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ABSTRACT This paper addresses the bipartite synchronization of multi-agent systems with time-varying
delays and signed graph under deception attacks, where the systems contain both the self-structure delayed
term and the coupling delayed term. The deception attacks are assumed to be randomly launched at
each impulse instant. By using the gauge transformation, Lyapunov function method, Halanay differential
inequality and linear matrix inequality techniques, several sufficient conditions are newly established
to guarantee the achievement of bipartite synchronization, in which some special cases of multi-agent
systems without delay or deception attacks are further considered. Two numerical examples are provided
to illustrate the effectiveness of the proposed results. Finally, a new multi-agent speech communication
system is constructed based on the bipartite synchronization of the multi-agent systems, where two agents
for point-to-point communication can generate synchronous chaotic encryption/decryption key streams. The
experimental results show that the proposed multi-agent speech communication system has the advantages
of high security against some classical attacks.

INDEX TERMS Multi-agent systems, bipartite synchronization, signed graph, deception attacks, speech
communication.

I. INTRODUCTION
A multi-agent system [1], [2] refers to a computing system
composed of multiple agents interacting with each other
in a certain environment, in which any agent can interact
to complete more complex work. In recent years, multi-
agent systems have become a research hotspot in the
field of control and artificial intelligence. The cooperative
control of multi-agent systems is a hot research topic in
the field of control. The cooperative control of multi-agent
systems includes consensus control, rendezvous control,
coalescence control, and formation control. The latter three
can be regarded as the generalization and special cases of
consensus control. The collaborative control of multi-agent
systems has achieved extensive research results in the past
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20 years. For example, information flow and formation
coordination control of vehicles [3], distributed vehicle
coordination control with local information exchange [4],
cooperative control of multi-agent systems and its application
in unmanned vehicles [5].

In a multi-agent system, some agents track a given
target or agent, which is called leader-following consistency
phenomenon. The agent that plays a leading role in a multi-
agent system is called the leader, and the rest of the agents
that need to follow the leader are called followers [6]. Leader-
following consistency means that the agents in the system
communicate and coordinate with each other, so that the
state values of all follower agents change with time, and
finally track the state value of the leader agent. Leader-
follower consistency, on the one hand, it can simplify the
design and implementation of the control system, on the
other hand, it can further save energy and control costs.
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While in the leaderless-following system, there must be
information transmission and reception between each agent,
and the consistency of the system depends on the interaction
between all agents. That is, only through the joint action of all
agents can all state variables of the system be consistent. The
leaderless-following consistency has higher requirements on
the design and imple-mentation of the control system, and the
control cost is relatively large, but the control effect is more
precise than the leader-following system.

Multiple agents need to transmit information through the
network. The traditional network model is generally an
undirected graph or a directed graph. A node of the network
represents a single agent, and the edges with positive weights
between nodes represent the communication between two
agents. The above-mentioned network model is an unsigned
network. However, with the further development of network
research, we find that traditional unsigned networks cannot
accurately describe some oppositional relationships in real
society. For example, in the medical field, there is a relation-
ship of promotion and antagonism between drugs, and in the
field of society, there is a relationship of trust and distrust in
the communication between people. Therefore, in the multi-
agent systems [7], [9], [30], [31], there will also be a certain
cooperation and opposition between agents. In view of the
above situation, the concept of signed graph is introduced
[8], [9], where the weight of the edge in the signed graph
is no longer limited to be positive, but can also be negative.
An edge with a positive weight represents a cooperative
relationship between the two agents, while an edge with
a negative weight represents an antagonistic relationship.
Therefore, the research on multi-agent systems is no longer
limited to unsigned networks, but gradually extended to
the signed network. Synchronization is considered to be
one of the most important phenomena in complex dynamic
network theory, and has important applications in a variety of
physical, biological and technological systems [10]. Thus, the
research on synchronization of signed network has attracted
extensive attention of researchers. Altafni first put forward
the concept of bipartite synchronization of signed networks,
that is, the states of nodes would eventually converge to two
parts with the same and opposite modulus [11], [12], where
the consistency problem of signed network was transformed
into a classical consistency problem only under the condition
of balanced network structure. At present, there are many
control methods to realize the bipartite synchronization
of multi-agent systems with signed graph, such as state
feedback control [13], sliding mode control [14], distributed
control [15], intermittent control [16] and so on. Among
them, there are many researches on pinning control, which
sets key nodes and designs controllers to achieve control
effect. In [17] and [18], the pinning control strategy is
adopted to realize the bipartite synchronization of multi-
agent systems with signed graph. So far, based on different
signed network models, some achievements have been made
in the research of bipartite synchronization, including bipar-
tite synchronization of Lur’e Networks [19] and bipartite
synchronization for signed networks of harmonic oscillator

systems [20]. Especially in [20], the communication delay of
the network is considered and the convergence of the network
is analyzed. In addition, Meng [21] studied the problem
of bipartite containment tracking of signed networks, and
Hu and Yu [22] adopted a time-delay control method to
study the consensus problem of multi-agent systems in the
cooperation-competition network with inherent nonlinear
dynamics. In [23], Parastesh and Rajagopal et al. studied the
synchronization of networks with linear diffusive coupling
and proposed that the stability of the synchronous solution
depends only on the average coupling and not on the instan-
taneous coupling. In [24], a modified signed-susceptible-
infectious-susceptible epide-miological model was proposed
to study the dynamics of epidemic spreading on signed
networks.

The multi-agent systems with signed graph will be affected
by the delay. On the one hand, there is a time delay in the
multiple agent itself, and the calculation of the devices in the
system needs to consume a certain time. On the other hand,
due to the limited transmission speed, transmission conges-
tion and transmission delay are also normal phenomena,
which will lead to divergence and oscillation, and the network
system will be unstable, further reducing the performance of
network information transmission. Bipartite synchronization
of signed networks under transmission delay has recently
attracted great interest in [25] and [26]. In [25], the problem
of bipartite consensus was studied for multi-agent systems
with antagonistic interactions and communication delays.
In [26], the problem of exponential bipartite synchronization
was studied for delayed signed networks with multi-links by
aperiodically intermittent control. In addition to the impact
of time delay, there are also security risks in the data
transmission process, and the network control process is
vulnerable to malicious attacks. As a way of network attack,
deception attack will have a bad impact on the information
interaction on the network. Deception attack means that
correct information such as the output signal of the controller
and the measurement signal of the sensor are tampered by
the attacker and the wrong information is transmitted to
the network. In response to the above phenomenon, people
have studied the bipartite synchronization of multi-agent
systems under the deception attacks. In [27], the sampling-
based leaderless consensus problem for nonlinear multi-
agent systems under deception attacks is studied by using
the decoupled method. In [28], based on impulse control,
the secure synchronization of multi-agent systems under
deception attack is studied. In [29], the fault-tolerant secure
consensus tracking problem of nonlinear multi-agent systems
with deception attacks and uncertain parameter delays is
investigated under the impulse control framework. To the best
of our knowledge, there have been few available results on
bipartite synchronization of multi-agent systems with signed
graph and deception attack considering both the self-structure
delayed term and the coupling delayed term, which motivates
the research in this paper.

