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ABSTRACT Although a plethora of research has been conducted on active learning, little research attention
has been focused on active learning for ordinal classification. Traditional multi-class active learning methods
are typically designed for nominal multi-class classification. Therefore, they usually perform unsatisfactorily
in ordinal classification settings. In ordinal classification, the cost of misclassifying an instance into an
adjacent class is naturally lower than that of misclassifying it into a more disparate class. This principle
is called ordering information. However, traditional active learning methods typically do not consider
this ordering information during query selection. This paper proposes a novel adaptive hybrid active
learning method for ordinal classification by considering the ordering information. In the proposed method,
an uncertainty measure is introduced to select the hard-to-predict instances distributed between adjacent
classes. In addition, a diversity measure is incorporated with the uncertainty measure to alleviate the potential
sampling redundancy. Finally, an expected cost minimizationmeasure with ordering information is designed.
This measure balances the contributions of the uncertainty and diversity measures and prompts the algorithm
to select the instances most likely to decrease the misclassification cost of the model. Extensive experiments
on eleven public ordinal datasets demonstrate the superiority of the proposed method over several state-of-
the-art methods.

INDEX TERMS Active learning, ordinal classification, uncertainty sampling, diversity, ordering informa-
tion.

I. INTRODUCTION
Ordinal classification, also called ordinal regression, is a
particular case of multi-class classification problem where
the instances are labeled by ordinal scales, i.e., there is a
natural total ordering among the output variables [1]. For
instance, in movie ratings, customers can specify preferences
by selecting, for each movie, one of several rating levels, such
as one through five ‘‘stars’’ [2]. The ratings have ameaningful
order that distinguishes ordinal classification from nominal
multi-class classification. Since ordering information among
classes makes sense in many real-world situations, ordinal
classification has a wide range of research fields, such as
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credit rating in the banking industry [3], age estimation in
the computer vision field [4], and medical treatment in the
medical domain [5]. To train an effective ordinal classifica-
tion model, it is critical that one have and rely on a sufficient
amount of reliable labeled instances. However, labeling ordi-
nal classification instances is time-consuming and expensive
because it depends on user preferences and domain expertise.
As a result, labeling a large number of instances is usu-
ally prohibitively expensive. In this circumstance, it would
be desirable to induce an ordinal classifier using an active
learning technique. Active learning [6], [7], [8] seeks to
address the above issue by constructing algorithms that can
guide the labeling of a small set of instances, such that the
generalization ability of the classifier is maximized while
minimizing the labeling cost. This study aims to develop an
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effective active learning method to construct a satisfactory
ordinal classifier with a limited query budget in a pool-based
setting.

As a way to relieve the tedious work of manual annota-
tion, active learning is crucial in various machine learning
problems [6], including classification [7], [8], clustering [9],
regression [10], [11], recommendation [12], and so forth.
Although a large number of active learning algorithms have
been developed in the literature over the past few decades, lit-
tle attention has been dedicated to the problem of active learn-
ing for ordinal classification. Most existing active learning
methods for classification are aimed at binary problems. The
few active learning algorithms suitable for multi-class prob-
lems are typically designed for standard nominal multi-class
classification and usually perform unsatisfactorily in ordinal
classification settings.

For ordinal classification problems, the misclassification
costs are not the same for different errors [1]. Specifically,
the cost of misclassifying an instance as an adjacent class
is naturally lower than that of misclassifying it as a more
disparate class [1], [5]. This ordering information reflects the
structure of multiple-level discrete ordinal labels and usually
comes along with a V-shaped cost vector [13]. Many previous
studies have confirmed that the ordering information benefits
constructing an accurate ordinal prediction model [1], [14],
[15]. Therefore, it is conjectured that the ordering information
can guide the query selection in active learning for ordinal
classification.

This paper proposes an adaptive hybrid active learning
method by integrating an uncertainty measure and a diver-
sity measure. These two measures are combined by con-
sidering the ordering information among classes. In the
proposed method, the base learner is called the reduced
logistic ordinal classification model, which is instantiated
from a reduction-based ordinal classification framework [16]
by leveraging the logistic loss function. The base learner
follows the threshold-based ordinal classification scheme [1]
and reduces the ordinal classification problem to an easy-to-
handle binary classification problem. In addition, the mean
square error estimate on the reduced logistic ordinal clas-
sification model can surrogate the V-shaped cost in ordinal
classification and represent the ordering information among
classes. Thus, the proposed method uses the mean square
error estimate to introduce the ordering information into
query selection.

In many previous multi-class active learning methods,
informative (hard-to-predict) instances are usually identi-
fied by defining uncertainty measures with the one-versus-
one or one-versus-rest schemes [8], [17], where a nominal
multi-class classification setting is considered by default. But,
this way is not well applicable to the active learning problem
for ordinal classification. In ordinal classification data, the
hard-to-predict instances are usually distributed in regions
between adjacent classes. Therefore, this paper designs a
margin-based uncertainty measure tailored to the reduced
logistic ordinal classification model to select instances dis-

tributed between adjacent classes. Since multiple separating
hyperplanes exist in the reduced logistic ordinal classification
model, the potential unbalanced hyperplane-updating prob-
lemmay occur during active learning. Therefore, a threshold-
cyclic sampling mechanism is introduced to control the
uncertainty measure to evenly allocate the query resources
to the multiple separating hyperplanes to mitigate the poten-
tial unbalanced hyperplane-updating problem. Nevertheless,
uncertainty sampling is susceptible to the problem of sam-
pling redundancy since uncertain instances are likely to be
similar to each other [18]. Therefore, in the proposed method,
a diversity measure is incorporated with the uncertainty mea-
sure to make the currently selected instance differs from
the already labeled instances. In the previous studies [17],
[19], the two measures are usually combined by a trade-
off parameter. The value of this parameter needs to be set
by the user based on a priori knowledge. However, prior
knowledge is not available in most situations. Besides, the
best values of the trade-off parameter may vary along with the
active learning process. Therefore, how to provide an adaptive
trade-off between uncertainty and diversity measures remains
a challenging issue.

