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ABSTRACT Due to the complex background and biodiversity of underwater biological images makes the
identification of marine organisms difficult. To solve these above problems, we propose a dual attention
mechanism deep neural network for underwater biological image classification (DAMNet). Firstly, tthe
proposed DAMNet uses multi-stage stacking to suppress the complex underwater background, and the
multiple stacking can reduce the number of parameters of the model and improve the generalization ability.
Secondly, the dual attention mechanism module is combined with the improved reverse residual bottleneck
based on deep convolution to extract the feature information of underwater biological images from space and
channel aspects to obtain better discrimination and feature extraction capability. Finally, the gravity optimizer
is selected to update the model weights, and the exponential translation can improve the model’s convergence
speed and learning rate. Extensive experiments on a dataset consisting of seven types of underwater biological
images demonstrate that the DAMNetmodel has higher learning ability and robustness compared to the state-
of-the-art methods. Our DAMNet model achieves 96.93% classification accuracy in all categories, which is
at least a 2 percentage point improvement compared to other models.

INDEX TERMS Underwater images, attention mechanism, neural networks, reverse residuals, optimization
algorithms.

I. INTRODUCTION
Nowadays, underwater images have been increasingly stud-
ied in image enhancement, restoration, and classification [1].
Understanding marine organisms and abundance distribution
is important for marine ecosystems, environmental monitor-
ing, and fisheries [2], [3]. For underwater images, due to the
scattering and absorption effects of light, suffer from image
blur [4], low contrast [5], and blurred details [6], [7], [8], [9],
[10], and the diversity of underwater image backgrounds
is also an important influencing factor for classification.

The associate editor coordinating the review of this manuscript and

approving it for publication was Fan Zhang .

Therefore, classifyingmarine organisms is a very challenging
and critical research topic.

Underwater biometric identification is gradually applied
to aquacultures, such as automatic fishing and underwater
survey, which is of great significance in fishery and seabed
detection. There is much research on underwater image clas-
sification, but few effective underwater image recognition
models exist. Image classification methods are still largely
unsatisfactory for underwater image classification due to the
poor performance of extracting salient features from images
due to the diversity of underwater image backgrounds and
image quality [11], [12], [13].

Underwater images have complex backgrounds and certain
feature similarities among different species, so how to extract
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valuable information from the complex images is the key to
solving the problem. For the underwater species classification
problem, this paper proposes a DAMNet model, which uses a
dual-attention mechanism to extract rich image feature infor-
mation and uses a gravity optimization algorithm to improve
the accuracy of the model. Experiments show higher model
training accuracy than common attention mechanisms and
optimizers. The main contributions of this paper are as
follows.
• In this paper, we propose a method for classifying

images of underwater organisms and conduct many
comparative experiments on images of different under-
water organisms in different environments. Compared
with other methods, our DAMNet model has better clas-
sification ability.

• We use multi-stage stacking method, to reduce the
number of feature parameters by stacking modules and
update the weight information through the extraction of
underwater features and the change of parameter gradi-
ents. And the gravity optimization algorithm uses expo-
nential moving averages, which can effectively improve
the classification performance of the model.

• A self-attention mechanism is added to the model in this
paper, and a classification module combining channel
and spatial attention is used to make the model have
better feature description ability. Then, further using
residual network and global variable features, a bet-
ter underwater image feature extraction method is pro-
posed, which improves the classification accuracy and
practical application value.

In what follows, section II briefly reviews the classification
methods in underwater images. Section III presents the over-
all framework andmethodology of themodel. Section IV pro-
vides a comparative analysis of different models and ablation
studies. Finally, Section V gives the conclusion and outlook
of this paper.

II. RELATED WORKS
In this section, we summarize the related work from two
aspects, including machine learning methods and deep learn-
ing methods.

