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ABSTRACT This paper discusses the three-wheeled omnidirectional robot (TWOR) self-localization in
radio frequency identification (RFID) tag environments. The nonlinear TWOR model is significantly
improved by using geometric interpretation and incremental time representation in discrete time. The TWOR
position and heading are self-estimated using distance measurements to RFID tags and a digital gyroscope in
the presence of typical colored measurement noise (CMN). The extended unbiased finite impulse response
(EFIR) is developed along with the extended Kalman filter (EKF) and their versions, cEKF and cEFIR,
modified for Gauss-Markov CMN. A particle filter is used as a benchmark. It is shown that the cEFIR filter
is more robust than the cEKF and almost as robust as the particle filter, although the latter is less accurate in
real time.

INDEX TERMS TWOR modeling, self-localization, colored noise, extended unbiased FIR filter, extended
Kalman filter.

I. INTRODUCTION
Wheeled mobile robots (WMR) are referred to as omnidi-
rectional robotics systems that are capable of reaching every
position in their environment. The first omnidirectional robot
named Uranus was designed and constructed in Carnegie
Melon University [1]. Since then, different kinds of such
robots were exploited in industry [2], medicine, warehouses,
logistics, etc. One of the most efficient types of WMR is
the three-wheeled omnidirectional robot (TWOR) [3], which
effectively works in indoor and outdoor environments. The
TWOR has many practical advantages, such as the flexibility
in travelling along complex industrial trajectories and the
ability of changing the position and orientation quickly.
Therefore, many efforts were made to improve TWOR
modeling and control.

Since there is no standard TWOR kinematic-dynamic
model yet, the authors mostly use two methodologies
based on the vector approach [4] and the transformation
approach [5]. The first extensive studies in this area were
conducted in [6], where the kinematic model of a mobile
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robot was created using the coordinate matrix transforma-
tion. Later, the Lagrange formulation was used in [7] to
represent the model with reduced-order equations using a
holonomy system matrix. Most recently, a cascade structure
of TWORs with an inverse kinematic block was discussed
in [8] to generate the velocity references required by the
predictive controller. It increases the robustness to distur-
bances and is also better suited for multivariate problems
with friction phenomena. However, this model is not well
suited to model predictive control that requires accurate
modeling.

In indoor environments, the TWOR self-localization can
be organized using ultra wideband (UWB) technology [9]
inertial navigation system (INS), hybrid schemes [10], and
radio frequency identification (RFID) tags [11]. The latter
approach has attracted attention due to low cost, low (or
zero) energy consumption, and a wide distance range [12].
It can also be combined with other methods. For example,
a novel localization method proposed in [13] combines the
RFID tag data with laser-based measurements. In [14], the
capabilities of a variable power RFID tags and passive
ultra-high frequency (UHF) RFID tag are employed to
create networks in complex environments. A localization
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system designed in [15] combines two types of RFID
tag-generated signals with a logical classification strategy.
In [16] the authors solve the vehicle localization problem
using a single antenna multi-frequency ranging scheme
and compute the vehicle position through multi-parameter
nonlinear optimization methods.

Regardless of the method used, the highest navigation
accuracy is achieved using state estimators [17]. The
Bayesian estimator developed in [15] employs process and
state distributions without using a model, but is compu-
tationally inefficient. In linear Gaussian environments, the
state estimation problem is optimally solved by the Kalman
filter (KF). For nonlinear models, the extended KF (EKF),
unscented KF (UKF), and particle filter (PF) are often
used. A good robustness is offered by an unbiased finite
impulse response (UFIR) filter [18] and its extended version
(EFIR) [19], which do not require information of zero mean
noise and initial values.

It is worth noting that RFID tag-based navigation is
usually accompanied by colored measurement noise (CMN)
[20], [21]. To deal with Gauss-Markov CMN, the Bryson
algorithm [22] and Petovello algorithm [23] are usually used.
In the Bryson algorithm, the CMN is filtered out in two
phases: smoothing and filtering. In the Petovello algorithm,
only one stage (filtering) is used. Most recently, several
end-to-end algorithms were designed for Gauss-Markov
CMN in [24] using the backward Euler method. Also,
the problem with CMN was addressed by Zhou et al.
in [25] using the second moment of information and by
Ding et al. in [26] using the autoregressive moving average
model.

