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ABSTRACT While electric vehicles (EVs) continue to draw more attention as an alternative to traditional
fossil fuel vehicles, the relatively short driving range of EVs is often pointed out as their biggest drawback.
In terms of energy consumption, one of the most energy-intensive systems in EVs is the heating, ventilation,
and air conditioning (HVAC) system. Most HVAC systems use On/Off or PID control for the actuators,
but these control methods have low efficiency and are difficult to apply in multiple-input multiple-output
systems. In this paper, we propose a novel multi-agent deep reinforcement learning (MADRL) method
to efficiently control the low-level actuators of the EV HAVC systems. Through this method, multiple
objectivs such as setpoint temperature, subcooling and efficiency can be considered simultaneously by
giving independent rewards for each actuator agent. The proposed method is evaluated via a actual vehicle
simulator, and experimental results show that the MADRL-based method consumes only 53% of the energy
consumption of PID control on average in a transient phase.

INDEX TERMS Multi-agent reinforcement learning, energy consumption efficiency, HVAC, EV, RL.

NOMENCLATURE
Abbreviation
COP Coefficient of Performance.
DOS Degree of subcool.
EV Electric Vehicle.
EXV Electric eXpansion Valve.
HVAC Heating, Ventilation, and Air Condition-

ing.
MADRL Multi-Agent Deep Reinforcement Learn-

ing.
MARL Multi-Agent Reinforcement Learning.
MG Markov Game.
MIMO Multiple-Input Multiple-Output.
PID Proportional-Integral-Derivative.
RL Reinforcement Learning.
SAC Soft Actor-Critic.
SC Subcooling.
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approving it for publication was Christopher H. T. Lee .

Variables
β Importance ratio in single agent reward

function.
1uit Change of control value of ith actuator at

time t.
δ Weight of time penalty.
0target Target DOS.
0t DOS at time t.
λ Range of convergence of temperature.
π iθ policy of ith actuator at time t.
ρ Coefficient of reward function.
ait Action value of ith actuator at time t.
Ct Binary flag of the convergence of temper-

ature.
L1 Lower bound of change of control value.
Li Lower bound of operating range of ith

actuator.
M1 Limit of convergence time in transient

phase.
M2 Limit of convergence time in steady

phase.
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N Time of convergence.
r0t Reward function of subcool at time t.
rCompt Reward function of compressor at time t.
rEXVt Reward function of EXV at time t.
rTempt Reward function of temperature at time t.
rWorkt Reward function of work at time t.
sit State of ith actuator at time t.
T target Target temperature.
Tt Temperature at time t.
uit Control value of ith actuator at time t.
U1 Upper bound of change of control value.
Ui Upper bound of operating range of ith

actuator.

I. INTRODUCTION
One of the biggest drawbacks of current electric vehi-
cles (EVs) is their relatively short driving range compared
to traditional fossil fuel vehicles. The simplest way to
improve the short driving range is to increase battery capac-
ity, and a significant amount of related research is under-
way [1]. Another approach is to improve the efficiency of
the energy-consuming systems in EVs [2], [3], [4], [5]. One
of the most energy-intensive systems in EVs is the heating,
ventilation, and air conditioning (HVAC) system, which is
a complex nonlinear thermo-fluid dynamics system com-
posed of a variety of components such as a compressor, heat
exchangers, and electric expansion valves (EXVs) to control
vehicle climate conditions. The importance of the efficient
control of the HVAC system in EVs is greater than that of
conventional vehicles as the proportion of energy consump-
tion by the HVAC system is larger in EVs [3].

Most HVAC systems use On/Off control and PID con-
trol [6], [7], [8]. On/Off control is simple but has problems
such as low efficiency and a shortening of the lifespan of
the components. PID control, also widely used for its simple
implementation, does not require the dynamics of the target
system and therefore can be applied to both linear and non-
linear systems. However, PID control involves a number of
issues. First, in most cases, it is difficult to use PID control
in multiple-input multiple-output (MIMO) systems as each
control output is coupled with a single feature, which makes
it hard to reflect complex objectives with multiple features in
PID control. Second, PID control requires a setpoint that is
typically based on human expertise and therefore might not
be optimal. In particular, determination of the target degree of
subcool (DOS), which greatly influences the efficiency of the
system [9], [10], depends on the prior experience of humans.
Further details about subcooling are explained in Section II.
Third, since PID control is a type of feedback control that
relies on errors from the current observation of the system,
it is difficult to consider the entire trajectory. As a result, if the
coefficients are not tuned well, oscillation can occur in the
system.

