

disturbance type, disturbance locations, fault clearing time
(in case of fault occurrence) and system loading level at the
occurrence time of disturbance. Considering a probabilistic
nature for these parameters, a set of NS scenarios can be
defined, so that in each scenario, a specific disturbance is
assumed to occur in a specific location at a specific load level
with a specific clearing time (if it is a fault). Each scenario
is then simulated in the time domain, and the best controlled
islanding solution is determined. In the proposed approach,
the splitting scheme pertaining to the best solution in each
scenario is required to be stored as the target for building the
classifier.

A. FEATURE GENERATION
The accuracy of the proposed approach relies on the high
accuracy and reliability of the features used as the input of the
classifier. To achieve this goal, it is assumed that the power
system is equipped with the wide area measurement system
(WAMS), so that voltage phasors at all buses are easily avail-
able with high accuracy. Then, a set of features, which are

appropriate for building the classifier, can be extracted from
the voltage phasor data measured by WAMS. By appropri-
ateness, we mean that the features should be defined, so that
they reflect the hidden patterns existing between the uncertain
parameters of the power system and the controlled islanding
strategies.

The first feature considered for this study is the magnitude
of the voltage phasor of all buses at the moment just before
the occurrence of a disturbance. This feature, which is called
F1, is selected since the load shedding solution depends on
the load level and load dispatch of the system. Voltage mag-
nitudes at buses are a good reflection of the load level of the
system.

To generate other features, mathematical morphology
(MM) analysis is used in this paper. It is proposed in [32]
to use MM for stability prediction, since it has low computa-
tional burden and is suitable to extract the useful information
hidden in the shapes of variations. Indeed, MM is capable of
extracting the edges in the variations of an original signal by
converting the original signal into smooth and detail signals.
Mathematically speaking, MM use dilation and erosion as in
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(22) and (23), respectively.

(a2b) (n) = min {f (n+ m) − g (m)} ,

0 ≤ n+ m ≤ N ; 0 ≤ m ≤ M (22)

(a⊕ b) (n) = min {f (n− m) − g (m)} ,

0 ≤ n− m ≤ N ; 0 ≤ m ≤ M (23)

In the above formula, operators dilation and erosion are
shown by symbols 2 and ⊕, respectively. In fact, (22) and
(23) define the erosion and dilation of the discrete original
signal a(n), which in this paper is a phase angle variation
signal, in the domain of Da = {0, 1, . . . , N} by b(m) in the
domain of Db = {0, 1, . . . , M}. It worth noting that b(m)
is called as the structuring element (SE) [33] whose shape
can affect the modification of the original signal. Thus, it
is essential to choose a proper shape for SE according to
the desired application. Having calculated the erosion and
dilation of a(n), the opening and closing of the discrete signal
a(n) by b(m) are obtained using (24) and (25), respectively.

(a ◦ b) (n) = ((a2b)⊕ b) (n) (24)

(a • b) (n) = ((a⊕ b)2b) (n) (25)

In (24) and (25), symbols ◦ and • denote the opening and
closing operations, respectively. Now, the smooth and detail
signals, which are extracted from the original signal a(n), can
be obtained by the following equations:

asmooth =
1
2
(a ◦ b+ a • b) (n) (26)

adet ail = a− asmooth (27)

Note that the smooth signal is similar to the original signal
except that the sharp edges in the smooth signal have been
smoothed. Accordingly, the non-zero values in the detail
signal represent the sharpness of the edges of the original
signal.

In this study, variations of phase angles of voltage phasors
following a disturbance are measured at all buses. MM analy-
sis is then applied to convert the phase angle variation signals
of each individual bus into smooth and detail signals. Then,
appropriate features are extracted from the converted signals.
As stated earlier in this section, the first feature (F1) is the
magnitude of the voltage phasor of all buses at the moment
before the occurrence of a disturbance. Clearly, disturbance
characteristics, such as its type and location, can affect the
shape of variations in the parameters of the system. By the
term ’’shape’’, we mean the magnitude of the first peaks
of variations, their sharpness and the time interval between
consecutive peaks. Accordingly, in this paper, the magnitude
of the first and second peaks of the detail signal are con-
sidered as two other features called F2 and F3, respectively.
In addition, the ratio of the first and second peaks in the detail
signal is regarded as the fourth feature, i.e. set F4. The same
ratio is also calculated between the first and second peaks
of the smooth signal to form the fifth feature (F5). Up to
now, five features have been defined for the proposed learning
approach. Two other features are also considered in this paper