In this paper, we significantly improve the TWOR non-
linear model using: 1) geometric interpretation of smoothly
varying velocity profiles and 2) incremental-time represen-
tation in discrete time. We also develop the EKF and EFIR
filtering algorithms and modify them as cEKF and cEFIR for
CMN. We show that in RFID tag environments, the cEFIR
filter significantly outperforms the EFIR filter, cEKF, and
EKF under CMN. The cEFIR filter is almost as robust as the
PF. However, the latter is less accurate in real time. The main
contributions are the following:
• An improved TWOR model for implementing hardware
and software on an onboard computer.

• cEFIR and cEKF filtering algorithms for TWOR
localization in CMN.

• Experimental evidence for better performance of the
cEFIR filter compared to the EKF, cEKF, EFIR filter,
and PF.

The rest of the paper is organized as follows. Section II
develops the TWOR model with incremental-time events
and formulates the problem. Section III presents the TWOR
extended space-state model, modifies the equations for CMN,
and develops the cEFIR, EKF, cEKF, and EFIR algorithms.
Section IV provides numerical simulations with synthetic and
experimental data and testes the filters for robustness. Finally,
concluding remarks can be found in Section V.

FIGURE 1. Festo robotino mobile robotic development platform [27].

II. TWOR KINEMATIC AND PROBLEM FORMULATION
The TWOR manufactured as the Festo Robotino Mobile
Robotic Development Platform [27] is pictured in Fig. 1. It is
designed for planar motion with three degrees of freedom
(DOF).

Depending on the types of dynamic constraints, TWOR
can be controlled in each of the DOF independently. Such
TWOR is called non-holonomic and can travel in any
direction without orientation restrictions. In this paper, we are
dealing with this type of TWOR.

Considering the results obtained in [5] and [6], we first
modify the kinematic diagram of the TWOR with perpendic-
ular rollers as sketched in Fig. 2.

FIGURE 2. A kinematic diagram of the TWOR shown in Fig. 1.

The robot is driven by displacements in its wheels.
Assuming a no-slip condition, the displacement 1uj, j ∈
[1, 3], in the jth wheel can be found by projecting the
displacement vector uj into the local coordinate system
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(xL , yL) and using the contribution of the arc segment caused
by the rotation 1ϕ of the robot. This gives

1uj =
∥∥∥ proj−→uj−→u xL

∥∥∥+ ∥∥∥ proj−→uj−→u yL

∥∥∥+1ϕ ∗ R, (1)

where R is the radius of the robot platform. Further, we will
use (1) to represent the TWOR dynamics in state space.

The problem can now be formulated as follows. Using the
kinematic diagram shown in Fig. 2, wewould like to represent
the TWOR nonlinear dynamics in discrete-time state-space.
We also wish to develop the EFIR filter, cEFIR filter, EKF,
and cEKF to provide the TWOR self-localization in RFID
tag environments under CMN and test them along with the
PF by simulations and using experimental data.

III. STATE SPACE REPRESENTATION AND
FILTERING ALGORITHMS
Looking at the kinematic diagram (Fig. 2) and considering
the TWOR in two neighbouring discrete-time points, we can
now represent the TWOR dynamics in nonlinear state space.

A. NONLINEAR STATE EQUATION
The TWOR reasonable state variables are uxL , uyL , and ϕ.
Using these variables and (1), we rewrite the jth displacement
1uj, j ∈ [1, 3], in terms of the increments 1uxL , 1uyL , and
1ϕ as 1u11u2

1u3

 =
 cos δ sin δ R
− cos δ sin δ R

0 −1 R

1uxL1uyL
1ϕ

 , (2a)

1Ui = A1UL , (2b)

where the vector 1Ui of displacements and the vector 1UL
of state variables are defined by comparing (2a) and (2b), and
A is a mapping matrix defined by (2a). Note that the vector
1UL , which contains all information about the robot location
in local coordinates, can be determined in terms of 1Ui by
inverting (2b). Since the TWOR kinematics (Fig. 2) suggests
that δ = π/6, we thus have

1UL = A−11Ui,

A−1 =

√3/3 −
√
3/3 0

1/3 1/3 −2/3
1/3R 1/3R 1/3R

 .
There are two ways how to represent the robot dynamics

in state space. One can either assign the robot states
and approximate the trajectory using a polynomial state
model [10] or project the current robot position one step
ahead using equations (2a) and (2b) [11], [28]. In this
paper, we follow the second way as being physically more
appealing.