A. MACHINE LEARNING METHODS
The classification method based on machine learning is
semi-automatic extraction of image features, which requires
manual definition and verification of functions. It uses algo-
rithms to convert images into data to extract desired target
features. Sun et al. [14] used a Support Vector Machine
(SVM) as the final classification algorithm for the pro-
posed low-resolution underwater image classification model.
Iswari et al. [15] used K-nearest neighbors (KNN) as a classi-
fication algorithm for color summarization of fish imagesand
achieved 91.36% classification accuracy. Deep andDash [16]
used KNN and SVM combined with convolutional neural
networks(CNN) to classify underwater fish species and had

better results compared to algorithms. Zhang et al. [17] classi-
fied eight different fish species based on a genetic algorithm
feature construction method and a histogram of orientation
gradients, and their method obtained an average accuracy
of 98.9%. Cheng et al. [18] showed that combining support
vector machines for the classification of underwater plankton
images can improve the accuracy and recall of the model,
with the best result reaching 94%. Wang et al. [19] com-
paredmachine learning and deep learning and experimentally
showed that machine learning has better results on small sam-
ple datasets. Salman et al. [20] combined machine learning
processing methods to classify 15 and 10 underwater fish
species and showed more than 90% accuracy. Khishe and
Mosavi [21] compared an artificial neural network (ANN)
trained chimpanzee optimization method with an iron motion
algorithm and demonstrated the reliability of the algorithm.
Almero et al. [22] used a hybrid model composed of hidden
layers in an ANN and achieved an accuracy of 93.6% in
fish detection. Machine learning has good fault tolerance
and computational power, and convolutional neural networks
have shorter training times and higher accuracy rates. Still,
manually extracted features are not rich, have weak general-
ization ability, and are inefficient.

B. DEEP LEARNING METHODS
The deep learning method to process images is to extract
features, emphasizing the importance of feature learning
automatically and feature extraction and transformation in
multi-layer networks, so that deep learning has excellent fea-
ture expression capabilities. Mahmood et al. [23] used resid-
ual networks to extract new image features from different
convolutional layers and combine them to obtain more com-
pact and powerful deep features. Multi-channel convolution
also has outstanding contributions in image classification,
recovery and enhancement [24]. Xu et al. [25] improved the
classification performance of deep convolutional neural net-
works in underwater images by optically transforming images
and adding generative adversarial networks. Qi et al. [26]
proposed a semantic region enhancement module that senses
the degradation of different semantic regions from multiple
scales and feeds them back to the global attention features
extracted from their original scales to achieve enhancement
of underwater images. Li et al. [27] proposed an underwater
image enhancement network with multicolor spatial embed-
ding guided by media transport, coupled with an attention
mechanism where the most discriminative features extracted
from multiple color spaces are adaptively integrated and
highlighted. Xie et al. [28] normalized the total variance
term and sparse prior knowledge sparse prior knowledge of
the fuzzy kernel by varying the image resolution for fuzzy
kernel estimation coarse to fine to avoid local minima, further
validating its superiority relative to other state-of-the-art algo-
rithms. Li et al. [29] investigated and studied deep learning
methods applied to underwater image enhancement and eval-
uated the existing methods qualitatively and quantitatively.
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FIGURE 1. Flowchart of DAMNet model. Our model consists of a dual attention mechanism module and a stacking module. In our
approach, we pool and convolve image features, input them into the dual-attention mechanism module to extract feature information,
and filter out the important features by stacking of modules. In the model, the redundancy of feature information is reduced at each
stage using residual connections, and all convolutional layers are of size 3 × 3 and 1 × 1.

Jaeger et al. [30] presented a Croatian fish dataset contain-
ing 12 fish images to perform fine visual classification of
fish with an accuracy rate of 66.78%. Villon et al. [31]
proposed a method to assist in recognition of fish species,
using CNN to test that the recognition rate of fish reached
94.9%, which is higher than the human recognition rate.
Balakrishnan et al. [32] used migration learning to classify
underwater images, combined it with data augmentation, and
achieved an accuracy of 86%. Aridos et al. [33] proposed
a deep underwater image classification algorithm for tur-
bid underwater images, which provides better classification
accuracy. Fu et al. [34] use a graph CNN model to repre-
sent features in three aspects: local space, global space, and
channel correlation, with better accuracy on real datasets.
Yang et al. [35] proposed an initial attention network that
outperformed other networks in distinguishing underwater
images from images in non-underwater environments with
99.3% classification accuracy. Paraschiv et al. [36] used a
lightweight CNN model to classify underwater fish, which
improved the accuracy by 7% compared with the network
model withmany parameters.Mathur andGoel [37] proposed
a migration learning based method for underwater image
classification, which improved the classification accuracy by
training only the last few layers of the network throughmigra-
tion learning and achieved 98.44% and 84.92% accuracy on
large and small datasets, respectively. Jiang et al. [38] pro-
posed an improved deep convolutional generative adversarial
networks model to classify underwater objects, add data for
small-sample objects, and combining the CNN models with
lightweight neural network achieves a good trade-off between
model complexity and classification accuracy. Deep learning
methods have high generalization ability and robustness but
large data volume and long training time.

