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ABSTRACT The Industrial Internet of Things (IIoT) is the key technology of Industry 4.0. The combination
of machine learning and IIoT has spawned a thriving smart industry. Machine learning models are trained
and predicted based on raw data that contains sensitive information, and data sharing leads to information
leakage. Data security and privacy protection in IIoT face serious challenges. Therefore, we propose a
federated learning-based privacy-preserving data aggregation scheme (FLPDA) for IIoT. Data aggregation
to protect individual user model changes in federated learning against reverse analysis attacks from industry
administration centers. Each round of data aggregation uses the PBFT consensus algorithm to select an IIoT
device from the aggregation area as the initialization and aggregation node. Paillier cryptosystem and secret
sharing are combined to realize data fault tolerance and secure sharing. Security analysis and performance
evaluation show that the scheme can effectively protect data privacy and resist various attacks. It has lower
communication, computational, and storage overhead than existing schemes.

INDEX TERMS Federated learning, IIoT, PBFT, privacy-preserving.

I. INTRODUCTION
Industrial devices are interconnected through the Internet
of Things to form the Industrial Internet of Things (IIoT),
becoming one of the key technologies to achieve Industry
4.0. With the rapid development of wireless communication,
the wide application of big data, artificial intelligence (AI),
5G, and other technologies, IIoT is becoming intelligent,
which has dramatically improved industrial productivity and
efficiency [1]. The Industrial Internet of Things has emerged
a variety of advancedmobile devices, such as smart gateways,
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smart watches, smartphones, etc. The industrial data gen-
erated by IIoT is developed by AI through machine learn-
ing technology and applied to various fields such as smart
healthcare, autonomous driving, smart cities, smart homes,
and live games [2], [3], [4]. Smart devices generate industrial
data containing sensitive information transmitted, shared,
and stored in IIot [5]. For example, in autonomous driving,
smart devices provide users with navigation and emergency
avoidance by sensing road condition information and real-
time vehicle status [6]. If data security and user privacy
are not guaranteed, attackers will tamper with private data,
cause traffic network accidents, and endanger personal safety.
Therefore, it is crucial to ensure the data security and privacy
protection of smart devices in IIoT.
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Machine learning has advantages such as real-time pre-
diction, improved industrial automation, and saved time and
cost. The combination of machine learning and IIoT has
spawned a booming intelligent industry. Traditional machine
learning often requires collecting large amounts of raw data
from IIoT devices (such as gateways) to train, requiring all
IIoT devices to upload data to a central server and then
train learning models. The rapid development of machine
learning brings convenience to people, but also carries signif-
icant security risks. The training and prediction of machine
learning models are based on raw data containing sensitive
information, and data sharing will lead to information leak-
age. Without access to rich shared data, it isn’t easy to train
high-precision models. Security and privacy concerns about
machine learning have become stumbling blocks. How to
make data be used in real-time without disclosing its privacy
has become a problem that the industrial Internet of Things
must solve.

Inspired by this issue, Federated Learning (FL) is pro-
posed [7]. It lets devices in the industrial Internet of Things
collaborate to learn a common model by exchanging model
parameters with a central server rather than raw data. Training
data in federated learning is still stored locally, eliminating
the need to access local data directly, and reducing the risk of
privacy breaches. FL aggregates local model parameters from
many IIoT devices to train globalmodels, andmodel accuracy
will be significantly improved [8]. During the transmission of
federated learning models, adversaries can use the correlation
between model output and sensitive data features to pre-
dict sensitive information based on background information
and published models, thereby increasing the risk of privacy
information leakage [9]. A single user usually only has a
small amount of data to train the local model, and FL com-
pares the trained and untrained local model, easily obtaining
the trained datasets containing sensitive information. Thus,
FL is vulnerable to reverse analysis attacks. Therefore, it is a
challenge to design FL solutions that meet the requirements
of individual privacy and information security.

To solve the above problems, we propose a federated
learning-based privacy-preserving data aggregation scheme
(FLPDA) for IIoT, which combines federated learning with
secret sharing to aggregate data. In this scheme, each round
of federated learning elects initializing and aggregating nodes
through the PBFT consensus algorithm, which changes the
dependence of the existing scheme on trusted entities and
dramatically reduces the risk of information leakage. Data
aggregation is an effective method to protect data privacy and
reduce communication overhead [10], [11], [12], which is
used to protect the changes of individual user model in FL
and prevent reverse analysis attacks from the central server.
Paillier cryptosystem and secret sharing are combined to
achieve fault tolerance, data security, and sharing.