It is known that ordinal classification typically focuses on
decreasing the misclassification cost by taking into account
the ordering information. Therefore, an expected cost min-
imization measure is designed to balance the uncertainty
and diversity measures. This measure can impose the active
learner to select the informative instances that are most likely
to decrease the misclassification cost of the model.

The main contributions of this paper are summarized as
follows.
• This paper is the first study of adaptive hybrid active
learning for ordinal classification. The proposed method
innovatively introduces the ordering information into
query selection to guide the combination of an uncer-
tainty measure and a diversity measure to select useful
instances adaptively in each iteration.

• A margin-based uncertainty measure tailored to the
commonly used threshold-based ordinal classifica-
tion scheme is designed for selecting informative
instances distributed between adjacent classes. Besides,
a threshold-cyclic sampling mechanism is introduced
alongwith the uncertaintymeasure tomitigate the poten-
tial unbalanced hyperplane-updating problem. In addi-
tion, a diversity measure is incorporated with the
uncertainty measure to alleviate the potential sampling
redundancy problem.

• An expected cost minimization measure that imbues the
ordering information is designed. This measure provides
an adaptive trade-off between the uncertainty and diver-
sity measures, thereby prompting the algorithm to select
unlabeled instances that are most likely to reduce the
misclassification cost of the model.

• Extensive experiments on eleven ordinal datasets
demonstrate that the proposed method is superior to
several state-of-the-art baseline methods.
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The remainder of this paper is organized as follows.
Section II reviews the related works. Section III describes the
details of the proposed method. The experimental setup and
the experimental results are reported in Section IV. Finally,
a brief conclusion is presented in Section V.

II. RELATED WORK
Active learning aims to induce a reliable prediction model
while minimizing labeling costs. Since active learning inter-
actively queries labels from annotators, it can be viewed
as a case of human-in-the-loop [20]. The critical compo-
nent of an active learning algorithm is the query selection
strategy. Existing query selection strategies can be roughly
divided into informativeness sampling and representativeness
sampling.

Strategies that concentrate on assessing instances’ infor-
mativeness include uncertainty sampling [21], [22], [23],
query-by-committee [24], expected change [25], and so on.
Uncertainty sampling selects the instances for which the
current classifier is least certain [26]. For instance, the simple
margin approach [26] selects instances closest to the deci-
sion boundary. This approach is typically applied to binary
classification problems. In the context of multi-class clas-
sification, methods such as maximum entropy [22], margin
sampling [21], and least confidence [23] have been suggested.
The query-by-committee strategy typically trains a set of
prediction models and selects unlabeled instances on which
themodels disagree themost [24]. However, the potential bias
amongmultiple prediction models may limit the performance
of the query-by-committee-based approaches [27]. Meth-
ods based on expected change include the expected model
change [28], expected model output change [29], expected
error reduction [25], and so on. These methods estimate the
change caused by each unlabeled instance being assigned
the possible labels and weight the change by its estimated
probability [27]. Therefore, most of these methods are com-
putationally expensive. Although uncertainty sampling is an
earlier proposed active learning strategy, it is still widely
used in practice due to its simple intrinsic mechanism and
fast running speed. Lookman et al. [30] recently introduced
an uncertainty sampling method to the problem of materials
discovery. Kim and Kim [31] designed an uncertainty-based
active learning method based on a Bayesian neural network
for reliable fire detection systems. Recently, a theoretical
study for the convergence of uncertainty sampling has been
provided by Raj and Bach [32].

Active learning strategies that assess instances’ repre-
sentativeness include clustering-based active learning [33],
[34], optimal experimental design [11], [35], [36], diversity
sampling [10], and so on. Clustering-based active learning
employs a particular clustering algorithm to explore the clus-
tering structure of the data and selects instances that represent
the intrinsic geometry of the data. Although clustering-based
active learning methods are suitable for multi-class active
learning problems, it remains unclear how these algorithms
perform when the clustering result is not sufficiently accu-

rate [18]. Optimal experimental design is a set of well-known
approaches for representativeness sampling. These methods
typically select instances that minimize the variance of the
model parameters by relying on a particular data reconstruc-
tion framework [35]. Diversity sampling approaches aim to
select unlabeled instances that differ from already labeled
instances. It is known that diversity measures alone usually
produce misleading results [6]. Therefore, diversity measures
are usually incorporated with other measures to provide com-
plementary information. However, it is still challenging to
balance the contribution of a diversity measure when com-
bining it with other measures.

It is known that no single active learning strategy can
consistently performwell on any dataset it encounters. There-
fore, many researchers are dedicated to developing synthesis
active learning approaches [11]. Brinker [19] first proposed to
combine diversity and uncertainty in active learning. By inte-
grating uncertainty and diversity measures, Wang et al. [17]
proposed an active learning approach for multi-class clas-
sification. However, the above two methods depend on a
fixed trade-off parameter value to balance the uncertainty and
diversity measures. Since the parameter values need to be
determined by the users, the applications of these approaches
are restricted. Yang et al. [18] proposed a multi-class active
learning approach by uncertainty sampling with diversity
maximization. Although this method does not rely on trade-
off parameters, it is only suitable for batch mode active
learning problems. Additionally, this method only considers
the diversity inside the current batch but ignores the diversity
between the currently selected and already labeled instances.