Although there has been some progress in the application
of bipartite synchronization of multi-agent systems, it is less
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reported in the field of secure communication. At the same
time, chaotic signal is a natural cryptography signal because
of its own pseudo-random characteristics. In this paper, we try
to make use of the multi-agent system composed of nodes
with chaotic dynamics to generate chaotic key streams, which
can be applied in the speech communication based on its
bipartite synchronization.

The contributions of this paper are summarized as follows.

• Firstly, the influence of self-structure delay, transmis-
sion delay and deception attack are simultaneously
considered in themulti-agent systemswith signed graph.

• Secondly, several sufficient conditions are newly estab-
lished to guarantee the achievement of bipartite syn-
chronization, in which some special cases of multi-agent
systems without delay or deception attacks are further
considered, by using the gauge transformation, Lya-
punov function method, Halanay differential inequality
and linear matrix inequality techniques.

• Thirdly, based on the bipartite synchronization results of
multi-agent systems, a new chaotic multi-agent speech
secure communication system is constructed to verify
the feasibility of the proposed theoretical method.

The rest of the paper is arranged as follows. In Section II,
some preparations are given and the bipartite synchronization
problem of signed networks under self-delay, transmission
delay and deception attacks is proposed. Section III proposes
the sufficient conditions for the bipartite synchronization of
the signed network and gives the relevant proof process.
Section 4 further demonstrates the theoretical results through
two numerical simulations. The fifth section is the specific
application of the theoretical results of this paper. A new
chaotic voice secure communication system is constructed
to verify the feasibility of the proposed theoretical method.
Finally, in Section VI, the relevant conclusions of this paper
are given.

Notations:IN represents an N ∗ N identity matrix, and
0 means zero matrix. λmin(A) and λmax(A) denote the mini-
mum and maximum eigenvalues of matrix A, respectively.⊗
represents the Kronecker product of the matrix. E {x} is the
expectation of the random variable x. Pr ob {. . .} represents
the probability of an event occurring.A > 0means thatmatrix
A is a positive definite matrix.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. SIGNED GRAPH THEORY
A signed graph consisting ofN nodes can be represented by a
triple combination G = {N , ε,A}, whereN = {1, 2, . . . ,N }
is the node set, ε ⊆ N×N is the edge set, andA =

(
aij
)
N×N

denotes the adjacency matrix of signed graph. aij 6= 0(i 6=
j)⇔ (i, j) ∈ ε, that is, there exists a directed edge from node
j to node i. It is assumed that signed graph G doesn’t contain
any self-loop (aii = 0, i ∈ N ). When G is a directed graph,
aij > 0 indicates that the relationship from node j to node i is
cooperative, while aij < 0 means that there is a competitive
relationship from node j to node i [19], [20], [30].

The Laplacian matrix L = (lij)N×N in signed graph G is
given as follows:

L = D−A (1)

where D = diag(d1, d2, . . . dN ), di =
∑N

j=1,j6=i

∣∣aij∣∣, i ∈ N .
Remark 1: It is worth mentioning that the Laplacian matrix

L associated with a signed graph G is not necessarily a zero-
row sum matrix. One can easily get that the i-th row sum of
L is

∑N
j=1,j6=i

∣∣aij∣∣ −∑N
j=1,j6=i aij. It is obvious that if there

exists j ∈ {1, 2, · · · ,N } that satisfies aij < 0, then L is not
a zero-row sum matrix due to

∑N
j=1 lij 6= 0, which is quite

different from the traditional Laplacian matrix in unsigned
networks.
Definition 1 [8], [20]: A signed graph G is said to be

structurally balanced, if the nodes of signed graph are divided
into two cluster N1 and N2, N1 ∪N2 = N , N1 ∩N2 = Ø,
such that aij > 0,∀i, j ∈ Np(p ∈ [1, 2]) and aij ≤ 0,∀i ∈ Np,
j ∈ Nq(p 6= q; p, q ∈ [1, 2]). Otherwise it is structurally
unbalanced.

B. PROBLEM FORMULATION
Consider the multi-agent system consisting of N agents,
which is subject to time-varying delay and deception attacks,
each agent can be regarded as a node:

ẋi(t) = A1xi(t)+ A2xi(t − τ (t))+ B1f (xi(t))

+B2f (xi(t − τ (t)))− α
∑N

j=1

∣∣gij∣∣ (xi(t)− sign(gij)xj(t))
−β

∑N

j=1

∣∣gij∣∣ (xi(t − τ (t))−sign(gij)xj(t−τ (t))), t 6= tp,

1xi(tp) = ρ(tp)ψ(xi(t−p )), p ∈ N+.
(2)

where xi(t) = (xi1(t), xi2(t), . . . , xinx (t))
T
∈ Rnx (i ∈ N )

represents the state vector of the ith node at time t . f (xi(t)) =
(f1(xi1(t)), f2(xi2(t)), . . . , fnx (xinx (t)))

T
∈ Rnx is a nonlinear

function. A1,A2,B1,B2 ∈ Rnx×nx are constant matrices. τ (t)
denotes the time-varying delay. It is assumed that 0 < τ (t) <
τ̄ with τ̄ > 0 being a constant. and β are the coupling
strengths with α > 0 and β > 0. gij represents the (i, j)-th
entry of the adjacency matrix associated with the underlying
signed graph G of system (2).

{
tp
}∞
p=0 is the equispaced

impulsive time sequence satisfying 0 = t0 < t1 < t2 <
· · · < tp < · · · . It is assumed that the impulsive interval
tp − tp−1 = h, p = 1, 2, · · · , where h > 0 is a known
constant. 1xi(tp) = xi(tp) − xi(t−p ) = xi(t+p ) − xi(t−p ) =
lim
t→t+p

xi(t) − lim
t→t−p

xi(t). Similarly to [32], it is assumed that

deception attacks randomly launch at each impulse instant.
ψ(xi(t)) ∈ Rnx represents a deception attack signal. The
Bernoulli distribution sequence

{
ρ(tp), p ∈ N+

}
takes values

0 and 1 with probability
Pr ob

{
ρ(tp) = 1

}
= ρ̄ and Pr ob

{
ρ(tp) = 0

}
= 1 − ρ̄,

where ρ̄ is a constant and 0 < ρ̄ < 1.
Remark 2: The non-delayed coupling term α

∑N
j=1

∣∣gij∣∣
(xi(t) − sign(gij)xj(t)) and the delayed coupling term
β
∑N

j=1

∣∣gij∣∣ (xi(t − τ (t))−sign(gij)xj(t−τ (t))) are simultane-
ously considered in system (2). In addition, the dynamic
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system itself also considers the influence of the time-varying
delay τ (t). In addition, if the time-varying delay τ (t) is
ignored, that is, A2 = B2 = 0 in (2), and β = 0 in (2),
and the influence of deception attacks is not considered.
Remark 3: In [32], it is pointed out that a physical attack

may cause xi(t) to change suddenly at tp. This phenomenon
is mathematically described as impulsive disturbance in
the system (2). In addition, it is assumed that deception
attacks occur randomly at each impulse moment, and the
Bernoulli distribution sequence is used to describe the
random occurrence of deception attacks [27].