The main contributions of this paper are as follows:
(1) A federated learning-based privacy-preserving data

aggregation scheme for IIoT is proposed. Through the
PBFT consensus algorithm, one of the smart devices

in IIoT is selected as the initialization and aggregation
node, which does not rely on trusted authorities or
trusted third parties.

(2) Data aggregation is adopted to protect model change of
industrial devices in FL and resist the reverse analysis
attack from the industry management center. Secret
sharing is applied to share IIoT data while achieving
fault tolerance.

(3) The lower overhead of computation, communication,
and storage in FLPDAmeans that the system has better
efficiency and higher execution speed, which is very
suitable for data aggregation in IIoT.

The remainder of this paper is organized as follows: The
related works are discussed in Section II. Sections III and IV
present the relevant preliminaries and the proposed system
model, respectively. In Section V, FLPDA is described in
detail. Security analysis and performance evaluation are car-
ried out in Sections VI and VII, respectively. Section VIII
concludes this paper.

II. RELATED WORK
In recent years, the research on the privacy protection of
federated learning and its application in IIoT has attracted
extensive attention in the academic community.

Ma et al. [13] proposed a privacy-preserving multi-party
framework for federated learning. Bilinear aggregation sig-
natures are used to verify the correctness of the ag-gregation
results, and all participants participate in the verification.
Therefore, the computational cost increases significantly
with the number of participants. In [14], the authors com-
bine the Harn-Gong key with data aggregation to propose
a machine learning data aggregation scheme with non-
interactive keys. The results show that the scheme has a
private data masking function. However, the scheme relies
on the trusted authority to distribute the keys. Authors
in [15] present a hybrid privacy-preserving federated learn-
ing scheme, which combines secure multi-party computation
with differential privacy to reduce the noise injection that
increases with the number of participants without sacrificing
privacy. In [16], a privacy-preserving federated neural net-
work learning scheme is proposed to solve the problem of
neural network evaluation and privacy-preserving training in
an N-square federated learning environment. Bonawitz et al.
[17] designed a federated learning secure aggregation scheme
for high-dimensional data, which allows the central server
to compute the sum of data vectors from mobile devices
securely with communication efficiency and fault robustness.
Song et al. [18] proposed an efficient secret-sharing privacy-
preserving FL data aggregationmechanism, which can aggre-
gate user-trained models without revealing user models, with
efficient fault tolerance and resistance to reverse attacks.
Scheme [15], [16], [17] has high computation and commu-
nication costs, and cannot resist replay attacks. Scheme [18]
also fails to defend against replay attacks.

Tian et al. [19] proposed a blockchain-based machine
learning framework for IIoT. The scheme builds a new smart
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contract, which uses the aggregation strategy to verify and
aggregate the model parameters to ensure the accuracy of the
decision tree model. But miners are assumed to be honest and
trustworthy nodes.

All the above schemes proposed a theoretical framework,
but did not design specific federal learning methods for pri-
vacy protection.

Kong et al. [20] proposed a privacy-preserving model
aggregation scheme based on a federated learning navigation
framework. A homomorphic threshold cryptosystem com-
bines the skip list and the bounded Laplace mechanism to
protect the locally trained model updates. Zhou et al. [21]
proposed a blockchain-based federated data sharing scheme.
A federated extreme gradient boosting learning algorithm is
constructed to solve the data isolation problem, and a data
sharing mechanism is designed to ensure secure on-demand
control data sharing. Scheme [20] relies on the trusted author-
ity (TA), and scheme [21] assumes that the Key generation
center (KGC) is the trusted entity. In fact, a trusted entity does
not exist, and there is a risk of information source leakage,
so it is not practical.

We propose a scheme combining PBFT, data aggregation,
and federated learning. It solves the problem that existing data
aggregation solutions rely on trusted entities, while resisting
the reverse analysis attack problem of federated learning
solutions.

III. PRELIMINARIES
A. FEDERATED LEARNING
FL is a distributed machine learning model. The model is
trained on the user side to protect the user’s privacy, and
then the model update is transmitted to the central manager
for aggregation. Raw data remains in local storage. During
local model training, the central manager can access all local
model updates and share model data with other servers in the
aggregation area. The global model in the central manager is
then updated and shared back to the local device for further
training [22].