Recently, approaches based on reinforcement learning
(RL) to HVAC control have been studied. RL methods are

designed to maximize the reward of the global trajectory [11]
and are widely applied to various control problems. In HVAC
systems, the policies of RL control a set of actuators, sat-
isfying the multi-objective of the MIMO system via reward
engineering [12], [13]. In Refs. [12], [13], the classical RL
method SARSA has been applied to vehicle HVAC systems,
showing promising performance compared to conventional
control methods. However, the classical tabular RL method
is inadequate for a large continuous system because of the
curse of dimensionality [11]. In building HVAC systems, RL-
based control has shown promising efficiency and general-
ization performance compared to baseline algorithms [14],
[15], [16], [17], [18], [19], [20]. However, Refs. [14] and
[18] can be used only for the discrete control problem, and
while Refs. [15], [17], [18] propose a high-level control that
outputs the desired setpoint temperature, the efficiency of the
low-level subsystem actuator control to reach the setpoint
temperature is not considered. Therefore, there is room for
improving control at the low-level. Otherwise, the control
methods proposed in [19] and [20] apply to the HVAC sys-
tems of buildings and are not applicable to vehicle HVAC
systems.

In this paper, to address the above mentioned challenges,
we propose a novel control method based on multi-agent
deep reinforcement learning (MADRL) for the EV HVAC
system, with the following features. First, our method is
based on a multi-agent architecture, which enables the use
of actuator-specific reward functions to minimize the energy
consumption of the MIMO system. Second, using the novel
reward functions, our method finds the setpoints needed for
feedback control without human expertise. Third, our method
achieves more energy-efficient control than conventional
methods in terms of the entire trajectory while achieving
comparable target convergence performance. To the best of
our knowledge, this research is the first attempt to use deep
reinforcement learning for the continuous control of low-level
subsystem actuators in the EV HVAC system.

The remaining sections are as follows. In Section II,
we introduce our problem’s objective functions, the con-
cept of subcooling, and deep reinforcement learning.
In Section III, we explain ourMADRL-basedmethod includ-
ing state representation, action representation, and reward
functions. In Section IV, we show that our proposed method
outperforms the grid search and conventional PID control in
efficiency while meeting a target temperature. As a training
environment, we employed the commercial simulation soft-
ware GT-SUITE R© [21], which is widely used for industrial
vehicle HVAC modeling. Conclusion and further works are
provided in the last section.

II. PROBLEM STATEMENTS AND PRELIMINARIES
A. PROBLEM STATEMENTS
The HVAC system provides a cool or warm airflow into
the cabin through a variety of heat exchanges for passen-
gers’ thermal comfort during driving. The heat exchangers
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FIGURE 1. Phases of control in the HVAC system.

(e.g., evaporator, heater core, low temperature radiator, etc.)
transport thermal energy that is converted into the change in
cabin air temperature.

The HVAC system has multiple modes depending on the
usage for high performance and efficiency. Each mode adopts
a different circuit design by closing or opening multi-way
valves. Because of such distinct circuit design, each mode
involves a different set of actuators, and therefore, everymode
has its own specific objective and constraints.

1) OBJECTIVE
In this paper, we consider the cabin air conditioning
(A/C) mode, which is used when the cabin demands low-
temperature air. The actuators involved in this mode are
the compressor and one EXV. The objective of the mode is
to meet the given setpoint of the air temperature from the
evaporator while minimizing the work. Regarding the work,
only that done by the compressor is considered, since other
work such as cooling fan work or blower work are relatively
small.

To be more specific, the objective can be divided into
two parts: before and after reaching the target temperature,
as shown in Fig. 1. Before reaching the target temperature
(we call this stage the transient phase), the system operates
to find the optimal trajectory of the control inputs, which
minimizes the weighted sum of the total work done and time
taken until the convergence of the temperature. The system
should reach the target temperature within a given time:

min
N∑
t=1

Wt + δN

s.t. |TN−1 − T target | ≤ λ,

|TN − T target | ≤ λ,

N ≤ M1 (1)

where δ determines the weight of the time penalty and λ is
the range of convergence of the temperature.

After reaching the target temperature (we call this stage
the steady phase), the system operates to maintain the tem-
perature within the desired range while conducting minimum

FIGURE 2. Pressure-enthalpy diagram for the vapor-compression cycle.

work. The system becomes steady by fixing the inputs of
the actuators to certain values. While there can be multiple
input combinations that maintain the same target temperature,
each of themmay differ in efficiency. Therefore, in the steady
phase, the objective is to find the optimal combination of
control inputs rather than finding the trajectory. This optimal
combination should satisfy Eq. (2):

min
M2∑

t=N+1

Wt

s.t. |Tt − T target | ≤ λ,

∀t ∈ {N + 1, . . . ,M2} (2)

2) USE OF SUBCOOLING
A liquid is subcooled when it exists at a temperature below
its normal condensing point. Fig. 2 shows that subcooling
(SC) exists to the upper left of the saturation line in the
pressure-enthalpy diagram. In HVAC systems, condenser SC
has a significant effect on the coefficient of performance
(COP) [22]. In other words, maintaining the DOS at the target
level is equivalent to achieving a certain level of efficiency.
In conventional control methods, an EXV is controlled to
reach the desired DOS using PID control or model predictive
control to improve the COP [9], [10], [23], [24]. Our method
is first validated to control the EXV to meet the target DOS
provided by experts as an auxiliary target of efficiency. In the
steady phase, the system is expected to reach not only the
target temperature but also the optimal DOS. The objective
function of the steady phase can be modified as follows:

min
M2∑

t=N+1

Wt

s.t. |Tt − T target | ≤ λ,

|0t − 0
target
| ≤ λ,

∀t ∈ {N + 1, . . . ,M2} (3)

However, as stated in [23], finding the optimal DOS is dif-
ficult and often requires numerous assumptions. Moreover,
if the system is newly introduced or updated, finding the
optimal DOS requires trial and error. In such cases when
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FIGURE 3. Slew rate constraint.

the target DOS is unknown, our method can be trained to
directly minimize the work. Details are further discussed in
Section IV.