Applying the Laplacian matrix L, the multi-agent system
can be rewritten as:

ẋi(t) = A1xi(t)+ A2xi(t − τ (t))+ B1f (xi(t))

+B2f (xi(t − τ (t)))− α
∑N

j=1
lijxj(t)

−β
∑N

j=1
lijxj(t − τ (t)), t 6= tp,

1xi(tp) = ρ(tp)ψ(xi(t−p )), p ∈ N+.

(3)

Assumption 1: For any m ∈ {1, 2, . . . , nx}, fm(xim(t)) is an
odd function and satisfies the following inequality:

|fm(x)− fm(y)| ≤ νm |x − y| , ∀x, y ∈ R

where νm is a given constant and νm > 0.
Assumption 2: ψ(xi(t)) is an odd function, ψ(xi(t)) ∈ Rnx

satisfies the following inequality:

‖ψ(a)− ψ(b)‖ ≤ θ ‖a− b‖ , ∀a, b ∈ Rnx

where θ is a given constant and θ > 0.
Assumption 3 [18], [19], [20]: The signed graph G is

structurally balanced.
Assumption 4 [18], [19]: The signed graph G contains a

directed spanning tree.
Definition 2: Under Assumption 3, the multi-agent system

with signed graph is considered to achieve bipartite synchro-
nization if satisfy: lim

t→∞
E
{
‖ωixi − ω1x1‖2

}
= 0 for any

∀i ∈ N (i 6= 1), where ωi = 1(i ∈ N1) and ωi = −1(i ∈ N2).
Let

x̄i = ωixi, ωi ∈ {1,−1} , xi = ωix̄i.

According to assumptions 1 and 2, fm(xim(t)) andψ(xi(t)) are
odd functions, and the multi-agent system (3) becomes the
following form:

˙̄xi(t) = A1x̄i(t)+ A2x̄i(t − τ (t))+ B1f (x̄i(t))

+B2f (x̄i(t − τ (t)))− α
∑N

j=1
l̄ijx̄j(t)

−β
∑N

j=1
l̄ijx̄j(t − τ (t)), t 6= tp

1x̄i(tp) = ρ(tp)ψ(x̄i(t−p )), p ∈ N+.

(4)

where l̄ij = ωilijωj = −
∣∣gij∣∣ (i 6= j), l̄ii =

∑N
j=1,j6=i

∣∣gij∣∣.
Denote:

ei(t) = x̄i(t)− x̄1(t), e(t) =
[
eT1 (t), . . . , e

T
N (t)

]T
,

ηi(t) = f (x̄i(t))− f (x̄1(t)), η(t) =
[
ηT1 (t), . . . η

T
N (t)

]T
,

ϕi(t) = ψ(x̄i(t))− ψ(x̄1(t)), ϕ(t) =
[
ϕT1 (t), . . . , ϕ

T
N (t)

]T
,

After applying the Kronecker product, the system (4) is
further transformed into the following:

ė(t) = Dαe(t)+ (IN−1 ⊗ B1)η(t)+ Dβe(t − τ (t))
+(IN−1 ⊗ B2)η(t − τ (t)), t 6= tp,
1e(tp) = ρ(tp)ϕ(t−p )), p ∈ N+.

(5)

where

Dα = IN−1 ⊗ A1 − α(W ⊗ Inx),

Dβ = IN−1 ⊗ A2 − β(W ⊗ Inx),

W = (ωij)(N−1)×(N−1), ωij = l̄(i+1)(j+1) − l̄1(j+1).

Remark 4 [18]: One has ωi = 1 for all i = 1, 2, . . . ,N ,
the bipartite synchronization reduces to the traditional
synchronization.
Remark 5: As in the work in [18], [19], and [20], by intro-

ducing gauge transformation, the bipartite synchronization
problem of system (3) with adjacency matrix A =

(
aij
)
N×N

is transformed into the synchronization problem of system (4)
with adjacency matrixA =

(∣∣aij∣∣)N×N . Correspondingly, the
Laplacian matrix L = (lij)N×N becomes the Laplacian matrix
L̄ = (l̄ij)N×N , the row sum of the former is not all zero, and
the latter is a zero-row sum matrix.
Definition 3 [33]: (Average Impulse Interval). The average

impulse sequence
{
tp
}∞
p=1 is regarded to not be less than Ta,

if there exist a positive integer N0 and a positive number Ta
that satisfies the following conditions:

N (t0, t) ≤ N0 +
t − t0
Ta

,

where N (t0, t) represents the number of impulsive times in
the time period t0 to t .
Lemma 1 [34]: If the signed graph contains a directed

spanning tree, then Laplacian matrix L̄ = l̄ij = (ωilijωj)N×N
has a single zero eigenvalue and the other N − 1 eigenvalues
all lie in the right half-plane.
Lemma 2 [35]: If the signed graph contains a directed

spanning tree, then the matrix W = (ωij)(N−1)×(N−1) has no
zero eigenvalues and all of its eigenvalues have positive real
parts.
Lemma 3 [36]: (Halanay Differential Inequality) Suppose

there is a non-negative function V (t), t ∈ [−τ,∞), which
satisfies the following:

V̇ (t) ≤ −aV (t)+ bV̄ (t), t ≥ t0, 0 ≤ b < a,

V̄ (t) , sups∈[t−τ,t] V (s),

then, V (t) ≤ V̄ (t0)e−γ (t−t0), t ≥ t0,
where γ > 0 and γ is the only solution to equation γ − a+
beγ τ = 0.
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III. MAIN RESULTS
In this section, several sufficient conditions for the multi-
agent system with signed graph in Section 2 is obtained to
achieve bipartite synchronization.

Set the following piecewise function σ : [t0,+∞)→ R+
by

σ (t) =
tp − t

tp − tp−1
, t ∈

[
tp−1, tp

)
, p ∈ N,

and σ̃ (t) = 1− σ (t). It is easy to see that

σ (t) ∈ (0, 1] for t ≥ t0,

σ (t−p ) = 0, σ (tp) = σ (t+p ) = 1, p ∈ N.

Theorem 1: Under Assumption 1-4, the multi-agent system
(2) can achieve bipartite synchronization, if for given scalars
λ > ε > 0, γ > 1, there exist matrices Pi > 0, i = 1, 2,
scalars δ1 > 0, δ2 > 0 and r > 0, such that the following
linear matrix inequalities hold:

Pi < rI(N−1)nx , i = 1, 2 (6)
�i11 Pi(IN−1 ⊗ B1) PiDβ Pi(IN−1 ⊗ B2)
∗ −δ1I(N−1)nx 0 0
∗ ∗ �i33 0
∗ ∗ ∗ −δ2I(N−1)nx

< 0, i = 1, 2

(7)

where�i11 = PiDα+DTαPi+
P1−P2
h +λPi+δ1(IN−1⊗ϒ

Tϒ)
and �i33 = −εPi + δ2(IN−1 ⊗ ϒTϒ).