FL is a typical example of machine learning and analysis
on mobile wearable devices through 5G and later wireless
networks, which have been deployed to sensitive healthcare
applications [23].

B. PBFT
The practical byzantine fault tolerance (PBFT) consensus
algorithm is a distributed voting mechanism. Its purpose
is to solve the consensus problem in an N-nodes net-
work with F concurrent failed nodes, where N satisfies
N > 3F + 1 [24].

PBFT is divided into three processes: pre-prepare, pre-
pare, and commit, which solves the problem of General
Byzantine [25].

C. SECRET SHARING
Secret sharing is an entirely homomorphic scheme, which
uses Shamir technology to split a secret into L parts and

FIGURE 1. System model.

allocate them to different members. If an opponent steals part
of the system, it can only gain part of the secret. It can obtain
the whole secret only if it gets at L pieces of the secret [26].

The following polynomial was chosen to split a secret.

E(y) = α + p1y+ p2y2 + · · · + pL−1yL−1 (1)

where αis a secret, and L is a threshold value.
The following formula can be obtained by Lagrange inter-

polation polynomial

E(y) =
∑L

k=1
(
∑L

j=1,j6=k

yj − y
yj − yk

)E(yk )

γyj =
∏L

k 6=j

yk
yk − yj

(2)

Then a is calculated as follows:∑L

j=1
E(yj)γyj =E (0) (3)

IV. SYSTEM MODEL
A. COMMUNICATION MODEL
As shown in Figure 1, the hierarchical structure of indus-
trial data communication is composed of IIoT devices (IID)
and Industrial Management Center (IMC). The following
presents the details of each component.

(1) IID: Each user is equippedwith a wearable smart device
for industrial data collection. One user is equal to an IID. IIDs
simultaneously and regularly collect IIoT data. P2P commu-
nication is used between all IIDs in each aggregation area.
Each aggregation area adopts PBFT consensus algorithm to
select an IID from all IIDs as system initialization and data
aggregation node (SN). Sometimes IIDs may stop reporting
or reset later due to failure. IID is assumed to be honest but
curious.

(2) IMC: IMC reads aggregated real-time IIoT data.

B. ADVERSARY MODEL
In our model, IMC and IID are semi-trusted. IMC or IID does
not tamper arbitrarily with its industrial data, but it may want
to gain access to other people’s private industrial information
and sell it to interested entities.
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TABLE 1. Notations.

Internal attackers may conspire to access other users’
industrial sensitive private information. An external attacker
may attempt to impersonate a legitimate entity (i.e., a smart
industrial device in the aggregation area) and send relevant
data on its behalf. In addition, external eavesdroppers may
eavesdrop on network traffic to obtain industrial data and
attempt to modify and forward it.

C. DESIGN GOALS
(1) Data security. It can resist various attacks. Even if the
aggregated ciphertext of IIoT data collected by smart devices
is intercepted, the IIoT data of a single smart device cannot
be recovered.

(2) Privacy. Industrial data can be securely aggregated
against internal and external attacks. No entity can obtain the
industrial data of a single smart device.

(3) Fault tolerance. If the smart device is not able to collect
industrial data due to external malicious damage or failure,
the utility of the system is significantly compromised. Even
if some smart devices cannot collect or send industrial data,
the system can still effectively aggregate the data of IIoT from
other smart devices.

V. THE PROPOSED SCHEME
In this section, we introduce a federated learning-based
privacy-preserving data aggregation scheme for IIoT. The
notations are listed in Table 1.

A. INITIALIZATION
Suppose each aggregation area has N SDs recorded as a set
Pg = {SD1,SD2, . . . ,SDN}. Some users do not participate in
IIoT data aggregation because of specific concerns or because
IIDs may be malfunctioning. It is assumed that there are
at least L SDs online and participate in aggregation, these
IIDs constitute Pon ⊆ Pg. Through the PBFT consensus
algorithm, each round of data aggregation selects an IID from
the data aggregation area Pg as system initialization and data
aggregation node (SN).
SN runs Paillier cryptosystem to generate (q, g0,G1,G2, e),

e : G1 × G1 → G2, G1 and G2 are cyclic groups of
order p, calculates public-private key pairs {(N , g), (λ,µ)},
g0 ∈ G1, g1 ∈ Z∗N 2 .

