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ABSTRACT Being the only nonlinear component in many cryptosystems, an S-box is an integral part
of modern symmetric ciphering techniques that creates randomness and increases confidentiality at the
substitution stage of the encryption. The ability to construct a cryptographically strong S-box solely depends
on its construction scheme. The primary purpose of an S-box in encryption standards is to establish confusion
between them-bit input into the n-bit output (bothm, n >= 2). This article proposed a robust way to construct
S-boxes based on the Gravesian octonion integers. We chunk the paper into threefold: firstly, a comprehen-
sive technique for constructing S-box using affine mapping is described. The presented work is developed in
such a way that for every valid input, it generates two S-boxes. Secondly, the strength of the newly generated
S-box is evaluated by passing through a rigorous security analysis. Finally, a thorough comparison of the
newly developed method with some well-known existing schemes is conducted. We mainly targeted some
elliptic curve-based S-boxes in comparison by taking the same parameters in our scheme. The computational
results and performance analysis reveal that the propose algorithm can construct a large number of distinct
S-boxes that are cryptographically secured and create high resistance against various cryptanalysis attacks.

INDEX TERMS Security, substitution-box, encryption, block ciphers, Gravesian octonion integers.

I. INTRODUCTION
We are living in the information age where information is
considered an asset, just like other assets. In the past few
decades, the security of confidential data has attained rep-
utable attention and vastly opened new research directions in
the area of cryptography. Researchers proposed several types
of data security schemes based on different mathematical
structures. The main idea of these techniques is to transform
confidential data into an unreadable and non-understandable
form to protect it from unauthorized access. Most of the tra-
ditional symmetric cryptosystems, like Advance Encryption
Standard (AES), International Data Encryption Algorithm
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(IDEA), and Data Encryption Standard (DES), practically
rely on the usage of substitution boxes (S-boxes) to achieve
confusion in the input data up to a certain level [1]. There-
fore, the efficiency of these systems primarily depends
only on the cryptographic properties of their S-boxes.
An S-box plays a pivotal role in strengthening the quality of
encryption. It has always remained a goal of cryptosystem
designers to construct an S-box with strong cryptographic
performance.

A. RELATED WORK
Researchers have proposed several methods to construct
highly nonlinear S-boxes. An efficient S-box is con-
structed by Lambić in [2] based on discrete chaotic
maps. Çavuşoǧlu et al. [3] described an S-box construction
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technique based on a chaotic scaled Zhongtang system.
A new S-box construction method using triangle groups
was proposed by Khan et al. in [4]. Furthermore, some
investigations on the S-boxes based on chaotic neural net-
works and hyperchaotic systems are conducted [5], [6].
Altaleb et al. in [7] proposed the construction of an S-box
by using the projective general linear group. An efficient
approach to assembling S-boxes based on a Latin square is
presented by El-Ramly et al. [8]. Wu et al. [9] proposed the
construction of S-boxes by Latin square doubly stochastic
matrix. Peng et al. [10] developed dynamic S-boxes using
a spatiotemporal chaotic system. An S-box construction
based on chaos theory is proposed by Wang et al. [11].
Alkhaldi et al. [12] proposed an approach for constructing
S-boxes using tangent delay for ellipse chaotic sequence and
a particular permutation. The resultant S-boxes showed high
resistance against various cryptanalysis attacks. Khan and
Azam [13] proposed an algorithm for constructing S-Boxes
using affine and power mappings. Meanwhile, Khan and
Azam [14] discussed the generation of multiple S-boxes
based on group action and Gray code. In a study by
Ahmed et al. [15], innovative construction of an S-box based
on Gaussian distribution and linear fractional transforma-
tion is proposed. Similarly, Khan et al. [16] developed a sys-
tematic technique to generate an S-box using a difference
distribution table. Meanwhile, Isa et al. [17] established a
heuristic method called the bee waggle dance for assembling
an S-box. An S-box retrieval system using artificial bee
colony and optimization and the chaotic map was introduced
by Ahmad et al. [18]. Zahid et al. [19] presented an innova-
tive scheme for constructing an S-box through cubic polyno-
mial mapping. Moreover, Tian et al. [20] suggested a method
for an S-box designing based on the intertwining logis-
tic map and bacterial foraging optimization. Furthermore,
Shahzad et al. [21] developed an algorithm for designing
an S-box using the action of the quotient of the modu-
lar group for multimedia security. In addition, Belazi and
El-Latif [22] proposed a simple algorithm for constructing an
S-box using sine chaotic maps. Furthermore, Musheer et al.
[43] proposed an algorithm to assemble an S-box using
generalized fusion fractal structure. Elliptic curves (ECs)
have recently gained reputable attention in cryptography
and are being used to design strong cryptosystems. Some
cryptographers have developed algorithms for constructing
S-boxes using elliptic curves [23], [24], [25], [26], [27].
Jung et al. [23] constructed S-boxes over hyperelliptic curves.
Furthermore, Azam et al. [24], [26] used an elliptic curve
over an ordered isomorphic elliptic curve and used typical
orderings on a class of Mordell elliptic curves over a finite
field and assembled 8×8 S-boxes, respectively. Hayat et al.
[25], [27] developed different methods for constructing 8×8
S-boxes using an elliptic curve over prime fields. All these
schemes based on elliptic curves can generate at most one
S-box either on x or y-coordinates [24], [25], [26], [27].