(P2 − γP1)+ 2ρ̄θλmax(P2)+ ρ̄θ2λmax(P2)I(N−1)nx < 0

(8)

a−
ln γ
Ta

> 0

(9)

where a satisfies a− λ+ εeaτ̄ = 0.
Proof: Consider the following Lyapunov function:

V (t) = eT (t) (σ̃ (t)P1 + σ (t)P2) e(t) (10)

From Assumption 1, one obtains:

ηT (t)η(t)− eT (t)(IN−1 ⊗ ϒTϒ)e(t) ≤ 0 (11)

ηT (t − τ (t))η(t − τ (t))− eT (t − τ (t))(IN−1 ⊗ ϒTϒ)

× e(t − τ (t)) ≤ 0 (12)

where ϒ = diag{υ1, υ2, . . . υnx}.
When t ∈

[
tp−1, tp

)
, the derivative of V (t) along the

multi-agent system is expressed as:

V̇ (t)=2eT (t) (σ̃ (t)P1+σ (t)P2) ė(t)−
1
h
eT (t) (P2 − P1) e(t)

(13)

By introducing all δ1 > 0, δ2 > 0, inequalities (11)
and (12) into equation (13), it follows that for

V̇ (t) ≤ 2eT (t) (σ̃ (t)P1+σ (t)P2) (Dαe(t)+(IN−1 ⊗ B1)η(t)

+Dβe(t − τ (t))+ (IN−1 ⊗ B2)η(t − τ (t))
)

−
1
h
eT (t) (P2 − P1) e(t)+ εV (t − τ (t))

− εeT (t − τ (t)) (σ̃ (t)P1 + σ (t)P2) e(t − τ (t))

− λV (t)+ λeT (t) (σ̃ (t)P1 + σ (t)P2) e(t)

+ δ1

(
eT (t)(IN−1 ⊗ ϒTϒ)e(t)− ηT (t)η(t)

)
+ δ2

(
eT (t − τ (t))

(
IN−1 ⊗ ϒTϒ

)
e(t − τ (t))

)
− δ2

(
ηT (t − τ (t))η(t − τ (t))

)
= ξT (t) (σ̃ (t)�1+σ (t)�2) ξ (t)−λV (t)+εV (t − τ (t))

(14)

where ξ (t) =
[
eT (t) ηT (t) eT (t − τ (t)) ηT (t − τ (t))

]T and
�i is expressed as shown in the equation at the bottom of the
page, where�i11 = PiDα+DTαPi+

P1−P2
h +λPi+δ1(IN−1⊗

ϒTϒ)

�i33 = −εPi + δ2(IN−1 ⊗ ϒTϒ).

According to (7),�1 < 0 and�2 < 0, it follows from (14)
that

V̇ (t) ≤ −λV (t)+ εV (t − τ (t)), t ∈
[
tp−1, tp

)
(15)

By Lemma 3, one has:

V (t) ≤ sup
s∈[tp−1−τ̄ ,tp−1]

V (s)e−a(t−tp−1), t ∈
[
tp−1, tp

)
(16)

where a > 0 and a satisfies a− λ+ εeaτ̄ = 0.
When t = tp, the mathematical expectation of V (tp) is

expanded as follows:

E
{
V (tp)

}
= E

{
eT (tp)P2e(tp)

}
= E

{[
(e(t−P )+ ρ(t

−
p )ϕ(t

−
p )
]T

×P2
[
(e(t−P )+ ρ(t

−
p )ϕ(t

−

P )
]}

= eT (t−P )P2e(t
−

P )+ 2ρ̄eT (t−p )P2ϕ(t
−
p )

+ ρ̄ϕT (t−p )P2ϕ(t
−
p ). (17)

According to Assumption 2, the following inequalities
hold:

2eT (t−p )P2ϕ(t
−
p ) ≤ 2λmax(P2)θ

∥∥∥eT (t−p )∥∥∥2 (18)

ϕT (t−p )P2ϕ(t
−
p ) ≤ λmax(P2)θ2

∥∥∥eT (t−p )∥∥∥2 (19)

�i =


�i11 Pi(IN−1 ⊗ B1) PiDβ Pi(IN−1 ⊗ B2)
∗ −δ1I(N−1)nx 0 0
∗ ∗ �i33 0
∗ ∗ ∗ −δ2I(N−1)nx

 , i = 1, 2
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Therefore,

E
{
V (tp)

}
≤ eT (t−p )P2e(t

−
p )+ 2ρ̄θλmax(P2)

∥∥∥eT (t−p )∥∥∥2
+ ρ̄θ2λmax(P2)

∥∥∥eT (t−p )∥∥∥2 − γ eT (t−p )P1e(t−p )
+ γ eT (t−p )P1e(t

−
p )

= eT (t−p ) (P2 − γP1) e(t
−
p )

+ 2ρ̄θλmax(P2)
∥∥∥eT (t−p )∥∥∥2

+ ρ̄θ2λmax(P2)
∥∥∥eT (t−p )∥∥∥2 + γV (t−p )

= eT (t−p ) ((P2 − γP1)

+ 2ρ̄θλmax(P2)+ ρ̄θ2λmax(P2)I(N−1)nx
)
e(t−p )

+ γV (t−p ) (20)

Then, from inequality (8), it can be known that

E
{
V (tp)

}
≤ γV (t−p ). (21)

So that, for t ∈
[
tp−1, tp

)
,

E
{
V (tp)

}
≤ V̄ (tp−1)e−α(t−tp−1)

≤ γ V̄ (t−p−1)e
−α(t−tp−1)

≤ γ 2V̄ (t−p−2)e
−α(tp−1−tp−2)e−α(t−tp−1)

≤ · · ·

≤ γ p−1V̄ (t0)e−α(t−t0)

≤ γ N (t0,t)λmax(Pi)ϑe−α(t−t0). (22)

where ϑ = sups∈[−τ̄ ,0] ‖e(s)‖
2.

By Definition 3, the following inequality can be obtained
for t ∈

[
tp−1, tp

)
,

λmin(Pi)E
{
‖e‖2

}
≤E

{
V (tp)

}
≤γ N0λmax(Pi)ϑe

−(a− ln γ
Ta

)(t−t0)

(23)

Then

E
{
‖e‖2

}
≤ ce−(a−

ln γ
Ta

)(t−t0), c =
γ N0λmax(Pi)ϑ
λmin(Pi)

(24)

According to the inequality (9), one obtains:

lim
t→∞

E
{
‖e‖2

}
= 0 (25)

Combined with the condition of bipartite synchronization
in Definition 2, the multi-agent system with signed graph can
achieve bipartite synchronization, and the proof is complete.
Remark 6: Under Assumptions 1-2 of the node function

and Assumptions 3-4 of the system topology, by constructing
a Lyapunov function and applying Halanay differential
inequality in Lemma 3, Theorem 1 provides a new bipartite
synchronization criterion for multi-agent systems under time-
varying delay and deception attacks. The criterion involves
the Kronecker product.