SN chooses three hash functionsH0,H1 andH2, whereH0 :

{0, 1}∗→ Z∗N , H1,H2 : {0, 1}∗→ G1.
SN publishes the parameter {q, g0, g1,G1,G2, e,N ,H0,

H1,H2}.

B. ROUND 0 (ADVERTISE KEYS)
IID:

(1) Request IMC to update data.
(2) IIDj selects sj ∈ Z∗q as the private key and computes the

corresponding public key Pj = sj ·g0, then it sends Pj to IMC.
IMC:
(1) IMC collects at least L messages from IIDj in the

previous round.
(2) Make sure the number N of IIDs, the threshold value L.
(3) Broadcast list of received public keys to IIDs in Pon.

C. ROUND 1 (SHARES GENERATION)
IID:

(1) Receive global parameters broadcasted by the server.
Verify that |Pon| ≥ L.
(2) Generate secret shares, IIDj generates its polynomial

E(yj) = α+p1yj+p2y2j +· · ·+pL−1y
L−1
j , γyj =

∏L
k 6=j

yk
yk−yj

,
then sends Ts ‖ E(yj)γyj to IMC.

IMC:
(1) Forward received shares to IIDs in Pon.

D. ROUND 2 (CIPHERTEXT GENERATION AND
VERIFICATION SIGNATURE)
IID:

(1) IIDj generates IIoT data dj at timestamp Ts, and com-
putes H0 (Ts), then selects rj ∈ Z∗N to generate ciphertext:

Cj = g
dj
1 × r

N
j × H0(Ts)

E(yj)γyjmod N 2

(2) IIDj generates signature σj = sj ·H2(Cj ‖ Pj ‖ H1(Ts ‖
E(yj)γyj )).
(3) IIDj sends Cj ‖ Pj ‖ H1(Ts ‖ E(yj)γyj ) ‖ σj to IMC

and SN .
IMC:
(1) After receiving Cj ‖ Pj ‖ H1(Tsj ‖ E(yj)γyj ) ‖ σj, IMC

batch verification signature

e

 L∑
j=1

σj, g0


= e

 L∑
j=1

sj · H2
(
Cj ‖ Pj ‖ H1

(
Tsj ‖ E

(
yj
)
γyj
))
, g0


=

L∏
j=1

e
(
sj · H2

(
Cj ‖ Pj ‖ H1

(
Tsj ‖ E

(
yj
)
γyj
))
, g0

)
=

L∏
j=1

e(H2(Cj ‖ Pj ‖ H1(Tsj ‖ E(yj)γyj )), sj · g0)

(2) Forward batch signature verification results to SN .
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E. ROUND 3 (CIPHERTEXT AGGREGATION AND SECRET
RECONSTRUCTION)
IID:

(1) SN aggregates the ciphertext of all IIDs.

C =
N∏
j=1

g
dj
1 × r

N
j × H0(Ts)

E(yj)γyjmod N2

= g
∑N

j=1 dj
1 · rNj × H0(Ts)

∑L
j=1 E(yj)γyj mod N2

= g
∑N

j=1 dj
1 · rNj × H0(Ts)0 mod N2

= g
∑N

j=1 dj
1 · rNj mod N2

(2) SN sends C to IMC.
IMC:
(1) After the batch verification signature is passed, IMC

arbitrarily chooses L shares of E(yj)γyj from the received N
shares of E(yj)γyj to reconstruct the secret.

α = E(0) =
∑L

j=1
E(yj)γyj .

Let α = 0, so
∑L

j=1
E(yj)γyj = 0.

F. ROUND 4 (CIPHERTEXT DECRYPTION)
IMC uses the private key (λ,µ) to decrypt C to obtain the
aggregated the data of IIDs.

Dec(C) =
L(g(

∑N
j=1 dj)λ mod N2)

L(gλ mod N2)
modN

=

N∑
j=1

dj

VI. SECURITY ANALYSIS
A. DATA INTEGRITY
FLPDA scheme adopts BLS short signature to sign private
data and aggregate data of IIDs.