Although great progress has been made in active learning
research on classification, little effort has been devoted to
the problem of active learning for ordinal classification. The
active learning algorithm for ordinal classification was first
studied by exploiting monotonicity constraints [37]. This
approach, however, is only suitable for monotonic classifica-
tion problems [38], which is a special case of generic ordinal
classification problems [38]. Recently, Li et al. [36] proposed
an A-optimal experimental design criterion for the active
ordinal classification problem. However, one apparent short-
coming of this method is that it must calculate the inverse of
a large matrix in each iteration for each unlabeled instance.
When the data dimension is large, the prohibitive computa-
tional cost will limit its usability. Ge et al. [39] tried to solve
the imbalanced ordinal classification problem by extending
an uncertainty sampling criterion to a threshold-based ordi-
nal classification model. One immediate problem with this
method is that the uncertainty sampling criterion may suf-
fer from sampling redundancy. Additionally, an unbalanced
hyperplane-updating problem among multiple hyperplanes
may occur. To the best of our knowledge, these two works
are the only two active learning studies focused on ordinal
classification. Note that these two methods failed to consider
the ordering information in query selection and stick to a
single query selection criterion in the active learning process,
which limits their active learning performance in ordinal
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FIGURE 1. Toy example of a three-class ordinal dataset (denoted by blobs
of different colors) under the threshold-based ordinal classification
structure.

classification. The abovementioned situation encourages this
study to develop a more effective active learning method that
combines uncertainty and diversity measures by considering
ordering information.

III. PROPOSED METHOD
This section provides the technical details of the proposed
active learning method for ordinal classification. The pro-
posed method will be described starting from the base learner
instantiation.

A. REDUCED LOGISTIC ORDINAL CLASSIFICATION MODEL
This study designs the base learner based on the
reduction-based ordinal classification framework proposed
by Li and Lin [16] and a logistic function. The base learner
is called the reduced logistic ordinal classification model
(shorted as RLOC). The reduction-based ordinal classifica-
tion framework is a general framework that reduces ordinal
classification problems into binary classification problems
and provides a unified view for many threshold-based ordinal
classification models.

Let L = {〈xi, yi〉}ni=1 be the training set, where xi ∈ Rd

is the i-th feature vector, which corresponds to an ordinal
label yi ∈ Y = {C1, · · · , CK }. There is total ordering among
the classes, such as C1 ≺ · · · ≺ CK , where ‘‘≺’’ denotes a
particular ordering relation, and K is the number of classes.
Among the classes, Ck and Ck+1 (1 ≤ k < K ) refer to as a pair
of adjacent classes. Without loss of generality, the K ordinal
scale labels are typically represented by K consecutive inte-
gers, such as {1, 2, · · · ,K }. Generally, the threshold-based
ordinal classification scheme performs prediction by learning
K − 1 ordered thresholds: θ1 ≤ θ2 ≤ · · · ≤ θK−1, and
θ0 = −∞ and θK = +∞ are typically assumed. Then,
for an unobserved instance x, it is classified as Ck in the
case that the prediction output wT x falls in the interval of
(θk−1, θk ], where w ∈ Rd is the learned weight vector, and
wT x represents the projection of x onw. Figure 1 illustrates a
three-class ordinal dataset under the threshold-based ordinal
classification structure.

The reduction-based ordinal classification framework
reduces the ordinal problem into multiple binary classifi-
cation problems. These binary classification problems are

TABLE 1. Examples of extended binary instances generation for original
training instances of different classes (the number of classes K = 5).

solved jointly through a single binary classifier [16]. The
reduction framework extends each original training instance
〈xi, yi〉 into the following K − 1 binary training instances:〈

xki , y
k
i

〉
, k = 1, · · · ,K − 1,

xki = (xi, ek ) ∈ Rd+K−1,

yki = 1− I [yi ≤ k] (1)

where ek ∈ RK−1 is an extension vector with the k-th element
as value 1 and the rest of the elements all as zeros. As shown
in Eq. (1), I [·] is an indicator function that returns 1 if the
inside condition is true; otherwise, zero is returned. There-
fore, each extended instance xki is associated with a binary
label yki ∈ {0, 1}. Table 1 shows the examples of extended
binary instances generation.

In the extended binary classification problem, the weight
vector as follows

w̄ = (w,−θ ) ∈ Rd+K−1 (2)

is learned to predict the output of xki , such that w̄xki =
(w,−θ )T xki = wT x − θk , where θ = [θ1, θ2, · · · , θK−1].
The projection w̄xki can be interpreted as the distance from
xi to the k-th decision hyperplane, and of course, it can be a
negative value. Now, one can introduce the logistic function
into the reduction framework and formulate the cumulative
conditional probability for yi > k , i.e., π(xki ) = P(yi > k|xi),
as

π (xki ) =
exp(w̄T xki )

1+ exp(w̄T xki )

=
exp(wT xi − θk )

1+ exp(wT xi − θk )
, (3)

where k = 1, · · · ,K − 1. The logistic function is employed
in consideration of the log-likelihood and its derivatives can
be easily computed using calculations similar to those in
standard logistic regression. Based on π (xki ), the predictive
ordinal label of instance xi can be calculated as

ŷi =
K−1∑
k=1

I [π (xki ) ≥ 0.5], (4)

where I [·] is an indicator function that returns 1 if the inner
condition is true; otherwise, zero is returned. Eq. (4) can be
viewed as a decoding procedure.

Given the training set L, the l2 regularized log-likelihood
function for the extended binary classification problem can
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be formulated as

l(w̄;L) =
n∑
i=1

K−1∑
k=1

(yki logπ (x
k
i )

+ (1− yki ) log(1− π (x
k
i )))−

λ

2
‖w̄‖22. (5)

The optimal values of the weight vector w and the thresh-
olds [θ1, θ2, · · · , θK−1] can be obtained jointly by maximiz-
ing the log-likelihood function in Eq. (5). This optimization
problem can be solved by the Newton-Raphsonmaximization
procedure. In addition, one can ensure that the thresholds
[θ1, θ2, · · · , θK−1] are ordered.
Theorem 1: By maximizing the log-likelihood function

defined in Eq. (5), the optimal solution (w∗, θ∗) satisfies
θ∗1 ≤ θ

∗

2 ≤ · · · ≤ θ
∗

K−1.
Proof: For an optimal solution (w∗, θ∗), assume that

θ∗k > θ∗k+1 for some k . One only need to prove that switching
θ∗k and θ

∗

k+1 would not decrease the objective value of Eq. (5).
One can consider the change of the objective value in the
following three cases.