B. OUR CONTRIBUTION
In this manuscript, we proposed a robust way for construct-
ing S-boxes using Gravesian octonion integers. In general,
octonions are non-commutative and non-associative [34], but
under certain conditions, they are commutative; we discussed
that study throughout this paper. The presented work is devel-
oped so that for every valid input, it yields two S-Boxes with
strong cryptographic properties, while in [24], [25], [26], and
[27], there is no guarantee of establishing S-boxes on both
coordinates. The rest of the paper is arranged as follows:
Section II comprises some definitions and concepts neces-
sary to understand the article. The newly proposed algorithm
for the construction of S-boxes is discussed in Section III.
A comprehensive analysis and detailed comparison of the
newly established S-boxes with some existing schemes are
given in Section IV. The summary of the obtained results is
highlighted in Section V.

II. PRELIMINARIES
A. OCTONION INTEGERS
After the discovery of quaternion algebra, Cayley and Graves
independently discovered octonion algebra. The octonions
O(R) are an eight-dimensional normed division algebra over
R, a kind of hypercomplex number system, with basis ele-
ments e0, e1, e2, . . . , e7 twice as the number of dimensions
of quaternion, O(R) is an extension of quaternion algebra.
It is non-commutative and non-associative unital algebra;
however, it is power associative. In the basis set e0 is the unit
element so that it can be denoted as 1. Any h ∈ O(R) can be
written as a linear combination of unit octonions, i.e.,

h = h0 +
7∑

i=1

hiei, where hj ∈ R for j ∈ {0, 1, 2, . . . , 7}

We may write an octonion h as the sum of its real part R(h)
and its vector part Eυ(h), likewise quaternion and Gaussian
integers:

h = h0 +
7∑

i=1

hiei = h0 + Eh = R(h)+ Eυ(h).

An octonion is said to be pure if its real part is 0. i.e., h = 0+
Eh = 0+ Eυ(h). Addition and subtraction of any two octonions
are done simply by adding and subtracting the coefficients of
corresponding elements, likewise, quaternions. However, the
multiplication is complex like quaternions and is discussed
briefly in the following sub-section.

B. THE PRODUCT OF OCTONIONS
For any two octonionsm and n given by,m =

∑7
i=0miei, n =∑7

i=0 niei, their product o = m·n =
∑7

i=0 oiei. There are two
methods formultiplying octonions: by using a table explained
later and via matrix multiplication [38]. We have used the
table method for multiplying two octonions. Let (O, ∗) be the
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TABLE 1. Multiplication table of octonions [37].

classical real algebra of the octonions with the basis elements
e0, e1, e2, . . . , e7 and multiplication table 1:
Where e0 is the identity element. From the above table,

by bilinearity, the multiplication of any two octonions can be
attained. The multiplication of the octonions is verified by
using an example from [39], i.e., if we have A = [1 2 3 4 1 2
1−1], and B= [2−1 1 2 3−4 1 2] then, A ·B= [−1−8−3
14 −1 2 34 −7], in the same way, we can multiply any two
octonions using multiplication code.