3) CONSTRAINTS
Due to physical limits and safety issues, the compressor has
a limit on the available changes in actuation per time, which
is called the slew rate constraint. The slew rate constraint can
be expressed as Eq. 4, where u1t and u

2
t are the control values

of the compressor and EXV at time step t , respectively:

L1 ≤ 1u1t ≤ U1, ∀t (4)

Also, each actuator’s operating range has physical limits. This
constraint is shown in Eq. 5.

L1 ≤ u1t ≤ U1, ∀t

L2 ≤ u2t ≤ U2, ∀t (5)

B. PRELIMINARIES
1) REINFORCEMENT LEARNING
We formulate the HVAC control problem as a Markov deci-
sion process [11] with a tuple of states (S,A, p, r, γ ), where
S is the continuous state space, A is the continuous action
space, p : S × A× S → R≥0 is the unknown state transition
dynamics that denotes the probability density of the next state
s′ ∈ S given s ∈ S and a ∈ A, and r : S × A → R is
a reward function. γ ∈ [0, 1) is a discount factor of future
rewards, and π (a|s) is a stochastic policy of action a given
state s ∈ S. The agent chooses action at based on policy
π (at |st ) for every time step given state st and reaches the
next state st+1 following the stochastic transition dynamics
p(st+1|st , at ).
The goal of RL is to maximize the expected cumulative

reward from the current policy π for every time step:

max
π

Eπ

[
∞∑
t=0

γ tr(st , at )

]
(6)

Using the policy function π (a|s), the state value function
V or action value function Q (or Q-function) is obtained
to approximate the expected cumulative reward. The state

value function V π (s) of a policy π is the expected cumulative
reward starting from the state s upon executing π :

V π (s) , Eπ
[ ∞∑
τ=t

γ τ−tr(sτ , aτ ) | st = s
]

(7)

Next, the Q-function Qπ (s, a) of a policy π is the expected
return starting from state s, taking action a, and then
following π :

Qπ (s, a) , Eπ
[ ∞∑
τ=t

γ τ−tr(sτ , aτ ) | st = s, at = a
]

(8)

2) SOFT ACTOR-CRITIC
Recently, deep neural networks have beenwidely used to train
the policy or value function of RL algorithms [25], [26], [27],
[28]. In this work, we deployed soft actor-critic (SAC) [29],
which is a state-of-the-art model-free RL algorithm for con-
tinuous control domains. SAC has a high sample efficiency,
as the algorithm is trained based on maximum entropy [30]
with an actor-critic architecture [31]. Moreover, SAC tends to
convergemore stably and requires less hyperparameter tuning
than other RL algorithms.

In SAC, the goal of the agent is to maximize not only the
expected sum of the rewards from the current policy π but
also the expected entropy of the policy:

max
π

Eπ
[ ∞∑
t=0

γ t
(
r(st , at )+ αH

(
π (· | st

))]
(9)

where H
(
π (· | st )

)
= Ea∼π [− log

(
π(a|s)

)
]. The critic,

which is the soft Q-function Qθ of a policy πφ , is trained
by minimizing the critic objective (Eq. 10), while the actor
πφ is updated by minimizing the actor objective (Eq. 11),

JQ(θ ) , E(st ,at )∼D

[
1
2

(
Qθ (st , at )

−

[
r(st , at )+ γEst+1Vθ̂ (st+1)

])2]
(10)

Jπ (φ) , Est∼D
[
Eat∼πφ

[
α logπφ(at | st )− Qθ (st , at )

]]
(11)

where θ̂ is the set of parameters of the target network. For a
better exploration, the temperature coefficient α is automati-
cally adjusted for themaximum entropy policy byminimizing
the α objective,

J (α) , Eat∼πt
[
− α logπt (at | st )− αH0

]
(12)

whereH0 is the desiredminimum expected entropy threshold.

3) MULTI-AGENT RL
Multi-agent reinforcement learning (MARL) is widely stud-
ied in control systems with multiple components [32], [33],
[34], [35], [36], [37]. MARL enables a more delicate design
of the action and reward functions compared to single-agent
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FIGURE 4. Agent diagram.