If the delayed node state terms are not included in the
multi-agent system, the system (2) becomes
ẋi(t) = A1xi(t)+ B1f (xi(t))

−α
∑N

j=1

∣∣gij∣∣ (xi(t)− sign(gij)xj(t))
−β

∑N

j=1

∣∣gij∣∣ (xi(t − τ (t))−sign(gij)xj(t − τ (t))), t 6= tp,

1xi(tp) = ρ(tp)k(xi(t−p )), p ∈ N+.
(26)

then the corresponding bipartite synchronization condition is
derived by setting A2 = 0,B2 = 0.
Corollary 1: Under Assumptions 1-4, the multi-agent

system (26) can achieve bipartite synchronization, if for given
scalars λ > ε > 0, γ > 1, there exist matrices Pi > 0,
i = 1, 2, scalars δ1 > 0 and r > 0, such that the following
linear matrix inequalities hold:

Pi < rI(N−1)nx , i = 1, 2 (27)[
�i11 Pi(IN−1 ⊗ B) −βPi(W ⊗ Inx)
∗ −δ1I(N−1)nx 0
∗ ∗ −εPi

]
< 0, i = 1, 2

(28)

where�i11 = PiDα+DTαPi+
P1−P2
h +λPi+δ1(IN−1⊗ϒ

Tϒ),

(P2 − γP1)+ 2ρ̄θλmax(P2)+ ρ̄θ2λmax(P2)I(N−1)nx < 0

(29)

a−
ln γ
Ta

> 0

(30)

where a satisfies a− λ+ εeaτ̄ = 0.
If the delayed coupling terms are not included in the multi-

agent system, the system (2) becomes
˙̄xi(t) = A1x̄i(t)+ A2x̄i(t − τ (t))+ B1f (x̄i(t))

+B2f (x̄i(t − τ (t)))− α
∑N

j=1
l̄ijx̄j(t), t 6= tp

1x̄i(tp) = ρ(tp)k(x̄i(t−p )), p ∈ N+.

(31)

then the corresponding bipartite synchronization condition is
derived by setting β = 0.
Corollary 2: Under Assumptions 1-4, the multi-agent

system (31) can achieve bipartite synchronization, if for given
scalars λ > ε > 0, γ > 1, there exist matrices Pi > 0,
i = 1, 2, scalars δ1 > 0, δ2 > 0 and r > 0, such that the
following linear matrix inequalities hold:

Pi < rI(N−1)nx , i = 1, 2 (32)

(33), as shown at the bottom of the next page, where
�i11 = PiDα + DTαPi +

P1−P2
h + λPi + δ1(IN−1 ⊗ ϒTϒ)

and �i33 = −εPi + δ2(IN−1 ⊗ ϒTϒ)

(P2 − γP1)+ 2ρ̄θλmax(P2)+ ρ̄θ2λmax(P2)I(N−1)nx < 0

(34)

a−
ln γ
Ta

> 0

(35)

where a satisfies a− λ+ εeaτ̄ = 0.
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If the deception attacks are not considered in the multi-
agent system, the system (2) becomes

ẋi(t) = A1xi(t)+ A2xi(t − τ (t))+ B1f (xi(t))

+B2f (xi(t − τ (t)))− α
∑N

j=1

∣∣gij∣∣ (xi(t)− sign(gij)xj(t))
−β

∑N

j=1

∣∣gij∣∣ (xi(t − τ (t))− sign(gij)xj(t −τ (t))), t 6= tp,

1xi(tp) = 0, p ∈ N+.

(36)

Note ρ(tp) = 0, that is, there is no deception attack
in the system (2). Then, the following corollary can be
drawn:
Corollary 3: Under Assumptions 1-4, the multi-agent

system (37) can achieve bipartite synchronization, if for
given scalars λ > ε > 0, γ > 1, there exist matrices
Pi > 0, i = 1, 2, scalars δ1 > 0, δ2 > 0 and
r > 0, such that the following linear matrix inequalities
hold:

Pi < rI(N−1)nx , i = 1, 2 (37)

(38), as shown at the bottom of the page, where
�i11 = PiDα + DTαPi +

P1−P2
h + λPi + δ1(IN−1 ⊗ ϒTϒ)

and

�i33 = −εPi + δ2(IN−1 ⊗ ϒTϒ).

× (P2 − γP1)+ 2ρ̄θλmax(P2)

+ ρ̄θ2λmax(P2)I(N−1)nx < 0 (39)

a−
ln γ
Ta

> 0 (40)

where a satisfies a− λ+ εeaτ̄ = 0.

IV. NUMERICAL SIMULATION
This section presents two numerical examples to demonstrate
the validity of our results in Section 3, both of which employ
a chaotic system to describe the dynamic behavior of isolated
node in system (2).
Example 1: Consider a multi-agent system with signed

graph of seven nodes, whose topology is the same as in [37],
shown in Figure 1. Each chaotic agent can be regarded as a

FIGURE 1. Multi-agent system composed of seven nodes.

node in the system. The dynamic behavior of each individual
agent is described by (2) with:

A1 = A2=diag ([−1.2,−1.2,−1.2]) ,

B1 = B2=

 1.16 −1.5 −1.5
−1.5 1.16 −2
−1.2 2 1.16

 ,
f (xi(t))=

 tanh(xi1(t))
tanh(xi2(t))
tanh(xi3(t))

 ,
α = 7, β = 0.8, ρ̄ = 0.1 and τ̄ = 0.3.

It can be verified that |fm(x)− fm(y)| ≤ |x − y|, ∀x, y ∈ R
with m = 1, 2, 3.
From the above topology, the entire system is divided into

two clusters, N1 = {1, 2, 3} and N2 = {4, 5, 6, 7}. The
structure of the system is balanced and contains a directed
spanning tree.

Let λ=2, ε=1 and τ̄ = 0.3, then a = 0.7483 is the root of
the equation a− λ+ εeaτ̄ = 0. Set ψ(xi(t)) = [0.3xi1(t), −
0.3 sin(xi2(t)), 0.3 tanh(xi3(t))]T , then ‖ψ(z1)− ψ(z2)‖ ≤
θ ‖z1 − z2‖ ,∀z1, z2 ∈ R3 with θ=0.3. Meanwhile, let
Ta = 0.5 and γ = 1.35 such that a − ln γ

Ta
> 0 can be hold.

Then feasible results are then solved by using linear matrix
inequality technology. In the simulation, the impulse interval
is taken as 0.5s.

Figure 2 depicts the trajectories of xi(i = 1, 2, . . . 7) and
the deception attacks occurrence at impulse instants. It can
be seen from the figure that, at the impulse instants when
the deception attacks really occur, even though the system
states will be affected to make a jump, the trajectory of the
system states will still maintain bipartite synchronization.


�i11 Pi(IN−1 ⊗ B1) Pi(IN−1 ⊗ A2) Pi(IN−1 ⊗ B2)

∗ −δ1I(N−1)nx 0 0

∗ ∗ �i33 0

∗ ∗ ∗ −δ2I(N−1)nx

 < 0, i = 1, 2 (33)


�i11 Pi(IN−1 ⊗ B1) Pi(IN−1 ⊗ A2) Pi(IN−1 ⊗ B2)

∗ −δ1I(N−1)nx 0 0

∗ ∗ �i33 0

∗ ∗ ∗ −δ2I(N−1)nx

 < 0, i = 1, 2 (38)
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FIGURE 2. State trajectories of xi (t)(i = 1, 2, . . . , 7) and the deception
attacks occurrence at impulse instants.

These simulation results demonstrate the effectiveness of the
proposed bipartite synchronization approach.
Example 2: Consider a multi-agent system with signed

graph composed by nine nodes, whose topology is the same
as in [19] and [38] and shown in Figure 3. Each chaotic agent
can be regarded as a node, which is described by equation (2)
with:

A1 =
[
−1 0
0 −1

]
, A2 =

[
−0.1 0
0 −0.1

]
,

B1 =
[
1+ π

4 20
0.1 1+ π

4

]
, B2 =

[
−

1.3π
√
2

4 0.1

0.1 −
1.3π
√
2

4

]
,

f (xi(t)) =
[
0.5(|xi1(t)+ 1| − |xi1(t)− 1|)
0.5(|xi2(t)+ 1| − |xi2(t)− 1|)

]
, τ (t) = 1.