To find the position in the global coordinate system,
we introduce the discrete-time index n, apply the matrix
rotation operator R(ϕn), obtain 1U = R(ϕn)UL and 1U =
R(ϕn)A−1Ui, and provide some transformations. This gives

1uxn =

√
3
3
1u12n cos(ϕn−1 +1ϕn)

−
1
3
1u123n sin(ϕn−1 +1ϕn), (3)

1uyn =

√
3
3
1u12n sin(ϕn−1 +1ϕn)

+
1
3
1u123n cos(ϕn−1 +1ϕn), (4)

1ϕn =
1
3R

(
1u1n +1u2n +1u3n

)
, (5)

where1u12n = 1u1n−1u2n and1u123n = 1u1n+1u2n−
21u3n. In accordance with the robot odometry, 1uxn, 1uyn,
and 1ϕn are increments in the robot coordinates x and y and
and heading angle ϕ.

The robot coordinates and heading considered as states
x1n = xxn, and x2n = xyn, and x3n = ϕn at n can now be
represented with the nonlinear functions

f1n = xn = x1n = x1(n−1) +1uxn,

f2n = yn = x2n = x2(n−1) +1uyn,

f3n = ϕn = x3n = x3(n−1) +1ϕn,

where the increments1uxn,1uyn, and1ϕn are given by (3)–
(5). Now, forϕn−1 = x3(n−1), we have the following nonlinear
functions with respect to the robot states,

f1n = x1(n−1) +

√
3
3
1u12n cos(x3(n−1) +1ϕn)

−
1
3
1u123n sin(x3(n−1) +1ϕn), (6)

f2n = x2(n−1) +

√
3
3
1u12n sin(x3(n−1) +1ϕn)

+
1
3
1u123n cos(x3(n−1) +1ϕn) (7)

f3n = x3(n−1) +1ϕn. (8)

Next, we introduce the state vector xn = [x1n x2n x3n]T

and the control vector un = [1u1n 1u2n 1u3n ]T , whose
components are variables of increments 1uxn, 1uyn, and
1ϕn given by (6)–(8). We also suppose that the TWOR
process noise is zero mean, white Gaussian, and additive and
introduce the noise vector wn = [w1n w2n w3n ]T ∼ N (0,Q)
with the covariance Q = E{wnwTn }. At this point, the TWOR
dynamics can be represented in discrete-time state-space with
the following nonlinear state equation

xn = f (xn−1, un)+ wn, (9)

where the components of the nonlinear vector function
f = [ f1n f2n f3n ]T are specified by (6)–(8).

B. NONLINEAR OBSERVATION EQUATION
The indoor RFID tag environment can be organized with
k-tags Tj, j ∈ [1, k], having known coordinates (χj, µj, νj)
in a way such that at least three tags are available at
each n. The TWOR position can be determined via the
distances djn measured between the tags and the TWOR
reader in the presence of additive noise vjn. The TWOR
heading angle ϕn = x3n is measured in global coordinates
directly by a digital gyroscope as φn in the presence of
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additive noise vϕn, and the observation equations can thus be
written as

d1n =
√
(x1n − χ1)2 + (x2n − µ1)2 + ν21 + v1n,

d2n =
√
(x1n − χ2)2 + (x2n − µ2)2 + ν22 + v2n,

...

dkn =
√
(x1n − χk )2 + (x2n − µk )2 + ν2k + vkn,

φn = x3n + vϕn.

Since the RFID tag-based measurement noise in col-
ored [20], [21], we represent vjn by the Gauss-Markov model

vjn = 9jvj(n−1) + ξjn, (10)

where ξjn ∼ N (0,Rj) is zero mean white Gaussian driving
noise with the covariance Rj and 0 < 9j < 1 is the
coloredness factor, which zero value 9jn = 0 makes vjn
white. For the sake of stability 9j should not exceed unity.
The nonlinear observation equation can now be written as

yn = h(xn)+ vn, (11)

where yn = [ y1n y2n . . . ykn y(k+1)n ]T ∈ Rk+1 is the
observation vector, the components of the nonlinear function
h(xn) = [h1(xn) h2(xn) . . . hk (xn) hk+1(xn) ]T are given by

h1 =
√
(x1n − χ1)2 + (x2n − µ1)2 + ν21 ,

h2 =
√
(x1n − χ2)2 + (x2n − µ2)2 + ν22 ,

...