III. PROPOSED METHOD
We show the flowchart of our proposed DAMNet model in
Fig 1. It includes the following steps: 1) multi-stage stacking,

2) dual-attention module, and 3) optimizer. Specifically, the
first step uses multi-stage stacking to reduce the model’s
number of parameters and improve the model’s generaliza-
tion ability by combining and stacking between different
modules and attention. The second step adds a dual-attention
mechanism module to extract saliency information of images
in space and channels to improve the model’s classification
accuracy. Finally, it uses a gravity optimization algorithm,
a gradient-based optimization algorithm, to reduce the loss
of the deep learning model and improve its training results.

A. MULTI-STAGE STACKING
For the training 224 × 224 images, there are many pixels.
After the convolution and attention are combined, if the rela-
tive attention is directly used, there will be problems such as
a large amount of calculation, high cost, and slow speed due
to many pixels. The amount of features is reduced without
affecting the important features, and then relative attention is
used.

The model adopts a multi-stage layout, and each stage
uses max pooling to gradually reduce the space size and
increase the number of channels, enabling residual networks
to connect. The model is divided into five parts, containing
S0, S1, S2, S3 and S4. The first part (S0) is used to extract
features and increase the number of channels and is defined
as:

S0 = Conv3
(
Conv3 (x)

)
, (1)

where two 3 × 3 convolutional layers (Conv3) and x are the
input of the features.

The second (S1) and third (S2) parts combine convolution
and self-attention to improve the model’s accuracy, which can
be expressed as:

yM = Conv1
(
Lin2

(
Avg

(
Conv3

(
Conv1 (x)

))))
, (2)

S1, S2 = yM
(
yM
(
Conv1 (Max (x1))

))
, (3)
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FIGURE 2. Flowchart of attention stacking. Each attention stacking
module is constructed by stacking n Transformer blocks. S3 consists of
five Transformer blocks and S4 consists of two Transformer blocks, both
with maximum pooling and 1 × 1 convolution before stacking.

where S1 in x1 is S0, S2 in x1 is S0 ⊕ S1, Conv1 stands for
1× 1 convolution, Lin denotes fully connected, Avg denotes
average pooling, and Max is maximum pooling.

The fourth (S3) and fifth (S4) parts are Transformer blocks,
which purely use the attention mechanism to improve the
efficiency of the data and the model by directly stacking the
Transformer blocks concerning attention, and are defined as:

yTF = Lin (Lin (ATT (x))) , (4)

S3 = yTF
∗5
(
Conv1

(
Max∗2 (x2)

))
, (5)

S4 = yTF
∗2
(
Conv1

(
Max∗2 (x3)

))
, (6)

and yTF can be seen as a Transformer block, both
multi-headed attention and a location fully connected feedfor-
ward network (FFN), where ∗5 or ∗2 stands for stacking using
this module 5 times or 2 times, and the stacking schematic is
shown in Fig 2, x2 and x3 are S1⊕S2 and S2⊕S3, respectively.

Transformer blocks are used later in themodel tomaximize
the balance between efficiency and performance. Through the
model’s stage layout, many parameters are reduced to make
the features reach a manageable level, which speeds up the
model’s training speed and helps improve the model’s gener-
alization ability when the training data is limited. When the
data features are rich, the stacking of modules increases the
model’s capacity and improves the visual processing capabil-
ity to a certain extent. High capacity and good generalization
ability can effectively improve the classification performance
of the model.