First, for an instance xi with yi = k + 1. In this case,
yki = 1 and yk+1i = 0, switching the thresholds changes the
objective value by

1l = log
1+ exp(θ∗k − w∗T xi)
1+ exp(θ∗k+1 − w∗T xi)

+ log
1+ exp(w∗T xi − θ∗k+1)

1+ exp(w∗T xi − θ∗k )
. (6)

Because θ∗k − wT x > θ∗k+1 − wT x, it is not difficult to find
that the change 1l is non-negative.
Second, for an instance xi with yi < k + 1. In this case,

yki = 0 and yk+1i = 0, switching the thresholds changes the
objective value by

1l = log
1+ exp(w∗T xi − θ∗k+1)

1+ exp(w∗T xi − θ∗k+1)

+ log
1+ exp(w∗T xi − θ∗k )
1+ exp(w∗T xi − θ∗k )

= 0. (7)

Third, for an instance xi with yi > k + 1. In this case,
yki = 1 and yk+1i = 1. Analogously, switching the thresholds
does not change the objective value in this case.

Since the1l for the instances of the three cases are all non-
negative, the claim is justified. �

The conclusion in Theorem 1 will be used later. The time
complexity of the RLOCmodel isO(ξn(K−1)(d+K−1)2),
where ξ is the number of iterations required for the opti-
mization procedure to converge. The structure of the RLOC
model is similar to the all-threshold logistic model in [2].
But, the thresholds [θ1, θ2, · · · , θK−1] in our model can be
obtained jointly as a part of the extended weight vector w̄ in
the binary logistic regression problem. Therefore, the RLOC
model inherits the theoretical rigors of the logistic regression
model.

B. ADAPTIVE DIVERSITY-BASED UNCERTAINTY MEASURE
This subsection focuses on designing a robust diversity-based
uncertainty sampling method based on the RLOC model.
There are K −1 parallel separating hyperplanes in the RLOC
model. Intuitively, the hard-to-predict instances in ordinal
data are usually located between adjacent classes and are typ-
ically close to one of the separating hyperplanes. Therefore,
this paper extends the simple margin criterion [26] to the
multiple hyperplane setting.

Let U = {xi}mi=1 be the unlabeled instance pool. Given an
unobserved instance xi ∈ U , the absolute distance from it
to the k-th separating hyperplane in the RLOC model can be
computed as

1(xi, θk ) = |wT xi − θk |

= |w̄T xki |,

k = 1, · · · ,K − 1. (8)

It is clear that the less the value of 1(xi, θk ), the more
uncertain of xi with respect to the k-th separating hyperplane.
Therefore, the proposed method employs 1(xi, θk ) to assess
the uncertainty of xi ∈ U .
Since there are K − 1 hyperplanes in the RLOC model,

a threshold-cyclic sampling mechanism is introduced to pre-
vent the potential unbalanced hyperplane-updating problem.
According to this mechanism, the query resources are equally
allocated to the K − 1 separating hyperplanes in a round-
robin manner. Thus, every successive K − 1 query instances
are sequentially selected concerning the K − 1 different
hyperplanes. Accordingly, the unlabeled candidate instance
set with respect to the k-th hyperplane can be represented as

Uk = {xi ∈ U |1(xi, θk ) < 1(xi, θh), h 6= k}. (9)

The instances in Uk are closer to the k-th separating hyper-
plane than to the other hyperplanes.

To alleviate the potential sampling redundancy, it makes
sense to incorporate a diversitymeasure with the above uncer-
tainty measure. The diversity measure as follows

Div(xi,L) = min
xj∈L
‖xi − xj‖22, xi ∈ Uk , (10)

is adopted in the proposed method. The larger the value
of Div(xi,L), the more difference of xi from the labeled
instances. Therefore, the proposed method combines the
uncertainty measure and the diversity measure as follows

DU (xi; θk ) =
Div(xi,L)α

(1+1(xi, θk ))(1−α)
,

k = 1, · · · ,K − 1, (11)

where 0 ≤ α ≤ 1 is a trade-off parameter that controls
the contributions of the uncertainty and diversity measures.
When α = 0, the measure DU (xi; θk ) degenerates to an
uncertainty sampling measure. Note that the optimal value
of α depends on the data. However, in an active learning
setting, there are not enough labeled instances to divide out a
validation set for parameter tuning.
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To solve the above problem, the proposed method uses
the ordering information to guide the cooperation of the
uncertainty and diversity measures. The ordering information
among labels can be represented as a V-shaped misclassifica-
tion cost vector c as follows [13]{

c[y, k − 1] > c[y, k], for 2 ≤ k < y;
c[y, k + 1] > c[y, k], for y < k ≤ K − 1.

(12)

where the c[y, k] represents the cost of misclassifying a
y class instance as a k class instance. In what follows,
an expected cost minimization measure that imbues the
ordering information is designed to guide the coopera-
tion of the two measures. The expected cost minimization
selects the instance for which, if labeled, is most likely to
minimize the misclassification cost of the RLOC model on
all the unlabeled instances in U . In each iteration, the α in Eq.
(11) is set as a series of given values [0.0, 0.1, 0.2, · · · , 1.0].
Thus, an informative candidate instance set S is obtained.
After that, the query instance is selected from S based on
the expected cost minimization measure. This is equivalent
to approximately determining the value of parameter α.
The proposed method uses the mean square error in the

extended binary problem to surrogate the misclassification
cost of each original instance. Therefore, the misclassifica-
tion cost for xi ∈ U is defined as

MSE(xi) =
1

K − 1

K−1∑
k=1

(
yki − π (x

k
i )
)2
. (13)

It is not difficult to prove that MSE(xi) can represent the
ordering information among the ordinal labels.
Theorem 2: Given a particular instance xi, the mean

square error over its extended binary instances in the RLOC
model is V-shaped.