RL algorithms. To define our MARL problem, we introduce
a Markov game (MG) [32], [34], [38], [39]. The MG is a
framework that generalizes the Markov decision process for
multiple agents interacting simultaneously in a shared envi-
ronment. MG is defined with the tuple (N , S, {Ai}, p, {r i}),
where N denotes the number of interacting agents (N > 1),
S is the continuous state space, A : A1 × · · · × AN is the
joint action space which is the collection of the continuous
action spaces of individual agents i ∈ {1, . . . ,N }, p : S ×
A× S → R+ is the unknown state transition probability, and
r : r1 × · · · × rN is the reward function. In MARL, joint
action a : a1×· · ·×aN and joint policy π(a|s) = 5iπ

i(ai|si)
are defined with the collection of the actions and policies
of individual agents. A MARL agent chooses joint action at
based on joint policyπ (at |st ) for every time step given state st
and reaches the next state st+1 following stochastic transition
dynamics p(st+1|st , at ). The goal of MARL is same as the
goal of RL (Eq. 6).

III. METHODS
A. MULTI-AGENT IN THE HVAC SYSTEM
As mentioned in Section II-A, our model has two different
objectives, Eq. 1 for the transient phase and Eq. 2 for the
steady phase. Each objective is optimized by its own agent,
namely a transient agent for the transient phase and a steady
agent for the steady phase. Each agent is composed of a com-
pressor agent and an EXV agent, which are responsible for
the corresponding actuators of the system. With an identical
architecture for the compressor and EXV agents (Fig. 4), the
transient and steady agents are trained for their respective
phase using their own novel reward functions. Each reward
function reflects the objectives defined in Eq. 1 and Eq. 3.
The compressor agent contains a policy network π1

θ whose
primary objective is to find the optimal control value of the
compressor to meet the target temperature. Similarly, the
EXV agent contains a policy network π2

θ whose primary
objective is to find the optimal control value of the EXV
to meet the target DOS. In general, the compressor has a
larger influence on the system than the EXV. Before the
compressor converges, most of the features including com-
pressor work, temperature, and SC predominantly depend on
the compressor. Only after the target temperature is reached
and the compressor converges can the EXV agent observe the
change in SC that is induced solely by itself. Then it becomes
possible to control the EXV agent tomeet the target DOSwith

appropriate feedback. In other words, EXV control requires
long-term exploration, in which the agent learns to meet the
target DOS after the convergence of the target temperature.

In the case of single-agent RL, the agent outputs control
values of both compressor and EXV from a single neural
network. Also, the reward is a single scalar value unified from
r1t and r2t (Eq. 13).

rsinglet = (1− β)r1t + βr
2
t , β ∈ [0, 1] (13)

In this case, the agent tends to learn to control the more
dominant component, which is the compressor, while strug-
gling with the less dominant component, the EXV. One pos-
sible solution to address this issue is to adjust each reward’s
relative importance with a ratio constant, β. Unfortunately,
finding the right value of β requires extensive hyperparameter
searching with exponentially growing costs for increasing
numbers of actuators. By splitting each actuator into indepen-
dent agents, the relative magnitude of the reward is no longer
an issue. Likewise, this structure can be easily expanded to
HVAC systems with more actuators by simply adding more
agents.

B. STATE REPRESENTATION
The compressor and EXV agents share most of their impor-
tant features from system observations. Common features are
as follows.

[Tt−1,Tt , 0t−1, 0t ,Tt − T target , 0t − 0target , u1t−1, u
2
t−1]

(14)

Here, Tt−1,Tt , 0t−1, 0t are observed values of the tempera-
ture and SC of the current and previous time steps, respec-
tively. As the HVAC system reacts gradually rather than
instantly, information of the previous time steps is required
for the agents to decide the next action. This nature of the
HVAC system can be easily inferred from a mathematical
modeling of each system component, where most of the
dynamics are differential equations with time [40], [41].
In the above equation, the current error of temperature and
SC are denoted by Tt − T target and 0t − 0target . The agents
can decide the magnitude and direction of the action based on
the current error. Moreover, the control values of the previous
step are also included as (u1t−1, u

2
t−1). To make the most of

the information available, each agent’s current state contains
the other agent’s action that was taken one step before. The
control values of different actuators are normalized with their
upper and lower limits for a relative scale, as follows.

u1t−1 ←
u1t−1 − L1
U1 − L1

u2t−1 ←
u2t−1 − L2
U2 − L2

(15)

Besides the common features, the EXV agent receives
additional information, Ct , which is a binary flag indicating
whether the target temperature is reached. Ct , as given by
Eq. 16, is 1 when the error of the temperature is below λ
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FIGURE 5. Compressor action mapping function. (a) Naive approach and
(b) proposed approach.

for two consecutive action steps and otherwise 0. The reward
changes depending on Ct , and thus Ct provides a clear under-
standing of the status. More details about the reward function
are explained in Section IV-D.