For the message Cj ‖ Pj ‖ H1(Tsj ‖ E(yj)γyj ) ‖ σj
sent by IIDj, IMC first checks Pj and H1(Tsj ‖ E(yj)γyj ),
and then verifies the integrity of the message by checking
whether e(

∑L
j=1 σj, g0) = e(

∑L
j=1 sj · H2(Cj ‖ Pj ‖ H1(Tsj ‖

E(yj)γyj )), g0) is established. Each element of the message is
involved in validation, and any manipulation of the message
results in unequal batch validation. Therefore, the integrity of
the messages sent by IIDj can be verified by IMC.

B. PRIVACY-PRESERVATION
Attackers can be divided into internal attackers and external
attackers. The internal attackers include IMC and IIDs in
this aggregated area who seek to compromise the privacy of
other IIDs. External attackers are entities that are not in this
aggregated area.
Theorem 1: FLPDA scheme is resistant to external attacks,

i.e., it is computationally infeasible for an external adversary
to obtain dj from Cj.

Proof: When an external attacker infiltrates an IID, the
ciphertext Cj = g

dj
1 × rNj × H0(Ts)

E(yj)γyj mod N 2 sent by
the IID can be obtained. Since the attacker does not know
the decryption key λ and the shared keys of other L-1 users.
Therefore, an external attacker cannot obtain the plaintext.
Theorem 2: FLPDA scheme is resistant to internal attacks,

i.e., it is computationally infeasible for an internal opponent
(IID or IMC) to extract dj from Cj.

Proof: The other user’s IIDk (k 6= j) could
not successfully extract dj from Cj,because he doesn’t
know H0(Ts)

E(yj)γyj . Even if the malicious IIDs obtained

H0(Ts)
E(yj)γyj of IIDj, they did not know the decryption key

λ by paillier’s encryption algorithm, so they still could not
obtain the plaintext of IIDj. IMC does not knowH0(Ts)

E(yj)γyj

of IIDj and cannot derive the real-time data of IIDj, only
the aggregated data of all IIDs can be obtained. Therefore,
FLPDA scheme can resist internal attacks.
Theorem 3: FLPDA scheme can resist the reverse analysis

attack.
Proof: Suppose IMC is a potential adversary, trying to

obtain the individual data of each device. After IMC receives
the aggregated ciphertext C sent by SN, the decryption gets∑N

j=1 dj via (λ,µ). IMC cannot obtain the ciphertext Cj of a
single device IID, so it cannot obtain dj. IMC only obtains the
aggregated data of all IIDs, but does not know the single data
of each IID. Therefore, FLPDA scheme can resist the reverse
analysis attack.
Theorem 4: FLPDA scheme can resist the conspiracy

attack.
Proof: If SN gets the decrypted key from IMC and tries

to acquire the plaintext of IIDj, the privacy of IIDj can still
be preserved because they don’t know H0(Ts)

E(yj)γyj . More-
over, if at least L IIDs conspire, they can get

∑L
j=1 E(yj)γyj .

Because they don’t know the decryption key λ, they still can’t
get the data of a single IID.

C. FAULT TOLERANCE
Some devices may malfunction and do not send industrial
data to SN at all. As SN only knows which group an IID
belongs to according to βj. IMC uses H1(Tsj ‖ E(yj)γyj )
to find the malfunctioning IIDj, while masking the IID’s
identity.

First, IMC compares this group of hash tables constituted
by H1(Tsj ‖ E(yj)γyj ) with other complete groups to find the
malfunctioning IID. Then, selects an IID from other groups
with the same hash value H1(Tsj ‖ E(yj)γyj ) to replace IIDj.
Therefore, if there is a malfunctioning IIDj, we shouldn’t
consider IIDj’s data. IMC arbitrarily chooses L shares of
E
(
yj
)
γyj from the received (N -1) shares of E(yj)γyj to recon-

struct the secret.
Let’s assume IIDj′ (1 ≤ j′ ≤ L) has failed to transmit dj′ to

SN , then SN aggregates the aggregated ciphertext of IIDs.

C =
N−1∏

j=1,j6=j′
g
dj
1 × r

N
j × H0(Ts)

E(yj)γyj mod N2
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TABLE 2. Feature comparison.

TABLE 3. Computational overhead.

= g
∑N−1

j=1,j6=j′ dj
1 · rNj × H0(Ts)

∑L
j=1 E(yj)γyj mod N2

= g
∑N−1

j=1,j6=j′ dj
1 · rNj × H0(Ts)N mod N2

= g
∑N−1

j=1,,j6=j′ dj
1 · (rj × H0(Ts))N

IMC uses the private key (λ,µ) to decrypt C .