to examine the propagation of disturbances more effectively.
The first one (F6) is the ratio between the first peak of detail
signals calculated at either sides of each transmission line,
and the other one (F7) is the ratio between the first peak
of smooth signals calculated at either sides of each line.
Therefore, for a systemwith NB buses and NL lines, there will
be (5 × NB)+ (2 × NL) features in total. Figure 4 illustrates
a graphical view of information included in the training data
set. As the figure shows, there are NB components in F1 to
F5, while the number of components of F6 and F7 is NL.

B. BUILDING THE CLASSIFIER
Neural networks, decision trees and Bayesian networks are
among classifiers built using supervised learning. In this
paper, it is proposed to use decision trees as the classifier,
since it is simple to be built and is suitable for multi-class
classifications. It should be noted that in this paper, the pur-
pose of classification is to determine which splitting strategy
is suitable if system islanding in the next seconds following
the occurrence of a disturbance becomes essential. Hence,
as described in Section III-A, the input data are extracted from
the raw data (which are voltage phasors across the system)
measured during a very short time duration following the
disturbance. As figure 4 shows, two types of data are required
for generating the classifier. Both types are obtained by pro-
cessing voltage phasors measured at all buses of the system.
In each scenario, a specific disturbance is simulated, and then
the splitting strategy (target in Figure 4) is obtained using
the method described in Section II and is stored. Moreover,
the values of features F1 to F7 defined in Section III-A are
also calculated and stored for each simulated scenario. After
simulating a sufficient number of disturbances, the training
data set is ready to be used to build the classifier.

IV. SIMULATION RESULTS
In this paper, the proposed approach is applied to the 68-bus,
16-machine system shown in Fig. 5. This system consists
of two large areas called New England Test system (NETS)
and New York Power System (NYPS). Note that generators
14 – 16 are virtual large generators used to represent the
dynamic characteristics of areas adjacent to NYPS. More
details regarding this system can be found in [34]. It should
also be noted that all simulations were performed in theMAT-
LAB software. Dynamic and time domain simulations were
conducted using the Power System Toolbox (PST) available
in [35]

A. PARAMETER SETTING
Two sets of parameters should be tuned in this paper. The
first set includes parameters related to the process of finding
area centers, which are ra, rb and λ. It has been suggested
in the literature to set ra on 0.5 and rb = 1.5 ×ra to avoid
forming closely spaced areas [31]. Furthermore, as described
in Section II-A, λ is set to be 0.2 to avoid forming small areas
that may lack generation. The second set of parameters that
should be tuned includes minPt and α, which are used in the
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FIGURE 4. Graphical view of the information included in the training data set.

FIGURE 5. Line diagram of the test system.

DBSCAN algorithm to cluster the data points. Hence, minPt
and α are set on 2 and 0.15, respectively. In other words,
at least two buses at a Euclidean distance less than 0.15 can
form an area.

Moreover, it is considered that the SE function used in the
morphology analysis has a mathematical definition as in (28)
with M = 10.

b(m) =

{
1 0 ≤ m ≤ M
0 otherwise

(28)

B. PERFORMANCE OF THE PROPOSED SPLITTING
STRATEGY DETERMINATION FOR OFFLINE TRAINING
First, the performance of the proposed approach for detecting
the best splitting strategy is checked in this section. In this
section, after disconnecting the line between buses 8 and 9
(which is done to increase the electrical distance between
NETS and NYPS), a 3-phase fault occurs on the line connect-
ing buses 1 and 2 and near to bus 2 and then is cleared after
0.3 s. It is also assumed that the fault has been spontaneously
cleared meaning that no line is tripped out. Fig. 6 presents the
post disturbance speed variation of the generators.