In general, the commutative property of multiplica-
tion does not hold for octonion integers; however, com-
mutativity holds if the vector parts of octonion integers
are parallel to each other. Defining O(K) as, O(K) =
{h0 + h1 (e1 + e2 + . . .+ e7) : h0, h1 ∈ Z} which is a sub-
ring of Octavian integers [34], the commutativity property of
multiplications holds over O(K).
In the exhibited Table 1, one can easily observe that:
1) e1, e2, . . . , e7 are square roots of −e0 i.e., e2i = −e0

for all i ∈ {1, 2, . . . , 7}
2) ei and ej are noncommutative whenever i 6= j, eiej =
−ejei where i, j = {1, 2, 3, 4, 5, 6, 7}

3) While dealing different ei and ej (i 6= j), the only
non-zero product attain are e1e2 = e3, e1e4 =
e5, e1e7 = e6, e6e2 = e4, e5e7 = e2, e3e4 =
e7, e3e7 = e5 and their cyclic permutation.

As e0 is the identity element; thus, Table 1 can be expressed
more generally as,

eiej =


ei if j = 0
ej if i = 0
εijk · ek − δije0 otherwise

where δij is the Kronecker delta (equal to 1 if and only if
(i = j) and εijk is a completely antisymmetric tensor with
value 1 when ijk = 123, 145, 176, 246, 257, 347, 365 and
equal zero in the remaining cases [35].

The plane mnemonic totally describes the algebra structure
of the octonions and the previous octonion multiplication
table. In figure 1, one can see a little gadget with 7 points
and 7 lines. The lines are the sides of a triangle, its altitudes,
and the circle containing all midpoints of the sides. Each
pair of distinct points lie on a unique line. Each line contains
three points, and each of these triplets has a cyclic ordering
shown by the arrows [36]. Some notations and results related
to octonions are presented in the next sub-sections.

FIGURE 1. Fano plane for the octonion multiplication.

C. CONJUGATE AND NORM OF OCTONIONS
For any general element h ∈ O(R), h = h0+

∑7
i=1 hiei where

hj ∈ R for j ∈ {0, 1, 2, . . . , 7}, its conjugate is the octonion
h = h0 −

∑7
i=1 hiei = h0 − Eh = R(h) − Eυ(h) and the norm

N (h) is defined as,

N (h) = h · h = h · h = h20 + h
2
1 + h

2
2

+h23 + h
2
4 + h

2
5 + h

2
6 + h

2
7.

Furthermore, for any m, n ∈ O(R),

(m+ n) = m+ n, (m · n) = m · n

and

N (m · n) = N (m) ·N (n)

this shows that the octonionic norm is multiplicative. In this
work, we focus on Gravesian octonion integers O(Z), the
octonions with all coordinates in Z [34]. Let ∨ = O(K) =
{a + bw : a, b ∈ Z} ⊂ O(Z), where w =

∑7
i=1 ei, the

octonion x ∈ O(K) is prime if N (x) is prime in N. Let u =
c+ dw ∈ O(K); we haveN (u) = u · ū = c2 + 7d2. We have
successfully extended some of the results of Hamiltonian
quaternion integers [40], which are applicable for the above
discussed associative and commutative ring ∨ where ∨ ⊂ O
(Octavian integers) [34].
Theorem: If u = a + b ·

∑7
i=1 ei, where a and b are

relatively prime, then O(K)/〈u〉 is isomorphic to Za2+7b2
where N (u) = p = a2 + 7b2 and p is a prime.
Proof: Suppose that a and b are positive integers and

relatively prime to each other, and b is relatively prime
to a2+7b2, clearly without any loss of generality a2+7b2 ≡
0
(
moda2 + 7b2

)
, a2 ≡ −7b2

(
moda2 + 7b2

)
, a2b−2 ≡

−7
(
moda2 + 7b2

)
,
(
ab−1

)2
≡ −7(mod a2 + 7b2

)
, defin-

ing f : O(K) → Za2+7b2 by f
(
x + y ·

∑7
i=1 ei

)
= x −(

ab−1
)
y(

moda2 + 7b2
)
, clearly, f is surjective and preserve addition.