B. DUAL ATTENTION MODULE
This paper introduces an attention mechanism to reduce the
feature parameters extracted from the model. This strategy
selectively focuses on regions where valuable features are
closely related and thus ignores unimportant feature infor-
mation. We use Depthwise Convolution and Convolutional
Block Attention Module (CBAM) to form the DBAConv
module, which can calculate and extract features without
changing the channel and greatly reduce the number of
parameters. The CBAM module structure diagram is shown
in Fig 3. In Depthwise Convolution, one channel is only
convolved by one convolution kernel, and the number of
feature channels does not change, which can be expressed as
each dimension in a predefined receptive field. The sum of

FIGURE 3. CBAM structure diagram. The CBAM module consists of two
modules, spatial attention and channel attention, which infer feature
maps along two dimensions, channel and spatial, and then multiply them
with the original map for adaptive feature refinement, respectively.

FIGURE 4. CAM flow chart. The module compresses the spatial dimension
by parallel global maxpool and global avgpool, then expands again to the
original number of channels by perceptron MLP, sums these two outputs
element by element, and finally uses Sigmod activation to obtain the
output of Channel Attention.

the weighted values is defined as:

yn =
∑

m∈η(n)
zn−m � xm, (7)

MD = Convgroup
(
Conv1 (x)

)
, (8)

where xn and yn are the input and output of position n,
respectively, η (n) is the local neighborhood of n, and zn−m
is the weight matrix of position (n− m), respectively.
The attention mechanism CBAMmodule is a hybrid atten-

tion module consisting of channel attention (CAM) and
spatial attention (SAM) modules, and the structure of the
CAM is shown in Fig 4. ⊗ is multiplied by the previous
input, W , H represent the width and height of the feature
map, C is the number of channels, and the input feature map
F = W × H × C . For channel attention, the first is adap-
tive average pooling (Avg) and maximum adaptive pooling
(Max), compressed into a feature map 1× 1× C . Secondly,
a two-layer MLP neural network is input, add two activa-
tion functions, and the output is 1 × 1 × C . Get the same
one-dimensional vector as the number of channels, learn the
correlation between channels, and get the attention of the
channels. Finally, the features computed by the module are
subjected to a summation operation and a Sigmoid activation
operation, resulting in (MC ) is expressed as:

MC = Sigmoid (MLP (Avg (x))+MLP (Max (x))) , (9)

where the neural network of the two-layerMLP, x is the input,
the number of neurons in the first MLP is N/n, (n is the
scaling rate, it is set to 16), and the number of neurons in
the second MLP is N .
Unlike channel attention, spatial attention focuses on the

effective information on feature map, SAM is shown in Fig 5.
The results of channel attention output are first pooled equally
and maximally to compute spatial attention to obtain two
H × W × 1 two-dimensional feature maps. Then the fea-
ture maps they produce are stitched together. Then splicing
(Cat) into the spliced feature map of the feature map, the
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FIGURE 5. SAM flow chart. The feature map output from Channel
attention module is used as the input feature map of SAM module, the
channel dimension is compressed by maxpool and avgpool, the two
feature maps are stitched together, and after 7 × 7 convolution operation,
the dimension is reduced to one channel, and then the feature map of
Spatial Attention is obtained by sigmoid activation, and finally the result
is multiplied by the original map to obtain the original size feature map.

final spatial attention feature map (MS ) is obtained by the
7 × 7 convolution operation and the Sigmoid function, and
it is defined as:

MS = Sigmoid
(
Conv7 (Cat (Avg (MC ) ; Max (MC )))

)
.

(10)

The final element level is multiplied and the final CBAM
attention module is defined as:

x ′ = MC ⊗ x, (11)

MF = MS ⊗ x ′, (12)

where ⊗ represents element-wise multiplication. Finally, the
DBAConv module is defined as:

DBA = Conv (MF (MD (x))) . (13)

By extracting the feature information of the channel and
space, multiplying and correcting the original input feature
map, and generating the final feature map, which can sup-
press the complex underwater image noise information.

Although attention mechanisms have a larger capacity,
they may generalize worse than CNN due to the lack of cor-
rect induction bias. The DBAConv module unifies and com-
bines depthwise convolution and attention to make it more
generalizable in classification. The stacking of Transformer
blocks mainly establishes the global connection between
features, while the DBAConv module establishes the local
connection between features. Themerging of global and local
features can improve the model’s performance.