After applying DFT to extract frequency spectrums of all
buses and by applying the method presented in Section II-A,
buses 21, 64 and 52 are found as central buses. Therefore,
data points (or in other words buses of the system) should
be analyzed in three complex plains. Figure 7 shows these
three complex plains. For example, the 68 data points in
Figure 7(a) are the complex CCs between bus 21 and the rest
of 67 buses obtained using (2). Thus, using the DBSCAN

FIGURE 6. Rotor speed variations.

algorithm, three clusters have been found in this figure. which
is from the viewpoint of bus 21. The cluster formed around
point 1 + j0 in Figure 7(a) is the one centered with bus 21.
Note that the clusters identified in Figures 7(b) and 7(c) are
the same. Figure 8 depicts the graphical view of a group
of buses shown in figure 7, along with the location of area
centers. Having obtained two different splitting strategies,
now the optimization problem is solved for each of them to
find the one needing the least load shedding. In this case,
it is found that 11 MW should be curtailed for the splitting
strategy shown in Figure 8(a), while the other strategy will be
effectively applied without any need to apply load shedding.
Thus, the splitting strategy shown in Figure 8(b) is selected
as the best solution. Figure 9 depicts the speed variations of
generators G1 –G9, which are on the right side of the test sys-
tem. As the figure shows, the generators reveal approximately
the same variations in response to the disturbance. There are
also several local oscillations that are damped in the first
two seconds following the occurrence of a disturbance. The
modes are not observed as we have set α on 0.15. To include
the modes and consider local areas, one could consider a
smaller value for α.

C. GENERATING THE TRAINING DATA SET
As described in Section III, the training data set should
cover a sufficient number of situations that could occur in
the system. To achieve this goal, four parameters, includ-
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FIGURE 7. Locations of complex CCs in the complex domain and the clusters identified with respect to (a) bus 21, (b) bus 64, and
(c) bus 52.

FIGURE 8. Areas identified with respect to (a) bus 21, and (b) buses 64 and 52.

ing type of disturbance, disturbance location, fault clear-
ing time and system load level have been assumed to have
a probabilistic nature. Note that these uncertain parame-
ters should be defined according to the history of the sys-
tem, particularly for real cases. For the system used in
this paper, these uncertain parameters have been defined
below.

Various types of disturbances, such as sudden load change,
large motor starting, and faults, can occur in the system.
In this paper, large motor starting and sudden load change
have been considered to be 10 % of the disturbances in the
system, while the rest include symmetrical and unsymmet-
rical faults. For sudden load changes, the load on which the
curtailment occurs is selected uniformly from the set of loads.
Furthermore, it is clear that in power systems, single line
faults own the most probability of occurrence, while three
phase faults as the most severe faults have the less probability
of occurrence in the system. Accordingly, the probability of
occurrence of different faults was adopted from [36] and is
shown in Table 1.

TABLE 1. Types of fault and their probabilities.

The test system contains 66 lines and 20 transformers.
It has been assumed that all symmetrical and unsymmetrical
faults occur only on transmission lines either on the receiv-
ing or sending sides. Therefore, fault location is uniformly
selected from 132 locations. Fault clearing time depends on
factors, such as circuit breaker operating time and reliability
of protection systems. Although the data can be obtained
based on the history of a real system, it has been suggested
in [37] to model the fault clearing time as a normal distribu-
tion with a mean value of 6 cycles and a standard deviation
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FIGURE 9. Rotor speed variations of generators G1 – G9.

of 0.667 cycle, i.e. 2 cycles at 3σ . The fourth probabilistic
parameter is the load level of the system. Although the load
level of a power system varies daily, it also experiences
different patterns in hot and cold seasons of the year. It is
assumed in this paper that the loading factor of this system
follows a normal distribution with nominal mean values as
presented in [34] and standard deviation of 3.33 %, i.e. 10 %
at 3σ . Moreover, all loads are considered to be uniformly
dependent by scaling them with the same loading factor.

Considering the above four probabilistic parameters, 4000
scenarios are defined and simulated in the time domain.
A time frame of 20 s is considered in each scenario to estab-
lish the coherency in the system. In each scenario, variations
of voltage phasors of all buses as well as the final splitting
scheme, which was obtained using the procedures defined
in Section III and evaluated in Section IV-B, are stored.
Having stored all the training data, the multi-class classifier
can be built using deep learning tools. It should be noted that
after examining all scenarios, it was found that the proposed
islanding approach identified 27 different splitting schemes.
Thus, the target of the multi-class classifier will be employed
to predict the splitting scheme from a set containing these
27 classes.