Proof: According to Theorem 1, one can prove that
θ1 ≤ · · · ≤ θK−1. Therefore, the prediction outputs of xi
in the extended binary problem maintain that π (x1i ) ≥ · · · ≥
π (xK−1i ). If xi is predicted to belong to class h, one has{

π (xti ) > 0.5, for 1 ≤ t < h ≤ K − 1;
π (xti ) < 0.5, for 1 ≤ h < t ≤ K − 1.

(14)

Suppose 1 ≤ h < t ≤ K−2 and h is themisclassified label.
Therefore, According to Eq. (3) and Eq. (4), one can obtain
π (xti ) < 0.5. In the case that the true label is t , according to
Eq. (13), the mean square error for the K −1 extended binary
instances is

MSE(xi|h, t)

=
1

K − 1

(
K−1∑
k=1

π (xki )
2
+ (t − 1)− 2

t−1∑
k=1

(π (xki ))

)
. (15)

In the case that the true label is t + 1, according to Eq. (13),
the mean square error for the K−1 extended binary instances
is

MSE(xi|h, t + 1)

=
1

K − 1

(
K−1∑
k=1

π (xki )
2
+ (t) − 2

t∑
k=1

(π (xki ))

)
. (16)

Thus, one can obtain

MSE(xi|h; t + 1)−MSE(xi|h; t)

=
1

K − 1

(
1− 2π (xti )

)
> 0. (17)

Suppose 2 ≤ t < h ≤ K and h is the misclassified label.
According to Eq. (3) and Eq. (4), one can obtain π (xt−1i ) >
0.5. Analogously, one can obtain

MSE(xi|h; t − 1)−MSE(xi|h; t)

=
1

K − 1

(
2π (xt−1i )− 1

)
> 0. (18)

Therefore, the mean square error over the extended binary
instances in the RLOC model is V-shaped, and it makes
sense to surrogate the ordering information among the ordinal
labels. �

According to the works in [40] and [41], the mean square
error in a logistic regression model can be estimated as the
sum of a squared bias and a variance. Consequently, the
expected cost of the RLOC model on U can be formulated
as

EC(U;L) =
|U |∑
i=1

K−1∑
k=1

EL[MSE(xki )]

=

|U |∑
i=1

K−1∑
k=1

EL[π (xki )− π̂ (x
k
i )]

2

=

|U |∑
i=1

K−1∑
k=1

(EL[π (xki )− π̂ (x
k
i )])

2

+EL[π̂ (xki )− EL[π̂ (xki )]]
2, (19)

where π̂ (xki ) is the predictive output of the extended binary
instance xki based on the RLOC model given the training set
L, π (xki ) indicates the expected real output of xki , and EL[·]
represents the expectation over the labeled set L. In Eq. (19),
the term EL[π (xki )− π̂ (x

k
i )] means the bias of the estimation,

and the term EL[π̂ (xki )−EL[π̂ (xki )]]
2 indicates the variance

of the estimation. For simplicity, denote by Bias(π̂ (xki )) and
Var(π̂ (xki )) the bias and variance of π̂ (xki ), respectively.

Given an extended binary instance xki , by taking zki =
w̄T xki as a variable, one can obtain the first-order Taylor series
expansion of the function π(xki ) about z

k
i as

π̂ (xki ) = π (x
k
i )+ π (x

k
i )(1− π (x

k
i ))( ˆ̄w− w̄)T xki

+ o(
∥∥∥ ˆ̄wT xki − w̄T xki

∥∥∥), (20)

where ˆ̄w is the first-order approximation for the extended
weight vector given the training set L, and w̄ is the expected
real extended weight vector. Thus, the first-order approxima-
tion for the bias of π̂ (xki ) is formulated as

Bias(π̂(xki )) = EL[π (xki )− π̂ (x
k
i )]
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= EL[π (xki )(1− π (x
k
i ))( ˆ̄w− w̄)T xki ]

= π (xki )(1− π(x
k
i ))(E[ ˆ̄w− w̄])T xki

= π (xki )(1− π (x
k
i ))(Bias( ˆ̄w))

T xki , (21)

and the variance of π̂ (xki ) is approximated as

Var(π̂(xki )) = EL[π̂(xki )− EL[π̂ (xki )]]
2

= π (xki )
2(1− π (xki ))

2xki
T
Cov( ˆ̄w)xki , (22)

where Bias( ˆ̄w) andCov( ˆ̄w) are the bias and covariance matrix
of ˆ̄w, respectively, and both of them can be derived approxi-
mately from the Taylor series expansion for the log-likelihood
function l(w̄;L) about w̄.
The negative Hessian matrix of the log-likelihood function

in Eq. (5) is

F(w̄;L) =
|L|∑
i=1

K−1∑
k=1

π (xki )(1− π (x
k
i ))x

k
i x

k
i
T
+ λI , (23)

which is also referred to as the observed Fisher information
matrix, where I ∈ R(d+K−1)×(d+K−1) is an identity matrix.
According to the work in [42], the approximate bias of ˆ̄w is

Bias( ˆ̄w) = −λF(w̄;L)−1w̄, (24)

and the approximate covariance matrix of ˆ̄w is

Cov( ˆ̄w) = F(w̄;L)−1(F(w̄;L)− λI )F(w̄;L)−1. (25)

Therefore, the expected misclassification cost of the RLOC
model on U given the training set L can be calculated by
Eq. (26), as shown at the bottom of the next page.