Let α1 = x1 + y1 ·
∑7

i=1 ei, and α2 = x2 + y2 ·
∑7

i=1 ei be in
O(K). Since

f (α1) · f (α2) =
(
x1 −

(
ab−1

)
y1
)
·

(
x2 −

(
ab−1

)
y2
)
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≡

(
x1x2 +

(
ab−1

)2
y1y2

)
−

(
ab−1

)
(y1x2 + y2x1)

≡ (x1x2 − 7y1y2)−
(
ab−1

)
(y1x2 + y2x1)

= f

[
(x1x2 − 7y1y2)+ (y1x2 + y2x1)

7∑
i=1

ei

]

= f

[(
x1 + y1 ·

7∑
i=1

ei

)

+

(
x2 + y2

7∑
i=1

ei

)]
= f (α1 · α2)

This shows that f also preservers multiplication, however
because

f

(
a+ b ·

7∑
i=1

ei

)
= a−

(
ab−1

)
· b ≡ 0

This implies,

〈a+ b.
7∑
i=1

ei〉 ⊆ Ker(f )

where 〈·〉 denotes the ideal generated by the element(
a+ b ·

∑7
i=1 ei

)
and Ker(f ) is the kernel of function f .

Let c + d .
∑7

i=1 ei ∈ Ker(f ) and let c + d ·
∑7

i=1 ei =(
a+ b ·

∑7
i=1 ei

)
·

(
x + y ·

∑7
i=1 ei

)
where x and y are ratio-

nal numbers, since,

f

(
c+ d .

7∑
i=1

ei

)
= c−

(
ab−1

)
· d ≡ 0

This implies,

bc− ad ≡ 0

(x + y
7∑
i=1

ei

)
=

(
c+ d ·

∑7
i=1 ei

)
(
a+ b ·

∑7
i=1 ei

) )
=

(ac+ 7bd)(
a2 + 7b2

) + (ad − bc)(
a2 + 7b2

) 7∑
i=1

ei

This makes y an integer, now multiplying the equation bc −
ad ≡ 0 by ab yields ac −

(
ab−1

)2
· bd ≡ 0,⇒ ac − (−7) ·

bd ≡ 0, so ac + 7 · bd ≡ 0, proving that x is also an
integer. Thus, we conclude that Ker(f ) ⊆

〈
a+ b ·

∑7
i=1 ei

〉
,

so this implies that Ker(f ) =
〈
a+ b ·

∑7
i=1 ei

〉
, and hence

demonstrated that O(K)/
〈
a+ b ·

∑7
i=1 ei

〉
is isomorphic to

Za2+7b2 . Similarly, observation2 is also an extension from the
results of Hamiltonian quaternions, which are applicable for
the above-discussed subring ∨ of Octavian integers O(Z).

D. RESIDUE CLASS OF O(K) MODULO uk

Let O(K)uk be the residue class of O(K) modulo uk , where
k is any positive integer and u is prime octonion integer.
According to modulo function µ : O(K)→ O(K)uk defined
by

f 7→ f −

[
f uk

uuk

]
uk (1)

O(K)uk is isomorphic to Zpk , where p = u.u and p is an odd
prime, uk can be replaced by u1 ·u2 ·u3 · · · uk in equation (1),
where u1, u2, u3, · · · , uk are distinct octonion prime integers.
In equation (1), the symbol of [.] is rounding to the closest
integer. The rounding of octonion can be done by rounding
the real part and the coefficients of the vector part separately
to the nearest integer.
Observation: Let u = c + d (e1 + e2 + . . .+ e7) be a
prime in O(K) and let p = c2 + 7d2 be prime in Z.
If f is a generator of O(K)∗

u2
then f φ

(
p2
)
/2
≡ −1

(
modu2

)
where φ denotes the Euler phi function. Similarly, let uk =
ck + dk (e1 + e2 + . . .+ e7) be distinct primes in O(K) and
let pk = c2k + 7d2k be distinct primes in Z, where k =
1, 2, 3, . . . ,m. If f is a generator of O(K)∗uk , then f

φ
(
pk
)
/2
≡

−1
(
moduk

)
and there exists an element hk in O(K)∗ such

that hφ(pk )k ≡ 1
(
moduk

)
.

III. PROPOSED SCHEME FOR THE
CONSTRUCTION OF S-BOXES
This section presents the algebraic structure and the proposed
scheme used to construct the S-boxes. The S-boxes have
been generated using the field elements built by a mapping f
explained earlier. The detailed steps of the proposed method
are described briefly in the steps given below,
Step 1: Select a prime octonion or an octonion u = a + b ·∑7

i=1 ei such that the coefficients of real and vector parts are
relatively prime, i.e., (a, b) = 1 and N (u) = prime = p.
Step 2: Choose a primitive octonion integer v = 1 +

t.
∑7

i=1 ei, such that N (v) < N (u), taking real part as one
yields efficient results in the construction of the field.
Step 3: Construct field G by using the map f 7→ f −[
f uk

uuk

]
uk which is described briefly in earlier section.