Ct =


1, if |Tt − T target | < λ

and |Tt−1 − T target | < λ

0, otherwise

(16)

To sum up, the state of each agent is as follows:

s1t = [Tt−1,Tt , 0t−1, 0t ,Tt − T target ,

0t − 0
target , u1t−1, u

2
t−1]

s2t = [Tt−1,Tt , 0t−1, 0t ,Tt − T target ,

0t − 0
target , u1t−1, u

2
t−1,Ct ] (17)

C. ACTION REPRESENTATION
The action values (a1t , a

2
t ) of the policy networks (Eq. 18),

which are in the [−1, 1] range, are converted to control values
via mapping functions. For clarity, we call the output of the
agent as the action value and the input of the actuator as the
control value.

a1t = π
1
θ (s

1
t ) ∈ [−1, 1]

a2t = π
2
θ (s

2
t ) ∈ [−1, 1] (18)

As each actuator needs a different control value, different
mapping functions are applied. For the compressor agent, the
action value a1t is mapped to the control value u1t considering
two types of constraints. The first constraint (Eq. 5) is the
operating range of the component, which is themaximum and
minimum rpm value of the compressor. The other constraint
(Eq. 4) is the slew rate, which is the allowed change of rpm
per second for the safety of the component. The compressor
mapping function is as follows:

urange =

{
min(U1, u1t−1 + U1)− u

1
t−1, if a1t > 0

u1t−1 −max(L1, u1t−1 + L1), if a1t < 0

u1t = u1t−1 + a
1
t · urange (19)

The compressor action value a1t is first rescaled to the
domain of an actuator control value using the slew rate and
the operating range. The rescaled value is then added to the

previous control value u1t−1 to get the next control value u1t .
In this way, we can assure that the control value always stays
in the allowed range.

One notable thing to address is that the mapping function
is asymmetric. When a1t is rescaled with an affine transfor-
mation to the change in the control value, the allowed range
of increment and decrement can differ [Fig. 5(a)]. If a1t is
rescaled uniformly in this range, the portion of either incre-
ment or decrement can be relatively larger than the other,
which can be problematic for the training process. Specifi-
cally, the agent collects training data with a random policy in
the early stages of the training. The distribution of the training
data can be biased towards either increment or decrement if
the range is unbalanced, and this can greatly influence the
training time and quality. To address this issue, the action
value is rescaled differently depending on its sign. Positive
action values always increase the control value within the
allowed range, while negative action values work in the oppo-
site way [Fig. 5(b)].

While a1t is rescaled to 1u1t , a
2
t is directly rescaled to u2t

using the operating range of the EXV component. The slew
rate is not considered in this case. The EXVmapping function
is as follows.

u2t = 0.5 a2t · (U2 − L2)

+ 0.5(U2 + L2) (20)

D. REWARD FUNCTION
The reward function is designed to enable multi-objective
control in the current MIMO system. As described in Fig. 4,
two different control agents are trained, one for each corre-
sponding phase. The objectives of each phase are expressed
as reward components.

1) REWARD FUNCTION FOR THE TRANSIENT AGENT
The reward function for the transient agent in Eq. 21 is based
on Eq. 1 from Section II. The reward function has two com-
ponents, rTempt and rWorkt . The compressor agent and EXV
agent receive rewards composed of a temperature reward and
work reward. In the transient phase, the convergence of SC
is not considered; hence, the only termination condition for
the transient phase is the convergence of temperature. The
reward function of the compressor and EXV agents is r1t and
r2t , respectively. Note that the ρ variables determine the shape
and scale of the reward function.

rTempt = −(ρ1 + ρ3)+ ρ1e−ρ2·(Tt−T
target )2

+ ρ3e−ρ4·(Tt−T
target )2

rWorkt = −(ρ1 + ρ3)+
ρ1 + ρ3

500− 4000

(
Wt − 4000

)
r1t =

{
rTempt + rWorkt − ρ5, if t = M1 and Ct = 0

rTempt + rWorkt , otherwise

r2t = rWorkt (21)
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FIGURE 6. Reward function of the transient agent with a target
temperature of 4 ◦C, showing (left) the temperature reward and (right) the
work reward.

The rTempt component is related to the convergence of tem-
perature to the target value. As Tt approaches T target , r

Temp
t

converges to 0. In contrast, rTempt converges to −(ρ1 + ρ3)
as Tt gets further away from T target . Otherwise, the rWorkt
component is related to the work done by the compressor and
linearly decreases as the work Wt increases. Wt is linearly
mapped to [−(ρ1+ ρ3), 0] using its minimum and maximum
values, which are 500W and 4000W. The reason for mapping
temperature and work rewards to the same range is to prevent
any reward from being overly dominant. In a multi-objective
problem, an imbalance between reward components may
cause some objectives to be ignored in training (Fig. 6).

Each agent’s reward function is designed to satisfy the
objectives of the transient phase (Eq. 1). In the compressor
agent case, the reward r1t consists of a sum of rTempt and rWorkt
in order to reach the target temperature while minimizing
the work. To reflect the time constraint, the agent receives
a large negative penalty ρ5 if the model fails to reach the
target temperature by the end of the episode. On the other
hand, r2t is the same as rWorkt . The EXV only takes the work
reward because SC is not considered in the transient phase
and the EXV control value has only a subtle influence on the
change in temperature. It is worth noting that the objective of
the transient phase is to meet the target temperature, not the
target SC.