hk =
√
(x1n − χk )2 + (x2n − µk )2 + ν2k ,

hk+1 = x3n

and the CMN vn = [v1n v2n . . . vkn vϕn]T ∈ Rk+1 is
represented with

vn = 9nvn−1 + ηn, (12)

where ηn ∼ N (0,R) ∈ Rk+1 is zero mean white Gaussian
with the covariance R and the coloredness factor matrix9n =

diag(ψ1 ψ2 . . . ψk 0 ) is diagonal.
The TWOR state-spacemodel represented by the nonlinear

equations (9), (11), and (12) can now be extended to use linear
estimators as we will do next.

C. EXTENDED SPACE-STATE MODEL
The standard approach to apply linear state estimators to
nonlinear models is to expand nonlinear functions f (xn−1, un)
and h(xn) using the first-order Taylor series. The function
f (xn−1, un) can be expanded around xn−1 as [19]

f (xn−1, un) = f (x̂n−1, un)+ Fn(xn−1 − x̂n−1)+ wn ,

where x̂n−1 is the available past estimate and Fn =
∂f
∂x

∣∣
x̂n−1

is
the Jacobian matrix. The extended state equation can then be
formalized with

xn = Fnxn−1 + ũn + wn, (13)

where ũn = f (x̂n−1, un)−Fnx̂n−1 is a known vector. Similarly,
function h(xn) can be expanded around x−n as

h(xn) = h(x̂−n )+ Hn
(
xn − x̂−n

)
+ vn ,

where x̂−n , x̂n|n−1 = Fnx̂n−1|n−1 is the available prior
estimate at n and Hn = ∂h

∂x

∣∣
x̂−n

is the Jacobian matrix.
By introducing a new observation vector ςn = yn − s̃n,

where s̃n = h(x̂−n )−Hnx̂
−
n is a known function, the extended

observation equation (11) attains the form

ςn = Hnxn + vn, (14)

where vn is the Gauss-Markov CMN (12). The extended
equations (13) and (14) can further be modified for CMN
using measurement differencing as in the following.

D. EXTENDED MODEL FOR CMN
By introducing a new observation zn, using measurement
differencing, and following [24], we obtain

zn = ςn −9nςn−1

= Hnxn + vn −9nHn−1xn−1 −9nvn−1
= Hnxn + vn −9nvn−1
−9nHn−1(F−1n xn − F−1n wn − F−1n ũn)

= Dnxn + 0nũn + v̄n, (15)

where Dn = Hn − 0n and

0n = 9nHn−1F−1n , (16)

v̄n = 0nwn + ηn. (17)

Next, we remove the bias error from (15) as z̄n = zn − 0nũn,
where 0nũn is known. This gives a new observation equation

z̄n = Dnxn + v̄n, (18)

in which, as required, v̄n is white Gaussian with the properties

E{v̄nv̄Tn } = 0nQn0
T
n + Rn, (19)

E{v̄nwTn } = 0nQn, (20)

E{w̄nvTn } = Qn0Tn . (21)

As can be seen, v̄n is correlated with wn. To apply the EKF,
a new Kalman gain is required for time-correlated v̄n and wn.

E. EXTENDED KALMAN FILTER FOR CMN
To derive the Kalman gain for time-correlated wn and v̄n,
we define the estimation error as εn = xn − x̂n and the
prior estimation error as ε−n = xn − x̂−n , where x̂−n is
the prior estimate of xn. Next, we follow [24] and consider
the following functions: the prior error covariance P−n =
E{ε−n ε

−
T

n },

P−n = FnPn−1FTn + Qn, (22)

the measurement residual s̄n = z̄n − Dnx̂−n ,

sn = DnFnεn−1 + Dnwn + v̄n, (23)
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the innovation covariance S̄n = E{s̄ns̄Tn } obtained using (23),

Sn = DnP−n D
T
n + HnQn0

T
n + 0nQnD

T
n + Rn, (24)

where 0n = Hn − Dn, the estimation error

εn = (I − KnDn)Fnεn−1 + (I − KnDn)wn − Knv̄n, (25)

where I denotes the Identity matrix with appropriate dimen-
sions. The error covariance obtained using (25) as