Obviously, sampling of continuous signals with higher
rates can be beneficial for signal analyzing applications.
Since two signal analyzing techniques, i.e. DFT and MM,
are used in this approach, it is assumed that voltage phasor
samples are available with a rate of 120 samples per second
(one sample per half cycle of the 60 Hz frequency), which is
a high rate in the WAMS employed in 60 Hz power systems.
This allow us to obtain a frequency spectrum with higher
resolution and more informative detail signals.

To better understand that these features can reflect the
hidden patterns in the training data set, five scenarios are
selected and the features’ values associated with the scenarios
are illustrated in Figure 10. Note that the values in Figure 10

FIGURE 10. Values of attributes obtained in bus 12 for 5 different
scenarios.

TABLE 2. Details five example scenarios.

are normalized for better illustration. Table 2 presents the
details of the scenarios. It should be noted that in scenarios
3 and 4, the same areas were identified by using the proposed
algorithm. As Figure 10 shows, each of features 1, 2, 6 and
7 has approximately the same values for scenarios 3 and 4.
The same is also true for features 3 and 5 for scenarios 2 and 3;
however, the splitting strategies obtained for scenarios 2 and
3 are not the same. Now, a supervised learning should be
applied to the training data set to extract the hidden patterns
between the values of the features and the splitting strategies.

D. BUILDING THE CLASSIFIER
To build classifiers, various free and commercial tools exist.
In this study, WEKA and IBM SPSS Modeler have been
used to build DTs. These two software programs contain
several learning techniques to train and test DTs. Therefore,
a combination of techniques can be available to build DTs,
and their performance can be compared in this way. Among
the available techniques, C4.5 and its revised version obtained
through bagging, which is called Random Forest, as well as
C5.0 has been selected. Furthermore, boosting is applied to
C5.0 to see how it can improve the accuracy of the model.
Notably, in all simulations related to generating classifiers, a
10-fold cross validation approach has been used. Therefore,
the whole training data set is randomly split into 10 subsets.
Then, a classifier is built considering one of the subsets as
the test data set and the rest as the training data set. Please
note that this procedure is repeated for all 10 subsets, so that
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TABLE 3. Performance of techniques used for building DTs.

10 classifiers are built, and the one with the highest accuracy
is returned as the best one.

Table 3 presents the details of the performance of each
technique used to build DTs. It can be observed that C5.0 has
revealed a better performance than C4.5. Additionally, bag-
ging (i.e. using Random Forest instead of C4.5) and boosting
can improve the performance of classifiers, demonstrating the
efficacy of these methods in building ensemble classifiers to
offer better accuracy.

Note that some studies have suggested that the synthetic
minority over-sampling technique (SMOTE) should be used
for the unbalanced data set to balance the number of mem-
bers in different classes of a multi-class data set [38]. Using
SMOTE, a number of synthetic scenarios will be generated
using the features in the generating data set. Indeed, instead of
generating raw data and then extracting features from them,
these new scenarios are directly generated from the features
using the nearest cases in each of minority classes. Figure 11
shows the distribution of each splitting strategy among the
scenarios in the training data set before and after applying
SMOTE. Note that some of highly similar scenarios in most
classes have been omitted to generate a balanced data set
with a lower volume of data. Hence, a new data set will be
obtained, which can create classifiers with higher accuracy.
This is confirmed by the results shown in Table 3. It can
be observed that after applying SMOTE, the accuracy of all
models has increased; this is significant for DTs obtained
fromC4.5 andRandomForest techniques. However, the high-
est accuracy pertains to the model obtained from the boosted
C5.0 technique showing its high performance in building
highly accurate models.

E. ADDITIONAL NOTES ON THE CAPABILITIES OF THE
PROPOSED APPROACH
First, in this paper, the classifier is built for a specific topol-
ogy of the system. In other words, changes in topology, for
example intentional line outages for maintenance, were not
considered. It should be considered that a change in the
topology of the system might have a very slight effect on the
post-disturbance dynamic response of the system. However,
if the change is strategic like the outage of a tie-line, it is
recommended that the model be rebuilt for the new topology.