One important thing to address in the transient phase is
the sign of the rewards. Contrary to the steady phase, every
reward in the transient phase has a negative value.With a neg-
ative reward, the total episode reward decreases as the length
of the episode increases. Therefore, negative rewards force
the agent to balance between terminating the episode early
and minimizing the work, which paves the way to achieve our
objective function in Eq. 1. This property of negative rewards
is used to reflect the objective of faster convergence.

2) REWARD FUNCTION FOR THE STEADY AGENT
The reward function for the steady agent in Eq. 22 is based
on Eq. 3 from Section II. This reward function is designed to
be two-fold due to the trajectory of the temperature. As the
steady phase comes after the transient phase (Fig. 1), the
steady agent should be trained not only in the steady phase
but also in the transient phase, and thus should have two

FIGURE 7. Subcool reward function for steady phase with a target degree
of subcool −10 ◦C.

reward functions. When the temperature is far from its target
(Ct = 0, transient phase), the reward function is designed
to reach the target temperature as fast as possible to enter
the steady phase. Then after reaching the target temperature
(Ct = 1, steady phase), the reward function changes to
meet the objectives of the steady phase (Eq. 3). Compared
to the transient agent, an additional reward component r0t is
used for the convergence of the target SC in this case. Also,
the sign of both reward components for the steady agent is
positive, for the following reasons. As the objective of the
steady phase is to maintain the target temperature and SC in
a stable manner, the steady agent should be enhanced to stay
in the desired state as long as possible.With a positive reward,
we can compensate the agent as much as necessary. Note
that composing the two reward functions of this agent with a
single sign is important; if negative and positive rewards are
mingled, the agent will struggle to understand the true effect
of the action. Therefore, the positive reward for the steady
agent’s transient phase is applied, differing from the negative
reward for the transient agent.

rTempt = ρ1e−ρ2·(Tt−T
target )2

+ ρ3e−ρ4·(Tt−T
target )2

rWorkt =
ρ1 + ρ3

500− 4000

(
Wt − 4000

)
r0t = ρ1e

−ρ2·(0t−0target )2

+ ρ3e−ρ4·(0t−0
target )2

r1t =

{
rTempt , if Ct = 0

rTempt + rWorkt , if Ct = 1

r2t =

{
rWorkt , if Ct = 0
r0t , if Ct = 1

(22)

The shapes of the temperature and work reward for the
steady agent are the same as the model for the transient
agent. They are only translated to positive values. Here, rTempt
converges to ρ1+ρ3 as Tt approaches T target and converges to
0 otherwise. And rWorkt is linearlymapped to [0, ρ1+ρ3] using
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FIGURE 8. Reward function of the steady agent with a target temperature
of 4 ◦C, showing (left) the temperature reward and (right) the work
reward.

the minimum and maximum values of Wt . Similar to rTempt ,
r0t converges to ρ1+ρ3 as 0t reaches 0target and converges to
0 otherwise (Fig. 7). Before reaching the target temperature
(Ct = 0), r1t is the same as rTempt . After reaching the target
temperature (Ct = 1), the compressor agent receives both
rTempt and rWorkt . The reason for adding rWorkt when Ct =
1 is to train the steady agent to keep the temperature in the
desired range (|1T | < λ). As rWorkt is positive, r1t is always
much higher when the temperature is in the desired range,
from which we can be assured that the convergence of the
temperature has a higher priority than efficiency.

In this case, r2t is the same as rWorkt before reaching the
target temperature. After reaching target temperature, the
EXV agent receives r0t , with which it is trained to reach the
target SC. When the target SC is unknown, the EXV agent
can be trained with rWorkt after reaching the target temperature
(Ct = 1). Here, the EXV agent is trained to find the action
that minimizes the work while maintaining the temperature.
As a byproduct, the resultant SC can be used as a target
SC value. An agent trained without target SC is validated in
Section IV-2.

E. MODEL ARCHITECTURE AND TRAINING PROCESS
Fig. 9 illustrates our MADRL training framework for the
HVAC system control. First, both compressor and EXV
agents receive the tuple (st , at , st+1) by interacting with the
HVAC simulator. Using the tuple, the reward functions of the
compressor and EXV agents calculate r1t and r

t
2, respectively,

and store the transition (st , at , rt , st+1) in their experience
replay memory. Then, a mini-batch of k transitions are ran-
domly sampled from each experience replay memory and
given to each network. The networks output the current action
value, current Q-value, and target Q-value for each agent.
These outputs are passed to multiple loss functions that calcu-
late actor loss, critic loss, and α loss. The parameters of each
network are updated using the gradient of the corresponding
loss. After the training, in the inference, the actor network is
separated and takes the state as an input and outputs control
values for the compressor and EXV.

Both the compressor and EXV agents are based on
SAC [29]. The network architecture of our model is as

TABLE 1. Model hyperparameter table.