Pn = (I − KnDn)P−n (I − KnDn)
T
+ KnRnKT

n

− (I − KnDn)Qn0Tn K
T
n + Kn0nQn0

T
n K

T
n

−Kn0nQn(I − KnDn)T

= P−n + KnSnK
T
n − (P−n D

T
n + Qn0

T
n )K

T
n

−Kn(P−n D
T
n + Qn0

T
n )

T . (26)

Because the trace of Pn is convex, we put to zero the
derivative applied to the trace of (26) with respect to the bias
correction gain Kn as

∂tr(Pn)
∂Kn

= −2(P−n D
T
n + Qn0

T
n )+ 2KnSn = 0, (27)

whose solution gives the optimal bias correction (Kalman)
gain for correlated noise,

Kn = (P−n D
T
n + Qn0

T
n )S
−1
n . (28)

Finally, substituting Kn taken from (28) into (26) gives

Pn = (I − KnDn)P−n − Kn0nQn. (29)

A pseudo code of the cEKF for time-correlated wn and v̄n
is listed as Algorithm 1.

Algorithm 1 cEKF for Correlated wn and v̄n
Data: ςn, x̂0, un, 9n, P0, Qn, Rn
Result: x̂n, Pn
begin

for n = 1, 2, · · · do
zn = ςn −9nςn−1;
x̂−n = f (x̂n−1, un);
P−n = FnPn−1FTn + Qn;
Sn = HnP−n H

T
n −9nHn−1F−1n (P−n − Qn)H

T
n

+9nHn−1F−1n (P−n − Qn)F
−T
n HT

n−19n

−Hn(P−n − Qn)F
−T
n HT

n−19n + Rn;
Kn = [P−n H

T
n − (P−n − Qn)F

−T
n HT

n−19n]S−1n ;
x̂n = x̂−n + Kn[zn − h(x̂

−
n )];

Pn = (I − KnHn)P−n ;
+Kn9nHn−1F−1n (P−n − Qn);

end
end

The algorithm requires the nonlinear functions to update
the estimates and the correspondingmatrices of the linearized
equations.

F. EXTENDED UFIR FILTER FOR CMN
The advantage of the robust UFIR filter originally derived
in [29] is that it does not require any information about the
zero mean noise. The only tuning factor in this filter is the
averaging horizon, which must be optimal, Nopt, to minimize
the mean square error (MSE). To develop the UFIR filter
for the nonlinear model (9) and (10) using Taylor series,
we follow [18] and use the linear model (13) and (18). On the
horizon [m, n] of N points, from m = n − N + 1, the state
equation (13) can be extended as [19]

Xm,n = Fm,nxm + Bm,n(Um,n +Wm,n), (30)

where Xm,n = [xTm xTm+1 · · · x
T
n ]

T ,
Um,n = [ũTm ũTm+1 · · · ũ

T
n ]
T , and

Wm,n = [wTm wTm+1 · · · w
T
n ]
T are the extended vectors, the

extended block matrices are

Fm,n = [I FTm+1 · · · (F
m+1
n−1 )

T (Fm+1
n )T ]T , (31)

Bm,n =


I 0 . . . 0 0

Fm+1 I . . . 0 0
...

...
. . .

...
...

Fm+1
n−1 Fm+2

n−1 · · · I 0

Fm+1
n Fm+2

n · · · Fn I

 , (32)

and the product matrix is defined as

Fg
r =


FrFr−1 . . .Fg, g < r + 1,
I , g = r + 1
0, g > r + 1.

(33)

We assume that the initial state xm is known, and therefore
ũm = 0 and wm = 0.
Similarly, by assigning the extended vectors Ym,n =

[zTm zTm+1 · · · z
T
n ]
T and Vm,n = [vTm vTm+1 · · · v

T
n ]
T , the

extended observation equation becomes

Ym,n = Hm,nxm + Lm,nUm,n + Gm,nWm,n + Vm,n, (34)

where the extended block observation matrix is given by

Hm,n =


Dm(Fm+1

k )−1

Dm+1(Fm+2
k )−1
...