FIGURE 3. Multi-agent system composed of nine nodes.

It can be verified that |f1(x)− f1(y)| ≤ ν1 |x − y|,
∀x, y ∈ R with ν1 = 1.

It can be seen from the above topology diagram that the
structure of the system is balanced and the signed graph
contains a directed spanning tree. The system can be divided
into two clusters, which are N1 = {1, 2, 3, 8, 9} and N2 =

{4, 5, 6, 7}.
Assume α = 15, β = 1, ψ(xi(t)) = [0.3xi1(t),
−0.3 sin(xi2(t))]T and parameters θ , ρ̄ are same as those in
example 1.

Let λ = 1, ε = 0.5 and τ̄ = 1, then a = 0.3149 is the
root of the equation a − λ + εeaτ̄ = 0. Meanwhile, in order
to meet the condition a − ln γ

Ta
> 0, it is set that Ta = 1 and

γ = 1.3610. Feasible results are then obtained by solving the
linear matrix inequalities in Theorem 1. In the simulation, the
impulse interval is taken as 1s, that is tp − tp−1 = 1s.
Figure 4 shows the trajectories of xi(i = 1, 2, . . . 9),

and the deception attacks occurrence at impulse instants are
also depicted. It is clear that the trajectory of the system
states will still keep bipartite synchronous, even if the system
states will be affected to jump at the impulse instants with
deception attacks. These simulation results further illustrate
the effectiveness of the proposed bipartite synchronization
approach.

V. APPLICATION TO SPEECH COMMUNICATION
Multi-agent systems usually need to keep necessary com-
munication, such as speech, video, text chat and so on, but
the security of communication must be guaranteed. Based
on the synchronization results of Example 1 obtained in
Section 4, a new chaotic speech secure communication
system is constructed to verify the feasibility of the proposed
theoretical method.

A. SPEECH SECURE COMMUNICATION
Usually, duplex speech communication can be performed
between agents. For simplicity, the simplex communication
in which the agent i sends the encrypted speech signals to
the agent j is taken as an example for analysis. As shown
in Figure 5, a typical speech secure communication system
consists of two parts, the sender and receiver. The sender of
agent i encrypts a section of speech signals to produce signals
similar to white noise by using the chaotic signals which
are generated by node i in the multi-agent system (2). Then
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FIGURE 4. State trajectories of xi (t)(i = 1, 2, . . . , 9) and the deception
attacks occurrence at impulse instants.

FIGURE 5. Block diagram of speech secure communication system based
on bipartite synchronization.

the encrypted speech signals, the discrete iteration start time
(Nl_k) and the number i of agent are combined into a data

packet to send. Accordingly, after receiving the data packet,
the receiver of agent j decomposes it into the corresponding
speech signals to be decrypted, the discrete iteration start
time (N̄l_k) and the number i of sender agent. The multi-
agent systems with signed digraph, time-varying delay and
deception attacks can realize bipartite synchronization to
recover the original speech signals under the guarantee of
Theorem 1, in which the chaotic signals generated by node
i are used for speech encryption, while signals generated by
node j are used for speech decryption. Furthermore, if and
only if the encryption and decryption keys are completely
consistent, it can be ensured that the sender of agent i and
the receiver of agent j can produce the same or opposite key
streams to recover the original speech signals. For simplicity,
it is assumed that the encryption keys and the decryption
keys are agreed in advance by both the sender of agent i
and the receiver of agent j. The sender and receiver can
be attached to the agent. In addition, the channel used for
speech communication is a separate channel, independent of
the topology of the multi-agent system with signed graph.

The workflow of chaotic speech secure communication
between agent i and agent j is described as follows.

Step 1: A section of original speech signals to be sent
by agent i is prepared. There are two kinds of voice, one
is to record directly and send in real time, and the other
is to read data directly from the recording file. Without
losing generality, a direct recording is performed with the
frequency of 8000Hz, and the resulting original speech signal
is expressed as m (t).

Step 2: Given the parameter matrices (A1,B1,A2,B2),
iteration step size (1T ) and initial values ((x11 (0) , x12 (0) ,
x13(0))T , (x21 (0) , x22 (0) , x23(0))T , (x31 (0) , x32 (0) ,
x33(0))T ,(x41 (0) , x42 (0) ,x43(0))T,(x51(0) ,x52 (0) , x53(0))T ,
(x61 (0) , x62 (0) , x63(0))T , (x71 (0) , x72 (0) , x73(0))T

)
of

multi-agent system (2), three chaotic state sequences of
each node are obtained after discretization and iteration
operations, expressed as xmn = {xmn (0) , . . . , xmn (k) , . . .},
m = 1, 2, . . . , 7, n = 1, 2, 3, where the chaotic state
sequences generated by node i are used as encryption key
streams.

Given the initial encryption value (C_temp), according
to Algorithm 1, at the sending end of agent i, the original
speech signal is encrypted by using the generated chaotic
state sequences xin (n= 1, 2, 3) , that is, the encrypted speech
signals are obtained.

Step 3: The encrypted speech signal C(t), the discrete
iteration start time (N1_k,N2_k,N3_k) and the number i of
agent sender are combined into a data packet for transmission.
Immediately, agent i sends the data packet to agent j. For
simplicity, the one-encryption and one-transmission mode is
adopted here. However, it is recommended to use segment-
encryption and segment-transmission mode for long time
speech signals.

After receiving the data packet, the receiver of agent
j decomposes it into the corresponding speech sig-
nal to be decrypted C̄ (t), discrete iteration start time
(N̄1_k, N̄2_k, N̄3_k) and the number i of agent sender, which
is transmitted through the exclusive communication channel.
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Algorithm 1 Speech Encryption
Initialization:
Set L ← length(m(t)); N1_k ← 3000 + i; N2_k ← 3007 + i;
N3_k ← 3011+ i;
for k = 1:

⌈
L/
3
⌉

tmp1 = 10 ∧ (9+ mod(floor (C_temp ∗ 10 ∧ 15) , 8)) ;
tmp2 = dec2bin (mod(floor (C_temp ∗ 10 ∧ 15) , 8), 3) ;
N1_k = N1_k + 1+ mod(floor (C_temp ∗ tmp1) , 3);
N2_k = N2_k + 1+ mod(floor (C_temp ∗ tmp1) , 7);
N3_k = N3_k + 1+ mod(floor (C_temp ∗ tmp1) , 11);
tp21 = (−1) ∧ bin2dec (tmp2(1)) ;
tp22 = (−1) ∧ bin2dec (tmp2(2)) ;
tp23 = (−1) ∧ bin2dec (tmp2(3)) ;

if (mod (L, 3) == 2 && p ==
⌈
L/
3
⌉)
|| (mod (L, 3) == 1

&&k ≥
⌈
L/
3
⌉
− 1

)
X (k) = mod (tp21 ∗ xi1 (N1_k)+ tp22 ∗ xi2 (N1_k)+

tp23 ∗ xi3 (N1_k) , 1) ;
Y (k) = mod (tp21 ∗ xi1 (N2_k)+ tp22 ∗ xi2 (N2_k)+

tp23 ∗ xi3 (N2_k) , 1) ;
C(k) = mod (m (k)+ 0.5+ 2 ∗ X (k)+ C_temp, 1)
−0.5;
C
(⌈
L/
3
⌉
+ k