The second note deals with the capabilities of the proposed
approach for online applications. It should be noted that the

FIGURE 11. Distribution of each splitting strategy among the scenarios.

proposed work is suitable for online controlled islanding with
even a faster solution achieving process. Figure 1 presents an
illustration of the time duration needed to find the solution
by the proposed approach compared to traditional methods.
As the figure illustrates, the online usage of the proposed
approach consists of three steps as follows:

Step p1 – Data acquisition
Step p2 – Splitting strategy selection
Step p3 – Finding the islanding solution (In this step,
the load shedding scheme is determined when the bor-
ders are determined in Step p2.)

Moreover, conventional approaches try to find their solution
using a process including the two following steps (see also
Figure 1):

Step c1 – Online coherency evaluation
Step c2 – Finding the islanding solution

A comparison between what occurs in each of the above steps
can demonstrate the superiority of the proposed approach
over conventional methods. In Step p1, the required raw data,
which are the phase angle variations in the selected buses, are
stored following the occurrence of a disturbance. Note that as
we use the first and second peaks of low frequency variations,
the measurement time window used in our work covers the
first 0.5 s following the occurrence of a disturbance. Other
aspects like phasor calculations that are performed within
measurement devices are extremely fast and will not affect
this step time execution time. Splitting strategy selection,
which is carried out in Step p2, is very fast. In this step,
firstly, required features, which are the input of the classifier,
are extracted and then are entered into the classifier to be
compared to the thresholds. It was observed that the execution
time of this step on the computer used for these work was
approximately less than one tenth of a second. Finally, in Step
p3, an optimization problem is solved to find the best load
shedding strategy for each area. It is worth noting that the
optimization problem defined in this step is a simpler version
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TABLE 4. Performance comparison of the proposed approach to
conventional methods in terms of computational time.

of what conventional optimization-based approaches have
presented since the borders of areas have been detected in
advance (in step p2) and therefore about half of variables that
conventional approaches have to deal with in their optimiza-
tion problems have been omitted. Therefore, Step p3 takes a
shorter time to be taken than Step c2.

Now, the steps of conventional approaches indicate that in
Step c1, it is needed to measure the rotor angle signals of gen-
erators for a sufficient time frame (which can be 10 seconds or
more) to find coherent generators. Then, in Step c2, an opti-
mization problem should be solved, which, as mentioned,
is more time-consuming than the optimization problem used
in Step p3. Thus, the above comparison can show that our
proposed approach is highly suitable for online applications
when compared to conventional methods, since it is capable
of reaching the final solution very fast, as demonstrated by the
numerical results shown in Table 4. The example simulated
in this table pertains to a 3-phase fault occurring on the line
connecting buses 1 and 31 with a clearing time of 250 ms.

It must also be noted that by using either the proposed
approach or thosemethods presented in [8] and [14], the same
groups of coherent generators will be detected. Therefore,
the dynamic response of generators represented by variations
in their speeds are the same no matter which method is
used. In fact, in this paper, the purpose of presenting the
proposed approach is to show that by employing machine
learning and a novel way of coherency evaluation in the
complex domain, we can now reach an islanding strategy
faster. Nowadays, power systems operate close to their sta-
bility limits for various reasons. Hence, it is crucial to reach
a solution quickly when fast remedial actions are necessary.
The proposed approach can successfully cope with this need,
as demonstrated by the execution times presented in Table 4.

The need to respond quickly is more vital when a severe
disturbance happens that causes one or more generators lose
their synchronism and therefore the system moves toward
instability. The example shown in Fig. 12 demonstrates this
necessity. In this example a 3phase fault has been occurred
on the line connecting buses 18 and 17 and is cleared after
0.25 seconds. Although the fault is cleared, the generators G2
and G3 starts to lose synchronism with the rest of the sys-

FIGURE 12. Generators speeds when system separation is not applied.