Algorithm 1 Training Algorithm
1: for each component i do
2: Initialize critic network parameters θ i1, θ

i
2 and actor

network parameter φi

3: Initialize target critic network parameters θ̄ i1 ←

θ i1, θ̄
i
2← θ i2

4: Initialize alpha αi

5: Initialize experience replay memoryM i

6: end for
7: for each iteration do
8: Obtain the state s10, s

2
0

9: for each environment step do
10: Obtain control actions a1t ∼ π1

φ(a
1
t | s

1
t ), a

2
t ∼

π2
φ(a

2
t | s

2
t )

11: Calculate rewards r1t (s
1
t , a

1
t ), r

2
t (s

2
t , a

2
t )

12: Obtain new states s1t+1 ∼ p(s1t+1 | s
1
t , a

1
t ), s

2
t+1 ∼

p(s2t+1 | s
2
t , a

2
t )

13: for each component i do
14: M i

← M i
∪ (sit , a

i
t , r

i
t , s

i
t+1)

15: if Msize ≥ Bsize then
16: Randomly sample k transitions from experi-

ence replay memoryM i

17: Update θ ij ← minθ i JQ(θ
i
j ) for j ∈ 1, 2

18: Update φi← minφi Jπ (φ
i)

19: Update αi← minαi J (α
i)

20: Update θ̄ ij ← τθ ij + (1− τ )θ̄ ij for j ∈ 1, 2
21: end if
22: end for
23: end for
24: end for

follows. Both agents have identical structures except for the
size of their inputs. As stated in Section III-B, the EXV
agent receives an additional state Ct . Similar to the original
SAC paper, our model uses twin Q-networks with a target
smoothing coefficient τ of 0.01. Both the actor and critic of
the agents are fully connected networks with 2 hidden layers
with 50 neurons and use ReLU as the activation function. The
learning rate η is 0.0003 for the critic, actor, and entropy. For
the stability of the training, the gradient is clipped at 5. Also,
the Adam optimizer [42] is used to update the parameters.
More details about the model hyperparameters are given in
Table 1.

The pseudocode of the training process is described in
Algorithm 1. The MADRL training algorithm first starts by
initializing the neural networks. In line 2, the parameters of
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FIGURE 9. MADRL training framework.

the actor and critic networks use Xavier initialization. Then
the parameters of the target critic network are synchronized
with the critic network. Also, the coefficient of entropy α and
experience replay memory M are initialized.

The training process consists of multiple nested loops,
where the outer loop denotes the training episode for each
iteration, the second loop denotes the training step of
each episode, and the innermost loop denotes the training
of each component. In line 8, the initial states s10, s

2
0 are

obtained from the HVAC simulator. In lines 10–12, using
the current state st , the action, reward, and next state are
obtained, which forms the transition sample (st , at , rt , st+1)
for every time step. In line 14, the transition sample is stored
in the replay memory, and in lines 15–19, a mini-batch is ran-
domly sampled from the replay memory and the networks are
updated. In line 20, the target critic network is soft-updated
with hyperparameter τ .

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
In this section, the MADRL-based control algorithm is val-
idated for the EV HVAC system. The HVAC system is for-
mulated with the commercial software GT-SUITE R© [21],
which has been widely employed by vehicle manufacturers
and component suppliers. As one of the key aims of this
research is to facilitate our implementation in an industrial
setup, it is natural to choose a widely used industrial simu-
lator. In our experiment, the vehicle thermal system circuit
is implemented as explained in Section II. For experiments,
the thermal system circuit requires additional conditions such
as vehicle speed and ambient temperature; these conditions
are chosen here based on a common scenario using the A/C
circuit. In particular, the target evaporator outlet temperature,
which is the main control objective, is set within a range

TABLE 2. Experimental conditions.

of 4−12◦C with an interval of 2 degrees. The time step
unit is 3 seconds, and one episode has 200 time steps. For
each setpoint temperature experiment, RL agents are trained
500 episodes each. Details of the conditions are summarized
in Table 2.

B. EXPERIMENTAL RESULTS
As explained in Section III, the transient and steady agents
of the MADRL-based control model are trained separately.
In this section, we evaluate our model in terms of the tempera-
ture convergence and the work efficiency. Also, we show that
our method works well without a target DOS and can even
find an effective target DOS. Additionally, we compare the
MADRL-based control model with conventional PID control.

1) CONVERGENCE AND EFFICIENCY EVALUATION
The performance of temperature convergence is evaluated
differently for each phase. In the transient phase, the ability
to reach the target temperature within a limited time is tested
(Fig. 10). The time limit (tlimit ) is 40 steps, equivalent to 120 s.
For every target temperature, the transient agent succeeds to
reach the target within the given time. In the steady phase, the
ability to reach both target temperature and SC is evaluated.
Fig. 11 shows the case when the target temperature is 6 ◦C;
the rest of the experimental results are presented in Fig. 12.
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FIGURE 10. Evaluation of transient agent in transient phase.

TABLE 3. Ratio of work done between different methods in the transient
phase (until Ct = 1).