)
= mod

(
m
(⌈
L/
3
⌉
+ k

)
+ 0.5+ 3 ∗ Y (k)

−C_temp, 1)− 0.5;
C_temp = mod

(
C (k)+ C

(⌈
L/
3
⌉
+ k

)
+C_temp+ X (k)+

Y (k), 1) ;
else
X (k) = mod (tp21 ∗ xi1 (N1_k)+ tp22 ∗ xi2 (N1_k)+

tp23 ∗ xi3 (N1_k) , 1) ;
Y (k) = mod (tp21 ∗ xi1 (N2_k)+ tp22 ∗ xi2 (N2_k)+

tp23 ∗ xi3 (N2_k) , 1) ;
Z (k) = mod (tp21 ∗ xi1 (N3_k)+ tp22 ∗ xi2 (N3_k)+

tp23 ∗ xi3 (N3_k) , 1) ;
C(k) = mod (m (k)+ 0.5+ 2 ∗ X (k)+ C_temp, 1)−

0.5;
C
(⌈
L/
3
⌉
+ k

)
= mod

(
m
(⌈
L/
3
⌉
+ k

)
+ 0.5+ 3 ∗ Y (k)−

C_temp, 1)−0.5;
C
(
2 ∗

⌈
L/
3
⌉
+ k

)
= mod

(
m
(
2 ∗

⌈
L/
3
⌉
+ k

)
+ 0.5− 3∗

Z (k)+ C_temp, 1)−0.5;
C_temp = mod

(
C (k)+ C

(⌈
L/
3
⌉
+ k

)
+ C

(
2 ∗

⌈
L/
3
⌉
+

k)+ C_temp+ X (k)+ Y (k)+ Z (k) , 1) ;
end

end

Step 4: Given the initial value of decryption (P_temp),
according to Algorithm 2, at the receiving end of
agent j, the encrypted speech signals are decrypted
by using the generated chaotic state sequences xjn
(n= 1, 2, 3) , that is, the original speech signals are
recovered.
Remark 7.Algorithms 1 and 2 are suitable for the point-to-

point speech communication between multiple agents, using
the chaotic signals generated by the point-to-point commu-
nication agent itself. These algorithms adopt the parallel
encryption/decryption methods, that is, the speech signals
are divided into several segments and encrypted/decrypted
at the same time, so the encryption/decryption speed is

Algorithm 2 Speech Decryption
Initialization:
Set L ← length(C̄(t));N̄1_k ← 3000 + i; N̄2_k ← 3007 + i; N̄3_k ←
3011+ i;
for s = 1 :

⌈
L/
3
⌉

tmp1 = 10 ∧ (9+ mod(floor (P_temp ∗ 10 ∧ 15) , 8));
tmp2 = dec2bin (mod(floor (P_temp ∗ 10 ∧ 15) , 8), 3);
N̄1_k = N̄1_k + 1+ mod(floor (P_temp ∗ tmp1) , 3);
N̄2_k = N̄2_k + 1+ mod(floor (P_temp ∗ tmp1) , 7);
N̄3_k = N̄3_k + 1+ mod(floor (P_temp ∗ tmp1) , 11);

if ( i <4 && j >3 ) || ( j <4 && i >3 )
tp21 = (−1) ∧ (bin2dec (tmp2 (1))+ 1);
tp22 = (−1) ∧ (bin2dec (tmp2 (2))+ 1);
tp23 = (−1) ∧ (bin2dec (tmp2 (3))+ 1);

else
tp21 = (−1) ∧ bin2dec (tmp2 (1));
tp22 = (−1) ∧ bin2dec (tmp2 (2));
tp23 = (−1) ∧ bin2dec (tmp2 (3));

end
if (mod (L, 3) == 2 && q ==

⌈
L/
3
⌉)
|| (mod (L, 3) == 1

&& s ≥
⌈
L/
3
⌉
− 1

)
X̄ (s) = mod

(
tp21 ∗ xj1

(
N̄1_k

)
+

tp22 ∗ xj2
(
N̄1_k

)
+ tp23 ∗ xj3

(
N̄1_k

)
, 1
)
;

Ȳ (s) = mod
(
tp21 ∗ xj1

(
N̄2_k

)
+

tp22 ∗ xj2
(
N̄2_k

)
+ tp23 ∗ xj3

(
N̄2_k

)
, 1
)
;

P(s) = mod
(
C̄ (s)+ 0.5− 2 ∗ X̄ (s)− P_temp, 1

)
−0.5;
P
(⌈
L/
3
⌉
+ s

)
= mod

(
C̄
(⌈
L/
3
⌉
+ s

)
+ 0.5− 3 ∗ Ȳ (s)+

P_temp, 1)−0.5;
P_temp = mod

(
C̄ (s)+ C̄

(⌈
L/
3
⌉
+ s

)
+ P_temp+ X̄ (s)+

Ȳ (s) , 1
)
;

else
X̄ (s) = mod

(
tp21 ∗ xj1

(
N̄1_k

)
+ tp22 ∗ xj2

(
N̄1_k

)
+

tp23 ∗ xj3
(
N̄1_k

)
, 1
)
;

Ȳ (s) = mod
(
tp21 ∗ xj1

(
N̄2_k

)
+ tp22 ∗ xj2

(
N̄2_k

)
+

tp23 ∗ xj3
(
N̄2_k

)
, 1
)
;

Z̄ (s) = mod
(
tp21 ∗ xj1

(
N̄3_k

)
+ tp22 ∗ xj2

(
N̄3_k

)
+

tp23 ∗ xj3
(
N̄3_k

)
, 1
)
;

P(s) = mod
(
C̄ (s)+ 0.5− 2 ∗ X̄ (s)− P_temp, 1

)
−0.5;
P
(⌈
L/
3
⌉
+ s

)
= mod

(
C̄
(⌈
L/
3
⌉
+ s

)
+ 0.5− 3 ∗ Ȳ (s)+

P_temp, 1)−0.5;
P
(
2 ∗

⌈
L/
3
⌉
+ s

)
= mod

(
C̄
(
2 ∗

⌈
L/
3
⌉
+ s

)
+ 0.5+ 3 ∗ Z̄ (s)−

P_temp, 1)−0.5;
P_temp = mod

(
C̄ (s)+ C̄

(⌈
L/
3
⌉
+ s

)
+ C̄

(
2 ∗

⌈
L/
3
⌉
+

s)+ P_temp+ X̄ (s)+ Ȳ (s)+ Z̄ (s) , 1
)
;

end

end

greatly improved. In addition, the chaotic key streams
(X (p) /X̄ (q) ,Y (p) /Ȳ (q) and Z (p)/Z̄ (q)) generated by the
multi-agent system with signed digraph are random, which
ensures the security of encryption/decryption to a certain
extent. The most important is to decide what kind of
calculation (1 out of 8) the algorithm performs to generate
key streams and where to start extracting chaotic signal, and
these operations are not only related to the former key streams
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but also dependent on the former cipher signals, so as to resist
various attacks.