FIGURE 13. Generators speeds when system separation is applied.

tem within 3 seconds after fault occurrence. Then, the same
happens for generators G1, G4, G5, G6, G7, G8, G9, G10
and G11 until the whole system collapse. Therefore, it is not
possible for the conventional methods to correctly identify
a suitable islanding mechanism within this short time frame
since they need a longer time to analyze coherency. However,
using the proposed approach the system could identify a
suitable islanding strategy quickly, and then operator can
apply the islanding scheme and separate the area containing
G2, G3, G4, G5, G6, G7 from the rest of grid quickly. Since
the islanding strategy can be identify by our approach in less
than 2 seconds, we have assumed that the islanding strategy
is applied at 2 seconds after fault is cleared. As the rotor
speed variations in Fig. 13 shows generators G2 – G7 have
been separated from the rest of system and therefore the rest
of system have settled at a new stable operation point after
separation takes place. For the generators G2 – G7 that are
still unstable remedial actions needed to be carried out in
order to make them stable which is out of scope of this paper.
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In addition to the above comparison, the readers might
expect another comparison this time with the existing
machine learning-based approaches. However, please note
that what we have proposed in this paper is a new version
of previous optimization approaches in which a part of the
process is replaced with classifiers while the rest, i.e. the
process of finding borders and the optimization problem,
are totally revisited. Accordingly, we maintain that the best
comparison is the one that is performed with conventional
optimization-based methods. Furthermore, if we look at rel-
evant machine learning-based approaches, we can observe
that they are completely different in terms of their concepts
and purposes. Examples of such works are [21], [23], [39],
and [40], in which the classifier is built to predict the need for
controlled islanding using some criteria extracted from tran-
sient responses of the system. Therefore, a separate controlled
islanding process is needed to be performed when the classi-
fier detects a controlled islanding situation. On the contrary,
our approach presented in this paper specifies a controlled
islanding solution in advance and then it will be applied at
the time the need for performing the controlled islanding
strategy is detected. This is a considerable advantage making
our proposed approach fast for online applications. Hence,
we argue that such a comparison is difficult as it requires
exact implementation or reproduction of other works, and it
might not add a significant value.

The third note relates to the scalability of the proposed
approach, particularly the data generation and training steps.
First, the execution time of the offline training step is depen-
dent on the scale of the system. This is because for a larger
power system, more scenarios are needed to be simulated,
while the simulation of each scenario takes more time to be
conducted for a larger system. However, as mentioned, this
process is performed offline and once a significant change in
the system occur, the generated model is valid. In this paper,
4000 scenarios were simulated, which took approximately
78 hours to be performed on a PC with medium configura-
tions (a PC with 3.4 GHz Core i7 CPU and 8 GB of RAM).
The rest of this offline training process includes the feature
extraction and classifier building steps, which took about
24 and 4 minutes, respectively. Here, we can present two
suggestions for reducing the time needed for data generation.
First, a stronger computer can reduce the time significantly,
and second, the user can consider a shorter simulation time
for the scenarios, since in most cases, the damping factor of
low frequency modes are such that they are damped in less
than 10 seconds. However, in a very conservative assumption,
we consider a 20-second simulation time frame for scenarios
in this study, which is to some extent more than what is
needed.

V. CONCLUSION
In this paper, a supervised learning approach was proposed
to build classifiers suitable for online controlled islanding
applications. The output of the classifier is an optimal split-
ting strategy, which is obtained through a new concept of

coherency evaluation in the complex domain. This new way
of coherency evaluation allows for a faster and simpler solu-
tion to the optimization problem defined as the last stage
in the process of finding the optimal controlled islanding
strategy.

In this study, first, the performance of the proposed
coherency evaluation in the complex domain, along with the
successive optimization stage, was evaluated. Then, various
techniques were employed to build the classifier, and their
efficacy regarding the accuracy of the obtained classifier was
evaluated. Simulation results indicated that the use of the
boosted C5.0 technique led to a decision tree (as the classifier)
that had the highest level of accuracy for this application.
In other words, with the usage of the classifier obtained
by the proposed approach, the prediction and selection of
an appropriate controlled islanding strategy are viable with
high accuracy. This model can become more accurate using
an advanced method called SMOTE as demonstrated in the
results.
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