The target DOS corresponding to the target temperatures is
obtained by domain experts. In Fig. 11, we can see that the
trajectory of the MADRL control model with a SC target
converges to the target temperature and the target SC. As a
result, the control values reach almost the same control values
as PID control by the end. For every experiment in Fig. 12,
the agents succeed to reach the target temperature and target
SC with less than 0.5 ◦C error.
In terms of efficiency, we evaluate the work done by each

control model in each phase. In Table 3, the work done by the
MADRL control model is compared with PID control for the
transient phase. Comparing the result of the transient agent

FIGURE 11. Comparison of MADRL steady agent and PID control
trajectory for 6◦C.

and PID control, the MADRL control model significantly
improves the efficiency. The transient agent generally shows
better performance in the lower temperature zone where the
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FIGURE 12. Evaluation of steady agent with subcool target, without subcool target and PID control in steady phase: red dash line is RL control without
subcool, blue dot line is PID control, solid black line is RL control with subcool, and black dash dot line is target subcool.

TABLE 4. Time steps of each method in the transient phase (until Ct = 1).
Final refers to the final settling time.

cooling load is greater than in the high temperature zone.
In particular, when the target temperature is 4◦C, the transient
agent consumes only 11% of the energy compared to that by
PID control.

Such performance improvement is largely due to faster
convergence. As shown in Fig. 10, Fig. 12, and Table 4,
PID control converges to the target temperature more slowly
than the transient agent. One of the reasons for this slow
convergence is an overshoot that is easily observable in the

TABLE 5. Comparison of work in the steady phase.

PID control. The overshoot of control is observable not only
in the temperature but also in the SC. The overshoot of SC
also contributes to the inefficiency of the system, where the
proper SC promises a better COP. Conversely, the trajectories
of the transient agent show little or no overshoot.

When we compare the work done between the steady agent
and the transient agent in Table 3, the transient agent shows
better efficiency, indicating that the reward functions are
working as intended. As the transient agent is penalized if
the work done by the compressor is high, the transient agent
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TABLE 6. Grid search result.

utilizes the compressor more mildly to use less work. Lastly,
in the steady phase, the steady agent trainedwith the SC target
is compared with PID control in Table 5. Specifically, the
work values are estimated based on the average of the last
10 steps of the trajectory in the steady phase. The steady agent
shows a similar performance compared to PID control. This
result is consistent with the trajectory of bothmethods, as they
converge to the same temperature and DOS.

2) TRAINING THE MADRL MODEL WITHOUT A SUBCOOLING
TARGET
As mentioned in Section III, conventional PID control
requires a target DOS for feedback control, whereas the
MADRL-based control model can be trained without a target
DOS. Without a SC target, the agent is expected to reach
the target temperature while minimizing the work. Since the
target DOS is only used in the steady phase, this experiment
is only for the steady agent.

We first validate if the model successfully reaches the tar-
get temperature. In Fig. 12, for every case, the agent reaches
the target temperature successfully. In Table 5, we compare
the work done by the MADRL control model trained without
a SC target and that by PID control. Our model shows compa-
rable efficiency for all cases, averaging 99% efficiency com-
pared to PID control. Especially when the target temperature

is 4◦C, the MADRL control model outperforms by 8%. Also,
it is worth noting that the model converges to SC similar to
PID control in most cases. Even when the converged DOS
differ, the control model shows reasonable efficiency, varying
by less than 5% from the PID control results even in the worst
case. The DOS targets used in this work are optimal values
found by domain experts, and finding them requires wide
experience and numerous heuristics. If the DOS targets are
not optimal, the performance gap between PID control and
our method will be even greater.

For further validation, we conducted a brief grid search
(Table 6). The grid search is executed by maintaining a fixed
set of actions until observations converge. The resolutions of
the actions are 1000 rpm and 0.2 mm for the compressor
and EXV, respectively. Each grid search result is grouped
by the final temperature. In the results, each group contains
a final temperature value differing less than 1◦C from the
target temperatures of our experiment. In Table 5, the best
grid search results are selected that satisfy the convergence
condition (|1T | ≤ 0.5). Compared to the grid search results,
both the MADRL control model and PID control achieve
greater efficiency for all target temperatures. In fact, the grid
search results show that finding the appropriate DOS for
each temperature is difficult. For target temperatures of 4 and
6◦C, less than 3 combinations of actions are found to reach
the desired temperature. Applying a finer resolution would
result in better performance but also increase the cost of
computation. Moreover, if the number of actuators increases,
the cost increases exponentially.

V. CONCLUSION
In this paper, we proposed a MADRL-based control method
for an EVHVAC system. The key conclusions of this work are
as follows: First, through themulti-agent architecture, various
objectives such as temperature, subcooling and efficiency can
be simultaneously set. Second, the proposed method reduce
the energy consumption in the transient phase to 53% of
the PID control. Third, experiment show that it is possible
to control with a similar level of efficiency without opti-
mal setpoint subcooling only through the reward function.
Furthermore, the converged SC values can be used as new
setpoints.

Our study was validated in the A/Cmode under a simulated
environment. In future research, we will validate our model
in the heat pump mode with more actuators. Also, we expect
to generalize our model in a real EV with minimum tuning.
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