To determine which candidate instance in S can minimize
the expected misclassification cost of the RLOCmodel based
on Eq. (26), one can estimate the expected cost for each
candidate instance analogous to the calculation of expected
error in reference [25]. But, in this way, one needs to re-train
the model by adding each candidate instance with its pos-
sible labels into the training set in the manner of one-step-
look-ahead. This is prohibitively computationally expensive.
Besides, the probability estimate is usually inaccurate in the
active learning situation where there are very few labeled
instances in L. Therefore, this paper seeks to calculate the
expected cost for each candidate instance in an alternative
way. It is clear that the estimation of the expected cost
depends on the Fisher information matrix F(w̄;L). Since
the Fisher information matrix does not rely on the target
variable, one can update it for each candidate instance in an
unsupervised way as follows

F(w̄;L, xj)

= F(w̄;L)+
K−1∑
k=1

π (xkj )(1− π (x
k
j ))x

k
j x

k
j
T
, xj ∈ S. (27)

The above method avoids frequent model retraining and thus
saves a lot of computational overhead. Subsequently, the
expected cost for each candidate instance xj ∈ S can be

FIGURE 2. Workflow of the adaptive diversity-based uncertainty sampling
method.

computed by Eq. (28), as shown at the bottom of the next
page. Then, the query instance is determined as

x∗ = argmin
xj∈S

EC(U;L, xj). (29)

Suppose |U | � d + K − 1. Thus, for each candidate
instance xj ∈ S, the time complexity of computing the
expected cost is EC(U;L, xj) isO(|U |(K −1)(d+K −1)2+
(d + K − 1)3) = O(|U |(d + K − 1)2).

C. ALGORITHM AND COMPLEXITY ANALYSES
The algorithmic procedure of the proposed active learning
method is presented in Algorithm 1. The workflow of the
proposedmethod is diagrammed in Figure 2, which facilitates
the understanding of the algorithm procedure.

Algorithm 1 Adaptive Diversity-Based Uncertainty Sam-
pling for Ordinal Classification (ADUS)
Require: Initial training set L; unlabeled instance pool U ; query

budget B; the number of classes K .
Ensure: The expanded training setL, and the trained RLOCmodel.

1: Train the RLOC model with L; b← B;
2: while b > 0 do
3: k ← 1;
4: while k ≤ K − 1and b > 0 do
5: Retrain the RLOC model on L;
6: Collect the instance set Uk based on Eq. (9);
7: Obtain the candidate subset S ⊆ Uk based on the

diversity-based uncertainty measure in Eq. (11) with α =
[0.0, 0.1, 0.2, · · · , 1.0];

8: Obtain the most informative instance x∗ =

arg min
xj∈S

EC(U;L, xj) based on Eq. (28);

9: Inquire x∗’s label y∗ from the annotator; b← b− 1;
10: U ← U/{x∗}; L← L ∪ (x∗, y∗); k ← k + 1;
11: end while
12: end while

Suppose there are n = |L| training instances and m = |U |
unlabeled instances, and m � n. Therefore, in the current
iteration, retrain the RLOCmodel in line 5 requiresO(ξn(K−
1)(d+K−1)) time. In line 6, to collect the instance setUk , one
shall first calculate 1(xi, θk ) for all the unlabeled instances
based on Eq. (8), which requiresO(m(K−1)(d+K−1)) time.
Then, Uk is obtained by Eq. (9), which costs O(m(K − 1))
time. In the worst situation, there are m instances in Uk .
Thus, in line 7, obtaining the candidate subset S needs the
computational time of O(m). Suppose m � |S|. In line 8,
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to obtain the most informative candidate instance, one needs
first to update the Fisher information matrix and compute its
inverse, which requires O(n(K − 1)(d + K − 1)2) time and
O((d +K − 1)3) time, respectively. Computing π (xki ) for all
the unlabeled extended binary instances requires O(m(K −
1)(d + K − 1)) time. Execute Eq. (28) for the candidate
instances in S requires O(m(K − 1)(d + K − 1)2) time.

Suppose m � d + K − 1, the time complexity for each
query selection in the worst situation is O(m(d + K − 1)2).

IV. EXPERIMENT
In this section, the performance of the proposed method
is examined by comparing it with several state-of-the-art
baseline methods on eleven public datasets. All the exper-
iments were conducted on a Windows 10 64-bit operat-
ing system with 32GB RAM and an Intel(R) Core(TM)
i7-8700 CPU@3.2GHz processor. The programming lan-
guage is Python. The source codes are publicly available at
https://github.com/DeniuHe/ADUS.

A. DATASETS AND EXPERIMENTAL SETUP
Table 2 summarizes the details of the eleven used datasets.
HDI [43] is the human development index data that contains
179 countries classified into four rating levels. ARWU2020
is the assessment data of the top 990 world universities
in 2020 released by ShanghaiRanking Consultancy. The
datasets Obesity and PowerPlant are from the UCI dataset
repository. The other seven datasets are from reference [1].
The datasets ARWU2020 and PowerPlant were originally
regression data, which have been discretized into ordinal data
by an equal frequency bin operation [1]. Before the experi-
ments, all the datasets were pre-processed by the following
z-score standardization:

xij =
xij − mean(xj)

std(xj)
, (30)

where xij denotes the j-th feature value of instance xi, and
mean(xj) and std(xj) are the mean value and the standard
deviation of the j-th feature, respectively.

To verify the effectiveness of the proposed method
(denoted as ADUS), the experiment compares it with the fol-
lowing ten state-of-the-art baselinemethods and one designed
method.

• Random is the random sampling method.
• USME is an uncertainty sampling method instantiated
based on the RLOC model and the maximum entropy
strategy [22].

• USLC is an uncertainty sampling method instantiated
based on the RLOC model and the least confidence
strategy [23].

• USMS is an uncertainty sampling method instantiated
based on the RLOC model and the margin-based sam-
pling strategy [21].

• FISTA [35] is a transductive experimental design
method based on an exclusive sparsity norm.

• ALCE [44] is a multi-class active learning algorithm
based on a cost embedding approach.

• McPAL [45] is a multi-class probabilistic active learn-
ing method that selects unlabeled instances with maxi-
mal probabilistic gain.