Our final DAMNet mainly consists of a stack of DBA
blocks and Transformer blocks, and the detailed build-
ing blocks and parameter settings are shown in Table 1.
Before the first DBA module, the image size is reduced to
112 × 112 and the number of channels input to the image
is increased from two convolutional layers to 64. After the
DBA module, the size of the feature map is reduced and the
number of channels of the feature map is increased. The final
prediction of the model is obtained after averaging pooling
and fully connected layers.

TABLE 1. Network building blocks and parameter settings for DAMNet.

C. OPTIMIZER
In this paper, we use Gravity optimizer, a gradient-based
optimization algorithm that reduces the parameters of the
deep learning model. The gravity optimization algorithm has
three hyperparameters, namely the learning rate (l), the initial
step size (α), and the average moving parameter (β). The
recommended values are l=0.1, α=0.01, and β=0.9, respec-
tively, and the learning rate is a common hyperparameter in
deep learning. Every optimization algorithm takes gradient as
input and gives steps to update parameters in output.WhereN
is a normal distribution, the mean is γ , the standard deviation
is σ , and G the gradient of the objective function. Where
v=N (γ, σ ), σ=α/l, t are the number of update steps. β is
a positive real number between 0 and 1, and values that are
too large or too small affect the training results, the proposed
substitution scheme is defined as:

o = (βt + 1)/(t + 2), (14)

and for each weight matrix, the maximum gradient calcula-
tion formula is defined as:

m = 1/max (abs (G)). (15)

The main problem before applying the moving average is
the initial trial delay of loss reduction. To solve this problem,
the gradient terms n, vt are the velocity in the current update
step, which are defined as:

n = G/
(
1+ (G/m )2

)
, (16)

vt = ovt−1i + (1− o) n, (17)

The final weight update is defined as:

W i
= W i

− lvt . (18)

Among them, the larger the value of the gradient coeffi-
cient, the larger the step size of the weight with the higher
gradient. By increasing m, the gradient of a larger range can
be linearly processed, and the weight with a larger gradient
value will also take a larger update: step size, low validation
loss, and high accuracy. The experimental results are shown
in Section IV-B.
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D. LOSS FUNCTION
The sample used in this study is 9,500 underwater images of
seven types, and different types of images have similar back-
grounds. In the feature extraction process, to improve the
learning speed of the model in the complex underwater image
background and speed up the convergence of the model, the
Cross-Entropy (CET) loss function in classification loss is
used in this paper.

In the DAMNet model, the formula of the CET loss func-
tion is defined as:

C = −
1
n

∑
x

[r ln f + (1− r) ln(1− f )], (19)

where x is the sample, f is the predicted input, r is the actual
label, and n is the total number of samples. The formula is
the total loss function of n samples, as long as the n losses are
superimposed. Using the Sigmoid for regression can solve the
problem that the weight update is too slow.

Extracting similar features from different classes of under-
water images in the feature extraction process is affected
by the error in the output when the data converge. We use
the CET loss function can avoid the problem of decreas-
ing the learning rate. When convergence is faster, the gradient
of the last layer of weights is proportional to the difference
between the output and true values and is no longer related
to the activation function. The backpropagation is multiplica-
tive, so the whole weight matrix is updated faster.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
Experimental Dataset: This paper selects datasets including
fish, turtles, sea urchins, sea cucumbers, corals, humans,
and remains from OceanDark [39], RUIE [40], UIEB [41],
UFO-120 [42], EUVP [43], and publicly available online
and other underwater biological samples. We collected about
5,800 underwater images containing different degraded and
enhanced images such as real underwater images, artificial
low-light images, hyper-segmented images and underwater
images acquired by different devices, expanded them to about
9,500 images by image filtering and rotation, and divided
them into training and test sets with a ratio of 5:1, with the
training set containing 7,984 images and the test set contain-
ing 1,600 images. The size of each training sample was scaled
to 224×224, and images of some different species underwater
are shown in Fig 6.
Compared methods: This paper adopts the traditional and

classic neural networks are used to compare and analyze the
network models proposed in this paper, such as AlexNet [44],
VGG19 [45], GoogLeNet [46], and ResNet50 [47], and
new network models EfficientNe [48], CoAtNet [49],
RepVGG [50] and AlterNet [51].
Evaluate metrics:
1) Accuracy(ACC): The percentage of total samples with

all correct predictions.
2) Precision(P): The proportion of correct predictions as

true samples to the total number of predictions as true
samples.