Step 4: Apply mod p on the elements of G, name the new
set of elements as G∗
Step 5: Calculate the inverses of all elements of G∗, i.e.,

if α, β ∈ G∗ and α · β(modu) =[1 0 0 0 0 0 0 0].
Step 6: Choose A = [a b b b b b b b] such that a and b

are relatively prime and Bwithout any condition from G∗ and
apply the affine transformation as AX−1i + B,∀Xi ∈ G∗.
Step 7: After that, enforce mod 256 on the results obtained

from step 6 to restrict the values between 0 to 255.
Step 8: Separate the real and vector parts and consider them

as x and y coordinates.
Step 9:Apply unique command to get two arrays of random

numbers between 0 to 255, then reshape the resulted elements
of both coordinates into 16 by 16 matrices (lookup tables),
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FIGURE 2. Flowchart of the newly proposed algorithm.

TABLE 2. Elements obtained after implementation of the algorithm.

TABLE 3. The newly generated S-box S2557
A,B by x-coordinate.

these are the resulting S-boxes. More generally, the flowchart
of the construction of the proposed S-box is presented in
figure 2.

TABLE 4. The newly generated S-box S2557
A,B by y-coordinate.

TABLE 5. The newly generated S-box S3413
A,B by x-coordinate.

Repeating step 6 by using all the possible distinct values
of A, B from G∗ yields a large number of distinct and crypto-
graphically strong S-boxes; experimental results reveal that
for each appropriate input of A, and B, one can obtain two
S-boxes.
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TABLE 6. The newly generated S-box S3413
A,B by y-coordinate.

TABLE 7. The newly generated S-box S3613
A,B by x-coordinate.

TABLE 8. The newly generated S-box S3613
A,B by y-coordinate.

TABLE 9. The newly generated S-box S3917
A,B by x-coordinate.

For comparing the results with some elliptic curve-based
S-boxes, the algorithm is implemented for some specific
prime octonions, of course, those having their norms as
prime, including 2557, 3413, 3613, and 3917. The newly
generated S-boxes are illustrated in tables 3-10. Elements
obtained after the implementation of the algorithm are
described in table 2.

Elementary representation of the scheme using u = 5+22.∑7
i=1 ei = [5 22 22 22 22 22 22 22] with N (u) = p =

3413, and v = 1 + 10 .
∑7

i=1 ei =[1 10 10 10 10 10 10
10] having N (v) = 701, satisfying N (v) < N (u), taking
A =[3379 3409 3409 3409 3409 3409 3409 3409] and
B =[45 3403 3403 3403 3403 3403 3403 3403] from G∗

TABLE 10. The newly generated S-box S3917
A,B by y-coordinate.

and applying the affine mapping as discussed earlier, the
results are demonstrated in table 2.

IV. SECURITY ANALYSIS
After constructing the S-boxes, it is necessary to investigate
their performance. In this section, we evaluated the crypto-
graphic strength of the newly generated S-boxes by passing
them through some rigorous security analysis. Generally,
six parameters exist in the literature [22] that are used to
examine the effectiveness of an S-box: Bijective, NL, SAC,
BIC, LAP, and DAP. A brief explanation of these analyses
and a thorough comparison of the resulting S-boxes with
some of the recently developed S-boxes are presented in
sub-sections A to G.

A. BIJECTIVE
An n × n S-box is bijective if it has every integer value
from 0 to 2n − 1 [2]. In our case, when n=8, an S-box is
bijective if it has all distinct values from the interval [0, 255].
All the proposed S-boxes are experimentally verified to
hold the bijective property; the claim can be verified from
tables 3-10.

B. NONLINEARITY
In order to ensure that the data is safe from an adversary,
an S-box must induce a certain level of data confusion. The
confusion-generating ability of an S-box over the Galois field
GF

(
28
)
is assessed by its nonlinearity N (S), defined as:

N (S) = min
ϕ,µ,ω

{
y ∈ GF

(
28
)
: ϕ · S(x) 6= µ · y⊕ ω

}
where ϕ ∈ GF

(
28
)
, µ ∈ GF

(
28
)
\0,ω ∈ GF(2) and ‘‘.’’ rep-

resent the dot product over GF (2). A highly nonlinear S-box
is strong enough to generate an up to level of confusion in the
data. However, Meier and Staffelbach demonstrated that an
S-box with a high NL might lack other cryptographic char-
acteristics [42]. The upper bound of nonlinearity is N(f ) =
2n−1−2

n
2−1 for S-box in GF (2n), as S-box used in AES, is in

GF
(
28
)
, so the optimal value of N is 120 . It is observed that

the proposed S-box has the considerable capability to produce
confusion if evaluated in terms of nonlinearity analysis. The
NL of some of the newly established S-boxes is listed in
Table 12-13. Note that the table contains an S-box S3613A,B with
minimum NL of 106, which is sufficient to produce high
confusion.
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TABLE 11. NL of the boolean functions of the proposed s-box.

TABLE 12. Detailed nonlinearities of the newly constructed S-boxes.

TABLE 13. Average NLs on x and y coordinates.

TABLE 14. BIC-nonlinearity of the proposed s-box.

TABLE 15. BIC of the proposed S-boxes.

TABLE 16. BIC-SAC criterion of the proposed s-box.

C. BIT INDEPENDENCE CRITERION
Webster and Tavares were the first who introduced the cri-
terion of bit independence [41], which is used to assess the
behaviour of bit patterns at the output. The criterion’s primary
objective is to evaluate the dependency of a pair of output
bits on an inverted input bit. An S-box is considered to have
strong diffusion creation capability if all non-diagonal entries
of its BIC matrix are closer to 0.5. The BIC of an S-box
S over the GF (2n) with Si Boolean functions are evaluated
by computing an n-dimensional matrix, i.e., N (S) =

[
nij
]
,

measured as shown in the equation at the bottom of the next
page, surely nii = 0.

D. STRICT AVALANCHE CRITERION
The idea of the Strict Avalanche Criterion was firstly pre-
sented by Webster and Tavares [41], which calculates the

TABLE 17. SAC of the proposed S-box.

TABLE 18. Detailed values of SAC.

diffusion creation strength of an S-box. It is the measure of
change in output bits when a single input bit is altered; all
of the output bits vary with a probability of 1

2 . In general,
a function F : Fn

2 → Fn
2 is said to fulfill SAC if for a change

in an input bit i ∈ {1, 2, 3, . . . , n}, the probability of change
in the output bit j ∈ {1, 2, 3, . . . , n} is 1

2 . The offset of the
dependence matrix of our proposed S-box is 0.0352, while
the minimum, maximum and average values of SAC of the
proposed S-box are 0.3906, 0.6406, and 0.4931, respectively.
The average value of SAC is much closer to 0.5, which is
considered an ideal SAC value.

E. LINEAR APPROXIMATION PROBABILITY
Linear approximation probability configures the strength of
an S-box S in terms of resistance against linear attacks.
An S-box with a smaller LAP value is considered to have
strong properties and vice versa. The LAP of the newly
generated S-box L(S) is mathematically expressed as shown
in the equation at the bottom of the next page.

The LAP of the proposed S-boxes is 0.125, 0.1563, 0.1328,
0.125, respectively, which are comparatively lesser than those
of [24] and [25]. This shows that the presented algorithm can
construct robust and cryptographically secure S-boxes that
are highly resistant against linear attacks.

F. DIFFERENTIAL APPROXIMATION PROBABILITY
Biham and Shamir [42] figured out the differential cryptanal-
ysis for an S-box based on the imbalance in the input/output
XOR distribution. The resistance of an S-box against differ-
ential attacks is assessed by measuring its DAP. An S-box
with a smaller value of DAP is considered to have the greater
capability to resist differential attacks. The results of the
Approximation Probabilities are demonstrated in table 19.
The DAP of an S-box S is expressed as,

DP(S) = nij =
1
2n

[#{y ∈ Y | S(y)⊕ S(y⊕1y) = 1z}]

where 1y and 1z are input and output differentials,
respectively.

G. RUN TIME TO CONSTRUCT TWO S-BOXES
We used a PC with a processor: Intel R© core i-5-6300U
CPU @ 2.40 GHz 2.50 GHz, Memory: 8GB (7.89 usable)
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TABLE 19. Results of approximation probabilities.

TABLE 20. Time efficiency of the proposed algorithm.

and MATLAB version R2021a to run the proposed algorithm
for the construction of S-boxes. It has been observed that the
algorithm’s run time solely depends on the prime chosen; the
larger the prime we take, the more time the algorithm will
take for execution. The list of the average computation time
in seconds for construction of the S-boxes averaged over ten
times can be observed clearly in table 20, from prime 2557 to
3917. The time efficiency of our scheme is much better than
the final S-box generation in [48] and lesser than [49].