• MCSVMA [8] is an SVM-based multi-class active
learning method that selects unlabeled instances by
considering the criteria of rejection, compatibility, and
uncertainty.

• ALOR [39] is an active ordinal classification method
based on a reduced SVM model. This method selects
the unlabeled instance with the smallest distance from
the nearest decision boundary.

• LogitA [36] is an A-optimal experimental design
method for ordinal classification, which tends to select
representative unlabeled instances.

• ADUS_n is a designed method similar to ADUS, except
that there is no threshold-cyclic instance selection mech-
anism. This method is included in the comparison to
verify whether the threshold-cyclic instance selection
mechanism benefits the ADUS method.

In the experiments, each dataset is divided into an unla-
beled pool (80% of the data) and a testing set (20% of the

EC(U;L) =
|U |∑
i=1

K−1∑
k=1

Bias(π (xki ))
2
+ Var(π (xki ))

=

|U |∑
i=1

K−1∑
k=1

(
π (xki )(1− π(x

k
i ))(λF(w̄;L)

−1w̄)T xki
)2

+π (xki )
2(1− π (xki ))

2xki
T
F(w̄;L)−1(F(w̄;L)− λI )F(w̄;L)−1xki . (26)

EC(U;L, xj) =
|U |∑
i=1

K−1∑
k=1

(
π (xki )(1− π (x

k
i ))(λF(w̄;L, xj)

−1w̄)T xki
)2

+π (xki )
2(1− π (xki ))

2xki
T
F(w̄;L, xj)−1(F(w̄;L, xj)− λI )F(w̄;L, xj)−1xki . (28)
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TABLE 2. Information of the used datasets.

data) through five-fold stratified cross-validation six times.
Thus, there are a total of 30 runs for each dataset. The initial
training set contains instances randomly selected one instance
from each class in the unlabeled pool. For all the compared
methods, the query budget is set as 25 × K , where K is the
number of classes. At each iteration, an unlabeled instance is
selected to query its label, and the RLOC model is retrained.
Meanwhile, the ordinal classification performance of the
retrained model is evaluated on the testing set. The active
learning process stops when the query budget is exhausted.
Finally, the average results of the 30 runs are reported.

The metrics Mean Zero-one Error (MZE), Mean Abso-
lute Error (MAE), and Macro F1 score (F1) are employed
in the experiments. MZE and MAE are commonly used
to evaluate the performance of ordinal classification [1].
Macro F1 score is a common metric used to evaluate the
performance of multi-class classification. In addition, the
metric Area Under Learning Curve (AULC) [46] is employed
to quantify the overall performance of the active learn-
ing algorithms. The trapezoidal approximation rule [46] is
used to calculate the area under the learning curve of MZE
(AULC-MZE), the area under the learning curve of MAE
(AULC-MAE), and the area under the learning curve of F1
(AULC-F1). In general, the lower the values of AULC-MZE
and AULC-MAE, the better the performance of an active
learning algorithm. In contrast, for the metric AULC-F1,
the larger the value, the better the performance of an active
learning algorithm.

B. EXPERIMENTAL RESULTS
The learning curves of different methods on themetricsMZE,
MAE, and F1 are ployed in Figures 3, 4, and 5, respectively.
From the learning curves in the three figures, one can observe
that the proposed method is among the top performers in
the active learning process on most datasets. Since there are
multiple methods in the comparison, some of the learning
curves in the three figures are inevitably crossed and overlaid.

For quantitative comparison, the evaluation results of dif-
ferent methods on AULC-MZE, AULC-MAE, and AULC-F1
are reported in Tables 3, 4, and 5, respectively. The best results

are marked in boldface in the three tables, and the ‘‘AvgRank’’
denotes the average rank of the compared method based on
the evaluation results on all the datasets. To detect whether
a compared method performs significantly differently from
ADUS on each dataset in terms of the three metrics, the
experiment performed the Wilcoxon signed-rank test [47]
between ADUS and the compared methods at a confidence
level of 0.05. Themarker ‘‘∗’’ in the three tables indicates that
there is a statistically significant difference between ADUS
and the compared method on the corresponding dataset. The
win/tie/loss counts of ADUS versus the compared methods
based on the Wilcoxon signed-rank test are summarized in
Table 6 to show the significant analysis results intuitively.
The results in Tables 3, 4, and 5 show that the proposed
method performs superior to the compared method on most
datasets in terms of the three metrics. The significant analysis
results in Table 6 show that there are statistically significant
differences between ADUS and the ten baseline methods
on most datasets, and the ADUS achieves zero loss in the
Wilcoxon signed-rank test. It can be observed that there is no
significant difference between ADUS and ADUS_n on some
data sets, but the overall performance of ADUS is better than
that of ADUS_n.

In order to verify the effectiveness of the adaptive mech-
anism in the proposed method, the experiment compares
ADUS against the non-adaptive diversity-based uncertainty
sampling method (denoted as DUS-α) that degenerates from
ADUS. The α in ‘‘DUS-α’’ denotes the trade-off parame-
ter. In the comparison, the parameter α in DUS-α is set as
[0.0, 0.1, 0.2, · · · , 1.0]. The average ranks of the different
methods on the metrics of AULC-MZE, AULC-MAE, and
AULC-F1 are recorded and plotted in Fig. 6. One can observe
that ADUS is superior to the method DUS-α with different
fixed parameter values.

C. DISCUSSION
The experimental results in subsection IV-B illustrate that the
proposed method ADUS has advantages over the compared
methods in active learning for ordinal classification. Multiple
factors result in the outstanding performance of the proposed
method:
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FIGURE 3. Learning curves of MZE for the twelve compared methods.

1) The hard-to-predict instances in ordinal data are usu-
ally located between adjacent classes. Labeling these
instances is beneficial for improving the performance

of an ordinal classifier. The uncertainty sampling mea-
sure is designed by extending the idea of margin sam-
pling to the RLOC model, which allows the proposed
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FIGURE 4. Learning curves of MAE for the twelve compared methods.

method to select instances distributed between adjacent
classes.