Dn−1F−1n
Dn

 , (35)

and other block matrices are specified as Lm,n = Dm,nEm,n,
Gm,n = Dm,nBm,n, and Dm,n = diag(Dm Dm+1 · · ·Dn).
The algorithm requires an initialization on a short initial

horizon over a data vector Ym,s, where s = m+K − 1 and K
is the number of the states, and the estimate will be unbiased,
if the condition E{xn} = E{x̂n} is satisfied. To specify the
state x̄s, we sequentially project it from m to s through the
nonlinear function f (xn). To obtain the unavailable state x̄m
during the firstN points, we employ a supporting KF.We also
refer to [28] and assign Gs = I .
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Algorithm 2 cEFIR Filtering Algorithm for CMN
Data: ςn
Result: x̂n
begin

for k = N − 1,N , · · · do
m = k−N + 1, s = m+ K − 1
Gs = I
for j = 1 : K − 1 do

x̄m+j = f (x̄m)
end
for l = s+ 1 : k do

zl = ςl −9lςl−1
x̂−l = f (x̄l−1)
Gl = [DTl Dl + (FlGl−1FTl )

−1]−1

Kl = GlDTl
x̄l = Fl x̄l−1 + Kl[zl − h(x̂

−

l )+9lh(x̄l−1)]
end
x̂n = x̄n

end
end

The pseudo code of the cEFIR filtering algorithms
developed for CMN is listed as Algorithm 2. It is worth
noting that, since the cEFIR filter ignores zero mean noise,
the time-correlation between the white wn and v̄n is ignored,
unlike in cEKF. To determine Nopt in the MSE sense [30],
we first compute the error covariance of the cEFIR filter
by (26), where we set Kn = GnDTn ,

Pn = P−n − (2P−n D
T
n + 2Qn0Tn + GnD

T
n Sn)DnGn. (36)

We then numerically findNopt byminimizing the trace of (35)
as shown in [30].

G. COMPUTATIONAL COMPLEXITY
In this section, we discuss the computational complexity of
the estimation algorithms. We also provide a comparison of
the discussed algorithms with the PF. The bottleneck of the
cEKF is in the computation of the residual covariance Sn, and
of the cEFIR filter in the computaiton of the gain matrix Gn.
In both cases, the complexity is O(n3), in terms of floating
operation point (FLOP). The efficiency in terms of FLOPS is
illustrated in Table 1, where K is the number of system states,
M is the number of measurements, and Nopt is the horizon
length for the cEFIR filter. This table suggests that the EKF
and cEKFfilters consume the smallest time, since these filters
operate on a one-step horizon. To measure the consumed
time, we run the algorithms for a straight TWORmovement in
a simulated environment with 10 tags. The tags are deployed
with equal intervals of 0.5m along the path at a height of 1m
above the floor. The trajectory is computed over 500 points
to feed the algorithms. Note that extra parameters required by
the cEFIR and PF algorithms increase the computing time.
To make a correct comparison, we use the following criteria:
• Run all algorithms for 9n = 0 to obtain near the same
RMSEs.

TABLE 1. Number of FLOPs in the cEKF and cEFIR Algorithms.

FIGURE 3. Time consumed by the filtering algorithms.

• Set the horizon Nopt such that the RMSEs of the cEFIR
filter and cEKF become near equal.

• Run the PF with the number of particles equal to Nopt.
The measured computation time is shown in Fig. 3. We see
that the proposed cEFIR algorithm requires more time than
the cEKF, and that the PF is the slowest filter. We also see
that the computation time increases from 0.108 s in the EKF
to 0.2848 s in the cEKF filter, 3.0521 s in the EFIR filter,
5.1906 s in the cEFIR filter, and 6.7301 s in the PF. It is worth
noting that, as a compensation for the large computation
time, the filter becomes more robust that we will see in the
next section.