FIGURE 6. Results of speech encryption and decryption.

B. TEST RESULTS AND PERFORMANCE ANALYSIS
Taking Agent 1 sending encrypted speech signals to Agent 5
as an example, this section gives the system test results
and performance analysis to prove the effectiveness of the
speech secure communication based on the proposed bipartite
synchronization method. In this test, the initial encryp-
tion/decryption values C_temp/P_temp are all assigned as
0.12345. A section of recording signals to be encrypted is
the voice of ‘‘speech encryption’’, as shown in Figure 6(a).
The encryption algorithm shown in Algorithm 1 is used to
produce encrypted speech signals, as shown in Figure 6(b).
It can be seen that the encrypted speech signals are noise
without any trace of original information. For simplicity, here
Agent 5 used in the speech communication are homogeneous,
that is, the parameters of the dynamic system are consistent

(A1 = Ā1,A2 = Ā2,B1 = B̄1,B2 = B̄2). For decryption, the
keys Ā1 = Ā2 =

−1.2 0 0
0 −1.2 0
0 0 −1.2

 ,
B̄1 = B̄2 =

 1.16 −1.5 −1.5
−1.5 1.16 −2
−1.2 2 1.16

 ,
1̄T= 0.002,P_temp = 0.12345


are consistent with the encryption keys which are agreed
in advance, and the discrete iteration start time of decryp-
tion node

(
N̄1_k= 3000,N̄2_k = 3007, N̄3_k = 3011

)
is also

consistent with Agent 1. The speech signals recovered after
decryption are shown in Figure 6(c), from which it is obvious
that the recovered speech signals are the same as the original
speech signals. That is to say, Agent 5 can perfectly hear
the original speech, while the eavesdropper can only hear a
burst of noise during transmission. The Comparison signals
between encrypted and decrypted speech signals are depicted
in Figure 6(d).

An ideal secure communication must have good perfor-
mance and enough robustness to resist different types of
security attacks. The security analysis presented in this paper
includes spectrogram, histogram, key space, key sensitivity
and real-time, which are detailed as follows.

FIGURE 7. Spectrogram and histogram of original speech signals,
encrypted speech signals and decrypted speech signals
(a)-(b) Spectrogram and histogram of original speech signals;
(c)-(d) Spectrogram and histogram of encrypted speech signals;
(e)-(f) Spectrogram and histogram of decrypted speech signals.

1) SPECTROGRAM AND HISTOGRAM ANALYSIS
Fig. 7(a) and (b) depict the spectrogram and histogram of
the original speech signals whose time domain waveform
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FIGURE 8. The errors between the encrypted speech signals generated by
the slightly changed encryption keys and the former encrypted speech
signals.

is shown in Figure 6(a). Figure 7(c) and (d) show the
spectrogram and histogram of the encrypted speech signals
as shown in Figure 6(b). It can be seen that the spectrogram
(energy distribution) and histogram (signal value distribution)
of the encrypted speech signals are uniform distributed,
which are completely different from those of original speech

FIGURE 9. Decrypted speech signals obtained by using slightly changed
decryption keys.

signals, and can well protect the speech information against
statistical analysis. In addition, Figure 7(e) and (f) present the
spectrogram and histogram of the recovered speech signals
after decryption, which are the same as those of the original
speech signals.

2) KEY SPACE ANALYSIS
In the proposed algorithm, the keys include the parameter
matrices (A1,A2,B1,B2) of the multi-agent system with
signed digraph shown in (2), the iteration step size 1T,
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and the encrypted initial value C_temp. It is worth noting
that the initial values of multi-agent system with signed
graph have no effect on the recovery of original speech
signals at receiver. If the calculation accuracy of 64 bit
double precision number is 10−14, its key space can up
to 1014×18×1000 × 1014= 10266+3= 10269, which is large
enough and has sufficient security to resist exhaustive attacks.

3) KEY SENSITIVITY ANALYSIS
An effective encryption algorithm should be sensitive to the
keys. On the one hand, even a small change in the encryption
keys will lead to a huge difference between the encrypted
speech signals. On the other hand, the small difference
between the encryption and the decryption keys will fail to
recover the original speech signals.

In order to test the sensitivity of encryption keys, only a
single encryption key is slightly changed each time. During
the test, encryption keys are slightly changed as follows,

A1 =

−1.2+ω 0 0
0 −1.2 0
0 0 −1.2

 ,
B1 =

 1.16+ ω −1.5 −1.5
−1.5 1.16 −2
−1.2 2 1.16

 ,
B1 =

 1.16 −1.5 −1.5
−1.5 1.16 −2
−1.2 2+ ω 1.16

 ,
and C_temp=0.12345+ω, where ω = 0.00000000000001.
The error speech signals are respectively shown in Figure 8,
which are obtained by comparing the encrypted speech
signals using slightly changed encryption keys with the
former signals shown in Figure 6(b). It is obvious that
‘‘a millimeter miss’’ of the encryption key will lead to
‘‘a thousand miles’’ between encrypted speech signals.
Therefore, the proposed Algorithm 1 is sensitive to the
encryption keys.

In order to test the sensitivity between encryption and
decryption keys, a group of decryption keys is similarly
selected with tiny modification to decrypt signals in
Figure 6(b), such as

Ā1 =

−1.2 0 0
0 −1.2+ω̄ 0
0 0 −1.2

 ,
B̄1 =

 1.16 −1.5 −1.5
−1.5+ω̄ 1.16 −2
−1.2 2 1.16

 ,
B̄1 =

 1.16 −1.5 −1.5+ω̄
−1.5 1.16 −2
−1.2 2 1.16


and P_temp = 0.12345+ω̄, where ω̄=0.00000000000001.
It can be clearly reflected from Figure 9 that the decrypted
speech signals are harsh noise without any useful informa-
tion, and they are completely different from the original
speech signals. Therefore, unless the eavesdropper obtains

the same decryption keys as the encryption keys, it will be
impossible to decrypt and recover the original speech signals
or obtain any useful information.

4) REAL-TIME ANALYSIS
It is expected that speech signals can be encrypted and
decrypted in real time to meet the real-time requirements
of speech secure communication. Still chosen ‘‘Speech
Encryption’’ (see Figure 6(a)) to test, the encryption time
with Algorithm 1 is 0.203574s, and the decryption time with
Algorithm 2 is about 0.210356s, which can basically meet the
real-time requirements of speech communication.

VI. CONCLUSION
This paper addresses the bipartite synchronization problem
of multi-agent systems with signed graph, where the effects
of time-varying delay and deception attacks are taken into
account. By using a gauge transformation to transform the
bipartite synchronization problem of multi-agent systems
with signed graph into the traditional synchronization of
multi-agent systems with unsigned graph, choosing the
appropriate Lyapunov function and applying the Halanay
differential inequality, a sufficient condition, which guaran-
tees the bipartite leaderless synchronization for multi-agent
systems with unsigned graphs, is newly obtained. When the
delayed node-state term or the delayed coupling term is not
considered separately, several criteria are established. The
effectiveness of the synchronization results is then demon-
strated by two numerical examples. Finally, a new multi-
agent speech secure communication system is constructed to
verify the feasibility of the proposed synchronization results
in practical applications.
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