Dec(C) =
∑N−1

j=1,j6=j′
dj

IMC obtains the aggregated industrial data of all IIoT
devices except IIDj′ . As a result, IMC can get the right
aggregation results in this case, and thus our scheme achieves
the fault-tolerant property.

D. FEATURE COMPARISON
In Table 2, the comparison between our scheme and other
related schemes [15], [17], [18], [20], [21] shows that our
scheme does not require any trusted entity, can resist all
attacks, meets the privacy protection requirements, and real-
izes reverse attack resistance.

FIGURE 2. Comparison of computational overhead.

TABLE 4. Communication cost comparison.

VII. PERFORMANCE EVALUATION
A. COMPUTATION COMPLEXITY
To facilitate the comparison of FLPDA scheme with schemes
[18] and [20], the execution time of each algorithm is listed
in Table 3.

According to Table 3, it can be found that FLPDA scheme
is more efficient than schemes [18] and [20]. In FLPDA
scheme, due to batch signature verification, the signature ver-
ification is only 1/N of schemes [18] and [20]. Since scheme
[18] or [20] generates N key pairs, the computational cost of
key generation in FLPDA scheme is half that of scheme [18]
or [20]. The number of key agreements for FLPDA scheme
is 0, and the number of key agreements for scheme [18] or
[20] is 2N times.

As shown in Figure 2, the calculation cost of FLPDA
scheme is lower than that of scheme [18] or [20], which
improves the response speed and enhances the practicality.

B. COMMUNICATION OVERHEAD
The comparison of communication costs between FLPDA
and schemes [18] and [20] is shown in Table 4.
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FIGURE 3. Comparison of communication overhead when M = 512 bits.

TABLE 5. Storage cost comparison.

In Table 4, FLPDA requires fewer communication costs
than schemes [18] and [20], especially in Round 1. This
means that if the FLPDA scheme is adopted, lower latency
can be ensured, and practicality is improved.

N indicates the number of IIDs, andM bits indicate the data
length. Figure 2 shows the communication costs comparison
between FLPDA, [18] and [20] at M=512. Figure 4 shows
the communication costs comparison between FLPDA, [18]
and [20] when N=1000.

As shown in Figure 3 and Figure 4, FLPDA scheme has
higher communication efficiency than schemes [18] and [20],
especially the longer the data length, the more the number of
IID, and the longer the data length, the more the communica-
tion cost will be saved.

C. STORAGE OVERHEAD
The storage costs of FLPDA scheme, scheme [18] and [20]
are listed in Table 5. N represents the number of IIDs, and
M bits represent the storage cost of each data to be sent.
In Table 5, the calculated storage cost of each round for
FLPDA scheme is compared with that for schemes [18]
and [20].

FIGURE 4. Comparison of communication overhead when N=1000.

In round 0, each IID needs to store an updated data request,
so the storage cost of FLPDA is NM bits. In round 1, each IID
needs to hold public key Pj, so the storage cost of FLPDA is
NM bits. In round 2, each IID needs to keep Ts ‖ E(yj)γyj ,
so the storage cost of FLPDA is 2NM bits. In round 3, each
IID needs to store Cj ‖ Pj ‖ H1(Ts ‖ E(yj)γyj ) ‖ σj, so the
storage cost of FLPDA is 4NM bits. In round 4, each IID
needs to store Ci, SN needs to store C , so the storage cost
of FLPDA is (NM+M) bits.

As shown in Table 5, the total storage cost of FLPDA is
(8N M+M) bits, and that of scheme [18] is (15NM-6M) bits.
FLPDA scheme performs better than scheme [18] in terms of
storage cost.

VIII. CONCLUSION
In this paper, a privacy-preserving data aggregation scheme
based on Federated Learning for IIoT is proposed. Data
aggregation is used to resist reverse analysis attacks and
protect single user model changes in federated learning. The
PBFT consensus algorithm is adopted to realize that it does
not depend on any trusted entity. Combined with Paillier
cryptosystem and secret sharing, the data security sharing is
realized and the data island problem is solved. The analysis
proves that the proposed scheme can resist various attacks
and meet all design goals. Compared with existing schemes,
our scheme has lower communication, computational, and
storage costs. In the future, we will focus on improving the
federated learning model to study multidimensional IoT data
collection from the perspective of the physical layer.
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