H. COMPARISON WITH S-BOXES BASED ON ELLIPTIC
CURVE AND SOME OTHER SCHEMES
In this section, we compare the strength of the proposed
S-boxes with some elliptic curve-based S-boxes construc-
tions schemes by discussing two critical aspects: the S-box
generation capacity and the cryptographic properties of both
schemes. While designing an S-box generation scheme,
ensuring that the algorithm yields distinct S-boxes for every
valid input is essential.

In this proposed scheme, whenever one chooses A = [a
b b b b b b b] such that a and b are relatively prime,
a large number of distinct S-boxes resulted regardless of
any condition on the selection of B. On the other hand, the
results by schemes [24], [25], [26], [27] are uncertain and
do not ensure the generation of S-boxes for every given
input. Like, in [24] and [27], there is no guarantee of estab-
lishing S-boxes on both coordinates x and y. Furthermore,
in [24] and [26], Azam et al. constructed S-boxes using y
coordinates of the points satisfying the elliptic curve. Simi-
larly, in [25] and [27], Hayat et al. proposed a technique that
uses x-coordinates of the points satisfying elliptic curves; in
our proposed algorithm, S-boxes obtained on both real and
vector parts named as x and y-coordinates, irrespective of

TABLE 21. Comparison of the proposed S-boxes with some existing
schemes.

having good results from either x or y-coordinates. Results
have revealed that both ends can generate S-boxes having
sufficiently strong cryptographic characteristics at one time.
Lastly, as we targeted similar parameters, specific primes
from [24], [25], [26], and [27], for a thorough comparison,
i.e., 2557, 3413, 3613, and 3917, it has been revealed that
the nonlinearity of the proposed S-box is comparable with
[24], [25], [26], [27], [28], [29], [30], [31], [32], [33], and
[47]. The minimum nonlinearity of S2557A,B , S

3413
A,B , S

3613
A,B , S

3917
A,B

are 104, 104, 106, 104 respectively, while on the other side
with the same primes, the NLs in [24], [25], [26], [27],
and [47] are 106, 104, 106, 104, 106 respectively, which are
almost similar to the proposed S-box. In addition, the crypto-
graphic properties of proposed S-boxes are better.

Furthermore, we also compared the properties of newly
established S-boxes with some already existing schemes [28],
[29], [30], [31], [32], [33], [44], [45], [46], [47] in table 21.
The proposed S-boxes are capable of creating better confu-
sion likewise other schemes. This shows that the proposed
scheme can produce up-to-level confusion along with the
existing techniques based explicitly on elliptic curves and
others.

V. CONCLUSION
In this work, a robust technique for constructing a large
number of distinct and dynamic S-boxes is presented; the

nij =
1
2n

 ∑
x∈GF(2n)
1≤k≤8

w
(
Si
(
x ⊕ αj

)
⊕ Si(x)⊕ Sk

(
x + αj

)
⊕ Sk (x)

)

L =
1
28

{
max
β,η

{
abs

(∣∣∣{y ∈ GF
(
28
)
| β · y = η · S(y)

}∣∣∣− 27
)}}
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proposed work is developed to generate two S-boxes for
each valid input. The proposed scheme solely depends upon
selecting prime octonion u, primitive octonion v,A and B.
By changing these parameters, several dynamic and secure
S-boxes can be obtained, which can be used efficiently in
various cryptosystems, including symmetric and asymmetric
ciphers for encryption purposes.

In addition, the strength of the proposed S-boxes is
assessed by applying various security analyses. Furthermore,
a detailed comparison of the newly constructed S-boxes with
elliptic curve-based and some existing S-boxes is conducted.
The computational results and performance analysis reveal
that the proposed algorithm is capable of generating a large
number of distinct dynamic S-boxes that are cryptographi-
cally strong against various attacks and are helpful for secure
data communication purposes.
The understudy work is based on commutative Gravesian
octonion integers; for future research, one can work on its
non-commutative side that will yield eight S-boxes against
a single input. Furthermore, the work can be extended to
sedenions; 16-dimensional algebra, which is non-associative
and non-commutative. More secure and dynamic S-boxes can
be produced by working in these directions.
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