2) A threshold-cyclic instance selection mechanism is
introduced to evenly allocates the query resources to

themultiple separating hyperplanes, thusmitigating the
potential unbalanced hyperplane-updating problem.

3) A diversity measure is combined with the uncer-
tainty measure to alleviate the sampling redundancy
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FIGURE 5. Learning curves of F1 for the twelve compared methods.

problem. In particular, an expected cost minimiza-
tion measure that imbues the ordering information
is designed to provide an adaptive trade-off between
the uncertainty and diversity measures in each itera-

tion. This adaptive mechanism encourages the active
learner to select informative instances that are most
likely to decrease the misclassification cost of the
model.
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TABLE 3. Results of AULC-MZE for the twelve compared methods.

TABLE 4. Results of AULC-MAE for the twelve compared methods.

TABLE 5. Results of AULC-F1 for the twelve compared methods.

TABLE 6. Win/tie/loss counts of ADUS versus the compared methods based on the Wilcoxon signed-rank test at a 5% confidence level.

FIGURE 6. Results of average rank for ADUS and DUS-α with different α values on the metrics AULC-MZE, AULC-MAE, and AULC-F1.

In the compared methods, ALOR and LogitA are two
methods most closely related to our method since they are
specially designed for ordinal classification. The method
ALOR also extends the margin-based sampling measure
to the threshold-based ordinal classification model. Unlike
the proposed method, ALOR solely relies on an uncer-
tainty measure but ignores the potential sampling redundancy
problem and the potential unbalanced hyperplane-updating
problems. According to the results in Tables 3, 4, and 5,

ADUS outperforms ALOR by 14.53%, 16.20%, and 5.87%
on the metrics AULC-MZE, AULC-MAE, and AULC-F1,
respectively. The method LogitA performs query selection
based on an extended A-optimal experimental design mea-
sure. This method tends to select representative instances but
fails to consider the informativeness of the query instances.
Therefore, this method may produce misleading results. One
can observe that the learning curves of LogitA on datasets
HDI, Computer-10bin, and PowerPlant cannot maintain the
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FIGURE 7. Values of α correspond to the selected instances in an active
learning process by ADUS for the dataset Car. One can observe that the
value of α is varying in different iterations.

convergence trend. Additionally, from the average ranks on
AULC-MZE, AULC-MAE, and AULC-F1, one can find that
the overall performance of LogitA is inferior to ALOR.
These illustrate that instances’ informativeness is necessary
to be considered in active learning for ordinal classification.
FISTA, ALCE, McPAL, and MCSVMA are active learn-
ing methods for nominal multi-class classification. There-
fore, the performances of these methods are not as good as
the proposed method. USME, USLC, and USME are three
typical uncertainty sampling methods instantiated based on
the RLOC model. Compared with USME and USLC, the
method USMS prefers to select the instances between adja-
cent classes in ordinal data. One can see from the results in
Tables 3, 4, and 5 that USMS performs superior to USME and
USLC. This demonstrates that extending the margin-based
sampling to the RLOC model in our method is reason-
able. Additionally, since each of the three uncertainty sam-
pling methods relies only on a single uncertainty measure,
none of them performs outstandingly in the experiments.
Compared to the proposed method, the designed method
ADUS_n lacks the threshold-cyclic sampling mechanism.
Although ADUS_n performs slightly better than ADUS on
some datasets, there is no statistically significant difference.
From Table 6, one can see that the overall performance of
ADUS is better than that of ADUS_n. The above result indi-
cates that the threshold-cyclic sampling mechanism is helpful
in most cases.

The results depicted in Figure 6 show that the overall
performance of ADUS is superior to that of the non-adaptive
method DUS-α. This comparison further demonstrates the
effectiveness of the adaptive mechanism. When α=0.0, the
DUS-α degenerates to an uncertainty sampling method. One
can observe that DUS-α=0.0 does not perform outstandingly
in this comparison. This result indicates that a diversity
measure is necessary when performing uncertainty sampling.
As aforementioned, the optimal value of the trade-off param-
eter may vary in different iterations during the active learning
process. The expected cost minimizationmeasure provides an

adaptive trade-off between the uncertainty and diversity mea-
sures in each iteration. Figure 7 shows the trade-off parameter
values in an active learning process by ADUS for the dataset
Car. One can see that the value of α is adaptively adjusted in
each iteration. This explains the outstanding performance of
the proposed method.

V. CONCLUSION
This paper proposes an effective adaptive hybrid active learn-
ing method for ordinal classification. In contrast to nomi-
nal multi-class classification, ordinal classification usually
focuses on decreasing the misclassification cost of the model
by taking the ordering information into account. In addition,
informative instances for ordinal classification typically lie
within regions between adjacent classes. This paper designs
amargin-based uncertaintymeasure tailored to the commonly
used threshold-based ordinal classification scheme to select
the hard-to-predict instances distributed between adjacent
classes. Besides, a threshold-cyclic sampling mechanism
is introduced along with the uncertainty measure to miti-
gate the potential unbalanced hyperplane-updating problem.
Additionally, the proposed method incorporates a diversity
measure with the uncertainty measure to enable the currently
selected instance differs from the already labeled instances.
In particular, an expected cost minimization measure that
imbues the ordering information is designed to balance the
uncertainty measure with the diversity measure adaptively.
Thus, the proposed method can select instances most likely
to reduce the model’s misclassification cost. Finally, the
proposed method was compared against several state-of-the-
art baseline methods. The experimental results demonstrate
the effectiveness of the proposed method. Compared with the
most related method ALOR, the proposed method achieves
an improvement of 14.53%, 16.20%, and 5.87% on the met-
rics AULC-MZE, AULC-MAE, and AULC-F1, respectively,
when the query budget is twenty-five times the number of
classes.
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