IV. SELF-LOCALIZATION IN RFID-TAG ENVIRONMENTS
We now simulate the TWOR self-localization in RFID tag
environments using the cEKF and cEFIR filter along with the
EKF, EFIR filter, and PF. When no data arrive from a tag,
the covariance of the measurement noise is set large, and the
filter ignores this measure. In this case, lost data are replaced
by prediction organized using the observation model and
previously estimated state. Thereby, the observation vector
always has the same dimention. To test an estimator for
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robustness against CMN when the coloredness factor ranges
as 0.05 6 9 6 0.95 with a step 0.05, we consider two
scenarios of filter tuning: 1) tuning to 9 = 0.05 and 2)
tuning to 9 = 0.95. For the FIR filters, we additionally
measure the optimal horizon Nopt as function of 9. To find
Nopt, we compute the RMSE for different values of N and
choose N = Nopt that corresponds to the minimum RMSE.
The number of particles for the PF is set equal to Nopt.
It is worth noting that multipath effects affect RF

measurements when there is no direct path between a tag
and an antenna. This condition is know as Non-line-of-Sight
(NLOS). The effect of NLOS reduces the effective power of
the transmitted signal, leading to a biased value of Received
Signal Strength Intensity (RSSI). These phenomena are main
causes of tracking error in our experiment.

In what follows, we provide two investigations. In the first
case, we test the filters by the TWOR circular trajectory
in an indoor space with a constant motor displacement and
measurement noise. In the second case, all filters are tested
by experimental data available from [31].

A. CIRCULAR TRAJECTORY IN INDOOR ENVIRONMENT
The RFID tag network and the TWOR planned circular
trajectory in an indoor navigation space are shown in Fig. 4a,
where colored blocks represent furniture. RFID tag-based
measurements corrupted by CMN with 9 = 0.95 are
depicted with×, and we notice that multipath channels affect
the measurements. We use 12 long-range UHF RFID tags
(Chip Alien H3, Protocols ISO18000-6B/C, Dimensions:
78×30×8mm). The center of the RFIDALR8698 antennas is
located at 0.5m from the floor, and the RFID tags are located
1m above the center of the antennas. All tags are spaced 2m
apart and attached to thewalls in a square room (8×8)m. Each
tag has a unique ID number and exactly known coordinates
of location. We use a custom-build TWOR that operates
based on an Nvidia Jetson TX2 board and has a radius of
R = 0.18m. The interrogator ALR-F800 (Alien Technology)
interacts with the tags within the reader range, collects
data, and transmits data to a host computer. The reader
interrogation velocity is 1000 tags per second, but we employ
only 12 tags. Tomitigate the effect of the RFID antenna on the
system performance, we use a circularly polarized antenna
Alien ALR-8698. We create the observation vector using
received signal strength information (RSSI) from the reader.
At the test stage, we measure some RSSI values to estimate
the constant parameters from the log-normal propagation
model. We set the power loss coefficient for offices as
n = 33, as recommended by Radiocommunication Sector of
International Telecommunication Union ITU-R P.1238-7.

The TWOR dynamics is described by the nonlinear state
space equations (9) and (11), where the number of the
tags is k = 12. The CMN vn in the observation (11)
is modeled by the Gauss-Markov model (12), where the
diagonal covariance matrix of white Gaussian noise ηn is
R = diag (σ 2

η . . . σ
2
η σ

2
8) with ση = 20 cm and σ8 =

π/360 rad. To apply the linear filters, we use the extended

FIGURE 4. TWOR navigation in an indoor RFID environment: a) planned
path and CMN-affected RFID tag-based measurements and b) TWOR
design.

equations (13) and (14) and the new observation equa-
tions (15) and (18). The system noise diagonal covariance
matrix Q = diag (σ 2

w σ
2
w σ

2
w) has σw = 10 cm.

To reduce self-localization errors under CMN and test the
estimators for robustness, we next conduct investigations by
setting different values of the factor 9. To cover possible
cases observed in real data, we change 9 from 0.05 to
0.95 with a step of 0.05 and consider the following options.

1) FILTERS TUNING TO 9n = 0.05
Before conducting this investigation, we realise that
9 = 0.05 corresponds to Nopt = 152 and 9 =

0.95 corresponds to Nopt = 400. Then we tune the EFIR and
cEFIR filters to 9 = 0.05 and Nopt = 152, and apply to the
model with other values of 9n. We then run the Monte Carlo
(MC) simulation 100 times and show the average root MSEs
(RMSEs) produced by the filters in Fig. 5.What we see is that
the EFIR filters produce the smallest and consistent estimates
when 9 < 0.5 and that the cEKF tuned to 9 = 0.05 gives
slightly larger errors. Also, no significant difference between
the EFIR estimates is observed when 9 < 0.5. On the
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FIGURE 5. RMSEs produced by the cEKF, EFIR, cEFIR and PF algorithms.