TABLE 2. Optimizer comparison of experimental results. The best results
in each case are in red, with the next best in blue.

3) Recall(R): The proportion of correctly predicted as true
samples to the total actual as true samples.

4) F1: It is the summed average of Precision and Recall,
F1 = P ∗ R ∗ 2/(P+ R).

A. EXPERIMENTAL CONFIGURATION
This paper uses the DAMNet model for feature extraction and
learning. On the personal workstation, RTX 3090 GPU and
NVIDIA Tesla V100s GPU server with 32G graphics card as
the device of the model, and implemented using the PyTorch
framework.

The original underwater creature images were uniformly
converted to 256 × 256 × 3 and the input images were
cropped to 224 × 224 × 3 by the center. The model was
trained on 9,584 images, divided into a training set and a
test set in a 5:1 ratio.The training set is used to train and
optimize our DAMNet model, and the validation set is used to
verify the validity of the model.We first initialize the network
parameters using normalization and learn the model globally
iteratively using the gravity optimizer, where we set the batch
size to 16, the decay rate of the optimizer to β = 0.9, the
base learning rate is set to 0.01, and the training ends with
200 iterations. In the following sections, the experimental
results of classification evaluation, loss analysis, and ablation
study are presented.

B. OPTIMIZER SELECTION
In this paper, the gravity optimization algorithm was selected
as the optimizer of the model and compared with Adam,
AdamW, SGD, and RMSProp optimizers. The experimental
results are shown in Table 2 by training on the underwater
biological image dataset. The results show that the gravity
optimizer has lower verification loss, faster convergence, and
higher accuracy. The RMSProp optimizer has a high accuracy
rate, but the average loss is higher than other optimizers. Sim-
ilar to the SGDoptimizer, their average loss fluctuates greatly,
and the convergence speed is slow. For different datasets,
having a good optimizer to achieve faster weight updates
and model convergence improves the model’s classification
accuracy and reduces the model’s loss of parameters and
training time.

C. CLASSIFICATION EVALUATION
As shown in Figure 6, this paper’s training and test images
are composed of seven types of biological images under
different complex backgrounds and degradation conditions.
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FIGURE 6. Image display of some underwater species. Our dataset contains seven different types of images of marine life,
from left to right are samples of different kinds of underwater images. From top to bottom are samples of underwater
images of the same species with different backgrounds.

The DAMNet model is used to classify the underwater bio-
logical image dataset, and the common network models are
compared and tested. Such as AlexNet [44], VGG19 [45],
GoogLeNet [46], and ResNet50 [47], and novel network
models EfficientNe [48], CoAtNet [49], RepVGG [50] and
AlterNet [51]. In Table 3, the classification accuracies of each
class of underwater creature images are shown. The DAMNet
model has a high accuracy in each class, but the accuracy of
fish is lower, reaching only 91.84%, while the accuracy of all
other species is around 97.5%.

The average training results of different models in all
categories of the dataset are shown in Table 4, where we
list the other models’ accuracy, precision, recall, F1 value,
and loss, verifying the learning and classification ability of
the DAMNet model. The broken line comparison of training
accuracy is shown in Fig 7.

Table 4 shows that the DAMNet model accurately classi-
fies underwater images in complex and similar backgrounds.
Compared with models that are purely deep convolutional
networks or incorporate a single attention mechanism, the
addition of a dual-attention model can extract richer image
features, making the model complete in extracting object
features, which can identify underwater creatures well and
improve the classification accuracy of the model. The
DAMNet model outperforms other network models in all
metrics, with an accuracy rate of 96.93% and an average loss
value of 0.1860. The accuracy is about 5 percentage points
higher than that of models such as VGG19, EfficientNet,
ResNet50, and AlexNet, respectively, and about 2 percent-
age points higher than that of models such as GoogLeNet,
CoAtNet, RepVGG, and AlterNet.