TABLE 2. RMSEs (m) produced by EFIR and cEFIR filters with N = 152 and
N = 400.

TABLE 3. RMSEs (m) produced by cEKF filters for 9opt = 0.05; 0.95.

contrary, under the heavy CMN with 9 = 0.95, all filters
produce large errors, although the EFIR filters give more
accuracy.

The RMSEs produced by the EFIR and cEFIR filters tuned
to 9 = 0.05 for the process affected by 9 = 0.05, 9 = 0.5,
and9 = 0.95 are listed in Table 2, where we test the filters by
Nopt = 152 and N = 400 for each 9. The RMSEs produced
by the EKF and cEKF tuned to 9 = 0.05 are listed in
Table 3 (first row). We see that the cEFIR filter produces the
smallest errors (bolded) when 152 6 N 6 400 that definitely
speaks in favor of its robustness to N . The benchmark PF
demonstrates the highest robustness in Fig. 5, but this filter
is less accurate then the cEFIR filter.

2) FILTERS TUNING TO 9n = 0.95
In the robust mode, we tune the filters to the worst error case
of9 = 0.95 andNopt = 400. Then we reduce9 in the model
from 0.95 to 0.05, compute the RMSEs, and put the results to
Table 2 (case of 9 = 0.95 and Nopt = 400) and Table 3
(second row). No significant differences is observed here in
the filter outputs when 9 < 0.5, although the cEFIR filter
performs a bit better. Under the weak colored noise (9 =
0.05), the EFIR and cEFIR filters perform better than the EKF
and cEKF. The PF gives the smallest RMSE of 4.42 under the
heavy CMN with 9 = 0.95. But the cEFIR filter gives the

FIGURE 6. Estimation of the mobile robot trajectory in RFID tag grid
environment.

TABLE 4. RMSEs (m) produced by FIR filters for Nopt = 82; 245.

TABLE 5. RMSEs (m) produced by cEKF filters for 9opt = 0.05; 0.95.

smaller error for smaller values of9. It is worth noting that all
filtering errors grow with increasing 9. Even so, the cEFIR
filter has the lowest rate and produces the smallest average
RMSE over 0.05 6 9 6 0.95.

B. EXPERIMENTAL TESTING
To validate the results obtained by simulations, we next
consider the mobile robot experimental trajectory available
from [31]. The measurement vector is created for a mesh
of 16 tags placed in a square grid on a distance of 5m
to the nearest neighbor. From the dataset we take the
RFID_global_robot fields to compute the distance to each
tag in the same state-space model. To test the filters for
robustness, we consider two options: 1) tuning to 9 =

0.05 and 2) tuning to 9 = 0.95. The workspace for the
TWOR is shown in Fig.6 with the tags deployed on the floor.
Also, this figure shows the estimated trajectory in the worst
case of 9 = 0.95.
The localization RMSEs are listed in Table 4 for EFIR

and cEFIR and in Table 5 for EKF and cEKF. The RMSEs
produced by the filters are sketched in Fig. 7. For filters
tuned to 9 = 0.05, the RMSEs are depicted with →, and
for 9 = 0.95 with ←. We see that when tuned to 9 =
0.05 with Nopt = 82 and to 9 = 0.95 with Nopt = 245,
the cEFIR filter gives the minimum errors consistent with the
simulations.
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FIGURE 7. RMSEs produced by the cEKF, EFIR, cEFIR and PF algorithms.

V. CONCLUSION
The extended filtering algorithms developed in this paper
have produced acceptable errors for TWOR self-localization
in RFID tag indoor environments under CMN. This has
become possible by improving the TWOR model using geo-
metric interpretation for smoothly varying velocity profiles
and incremental-time representation in discrete time. The
results obtained by simulations and experimentally have
revealed that under CMN the cEFIR filter outperforms the
cEKF, EFIR filter, and EKF in terms of accuracy and
robustness. The PF demonstrates a bit better robustness, but
this filter is less accurate than the cEFIR filter in real time
localization. It also follows that the cEFIR filter has the
highest robustness under harsh operation conditions with
heavy CMN. We now modify the TWOR dynamic model
for linear state space representation in order to use the FIR
and Kalman approaches straightforwardly. The comparative
results will be reported in near future.
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