Combined with Fig 7, it is found that the stacking of
attention and the combination of convolution and attention
make the DAMNet model converge faster, reach high accu-
racy in a short epoch, and smooth out compared with other

FIGURE 7. Accuracy curves of different model training processes. Our
model reaches high precision and stabilizes at about 20 iterations, with
fast convergence and high accuracy compared to other models.

models. The results in Fig 7 show that the DAMNet model
has a good learning ability and convergence capacity to obtain
satisfactory classification results for underwater biological
images.

Combined Table 3 shows that the classification accuracy
of fish is low in all the models with higher accuracy, and
we found that the main reason is that the fish in the dataset
is a large class containing different classes of fish, which
makes the model have the low similarity of features in feature
extraction and errors in classification.

D. LOSS ANALYSIS
In this paper, the data is increased by rotation, and the ratio
of samples used for training and testing is 5:1, which reduces
the risk of overfitting the model training. We initialize the
weights and use a gravity optimization algorithmwith a batch
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TABLE 3. Experimental results for different categories of different models. The best results in each case are in red, with the next best in blue.

TABLE 4. Experimental results of different models. The best results in
each case are in red, with the next best in blue.

FIGURE 8. Average loss curve. The trend loss of our model in training is
consistent with the trend of training accuracy, which indicates that there
is also no overfitting problem during the training period and the model
has good generalization ability.

size of 16 and initial step size, average movement parameter,
and learning rate set to 0.01, 0.9, and 0.01, respectively.
The gravity optimizer speeds up the updating of weights
by exponential translation, and the addition of the CBAM
module enables the extraction of rich features in complex
underwater backgrounds. The dual attention mechanism is
employed to speed up the feature extraction and reduce the
number of parameters to make the model converge faster and
with lower losses. The average loss curve of the DAMNet
model training is shown in Fig 8.

E. ABLATION STUDY
To further demonstrate the effective features obtained by
combining dual attention mechanisms, this paper incorpo-
rates different attention mechanisms in the model for the
ablation study. Attention mechanisms such as SENet [52],
SKNet [53], and CBAM [54] were mainly compared, and
different attention mechanisms were added to the model

TABLE 5. Experimental results of different attention mechanisms in the
model. The best results in each case are in red, with the next best in blue.

and trained on the underwater biological image dataset. The
experimental results are shown in Table 5. SENet is a study
of channel attention mechanisms for feature maps, and it is
a study of attention mechanisms for convolutional kernels.
Both are similar in that they enhance useful information and
compress useless information.

In contrast, CBAM can generate attentional feature maps
believed from both channels, and spatial dimensions have
a stronger ability to improve the scalability of the under-
lying network. They can extract image feature informa-
tion more effectively in complex underwater backgrounds.
On the underwater biological image dataset, its accuracy
reaches 96.93%. In conclusion, underwater images’ channel
and spatial attention combinations have higher classification
accuracy.

V. CONCLUSION
In this paper, we propose a deep neural network model based
on a dual attention mechanism for underwater biological
image classification. Due to the complex underwater back-
ground and the situation that there are similar backgrounds in
different categories, we choose to use the CBAM module to
increase the saliency of image features. The combination and
stacking of attention and convolution are realized to reduce
feature parameters, thereby improving the learning perfor-
mance and robustness of the model. Extensive experiments
on underwater biological image datasets have shown that
the DAMNet model obtains better results compared to other
models. The model provides technical support in fishery and
ocean exploration and deserves further study.

Although the classification results of the current models
are good, these methods have certain limitations. First, the
fish in the dataset is a large class, which has a poor learning
effect and low classification accuracy. Second, there are lim-
itations and singularity in the images for marine biometrics
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identification, such as the presence of only one category on an
image. In the model, as it is processed for underwater images,
there is more feature information and noise information than
land images, there are a large number of parameters, and the
training time is longer. In our future work, we will add the
fine classification of fish and will consider designing a model
applied to underwater creature target detection to achieve the
recognition of multiple targets in a single image.
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