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ABSTRACT Point cloud is a widely used geometric data structure in the missions of 3D reconstruction,
digital city and geologic survey etc. Extracting sufficient information from the point cloud is the key to deal
with the aforementioned missions. However, huge number of points lead to computational complexity and
inefficiency during the training process. To deal with this problem, this paper proposes a novel framework
name Principal Component Analysis Point Net (PCAPN) for the feature extraction of point cloud. Firstly,
a sampling module namely Component Point Sampling (CPS) is designed for generating several candidate
sets of points by different scales, which defines the centroids of local regions. Secondly, a feature extraction
framework based onMLP structure is adopted for extracting the feature vectors from the points set generated
from the sampling module. Finally, the extracted feature vectors are concatenated together, and then put into
a fully connected layer for classification. The proposed framework was evaluated on 2 benchmarks, i.e.
ShapeNet part data set and ModelNet40. The experimental results show that our framework is efficient and
robust. In particular, the results are significantly better than those obtained by the state-of-the-art frameworks.
Our network is 4.6% more accurate than PointNet and 1.1% higher than PointNet++.

INDEX TERMS Principal component analysis point net, component point sampling, shapeNet part data set,
feature extraction network, modelNet40.

I. INTRODUCTION
In recent years, with thematurity of simultaneous localization
and mapping (SLAM) technology, Kinect technology and
laser scanning technology, the amount of 3D point cloud
data is also growing rapidly. How to describe the high-level
semantic understanding of 3D point cloud data has attracted
increasing attention. Semantic segmentation of 3D point
cloud is a typical computer vision [1], [2], [3] problem, which
refers to taking some original 3D point cloud data as input
and converting it into a mask with highlighted regions of
interest through a series of technical operations. It has become
a research hotspot in the fields of automatic driving [4],
navigation and positioning, and smart city [5], [6], [7], [8] etc.

There is rare research on the deep learning on point sets.
PointNet [9] is a pioneering effort that directly processes
point sets. The basic process of PointNet is to learn a spatial
encoding of each point and then aggregate all individual point
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features to a global point cloud signature. So, PointNet does
not capture local structure induced by the metric. However,
exploiting local structure has proven to be important for
the success of convolutional architectures. Because it has
some drawbacks in some places, another method introduces
a hierarchical neural network, named as PointNet++ [10],
to process a set of points sampled in a metric space in a
hierarchical fashion. The basic principle of PointNet++ is
simple to understand. Firstly, the set of points is partitioned
into overlapping local regions by the distance metric of the
underlying space. Similar to convolutional neural network
(CNN) [11], [12], local features capturing fine geometric
structures are extracted from small neighborhoods. Such local
features are further grouped into larger units and processed to
produce higher level features. This process is repeated until
we obtain the features of the whole point set.

Although PointNet++ solves many problems and recent
articles have proposed many algorithms (i.e. PointCNN,
PointWeb, PointNGCNN, PointConv, RandLA-Net) [13],
[14], [15], [16], [17] for semantic segmentation of point
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clouds, no discussion has been made on farthest point
sampling(FPS). Although FPS has good point coverage, the
selection of the FPS point has some randomness. Select-
ing particles only through Euclidean distance has a high
probability of extracting the characteristics of similar points,
resulting in the computational redundancy. Secondly, the fea-
ture extraction network used by PointNet++ is single-scale,
which limits the comprehensiveness of feature extraction and
makes the final accuracy to be improved. For the problems
existing in PointNet++, we put forward many solutions, and
we put forward our solutions.

In this research, we present a principal component analy-
sis neural network called PCAPN. As shown in Fig. 3, our
PCAPN framework is divided into five major layers, i.e.
Sampling layer, Grouping layer, Point Net layer, Splicing
layer and Fully-Connected layer to processmultisets of points
sampled in measurement space in a multi-scale manner. The
general idea of PCAPN is simple: First, all the points in the
point set are sorted according to the contribution ratio of the
points in the measurement space, to obtain an ordered point
set. Here, ordering is by the contribution ratio of the points
to the point cloud. Then, multiple sets of points are selected
from this set of ordered points as our particles (which are not
duplicated to avoid redundancy in computation). Next, the
characteristic information of each set of points is extracted by
putting them into several groups. Finally, the feature informa-
tion from each set of particles is stitched together to obtain the
feature information of the entire point cloud. Compared with
other state-of-the-art frameworks, the proposed multi-scale
network can extract more features, avoid duplicate extraction
in the process of extracting features, reduce computational
redundancy. Our network is more efficient, feature extraction
is more comprehensive, and improve the training efficiency
is improved.

II. RELATED WORK
3D data has a variety of popular representations (e.g.: multi-
views, point clouds, voxels), which has led to a variety of
learning methods. Volume CNNs [18], [19], [20]: a pioneer
in applying three-dimensional CNNs to voxelized shapes.
However, volume representation is limited by its resolution
due to data sparsity and computing costs. Fuzzy Polynomial
Neural Network (FPNN) [21] and Vote3D [22] use special
methods to deal with the sparsity problem. However, they still
operate on sparse volumes, so dealing with very large point
clouds can be a challenge. Multi-view CNNs: try rendering a
three-dimensional point cloud or shape as a two-dimensional
image, then classify it using a two-dimensional convolution
network. These well-designed CNNs have achieved domi-
nant performance in shape classification and retrieval tasks.
However, these methods are currently limited to manifold
meshes (such as organic objects), and how to extend them
to non-isometric shapes (such as furniture) is not obvious.
Feature-based DNNs [23], [24], [25] firstly convert the 3D
data into a vector, by extracting traditional shape features
and then use a fully-connected net to classify the shape.

We believe that they are limited by the representation ability
of extracted features.

Recent publications [26], [27] have examined how in-depth
learning can be applied to disordered sets. Even if point sets
do have a basic distance metric, they will ignore the basic dis-
tance metric. Therefore, they cannot capture the local context
of points, and are very sensitive to global set transformation
and normalization. In this work, we solve these problems by
explicitly considering the potential amount of information
of each point in the design for the points sampled from the
metric space. Since points sampled from measurement space
are usually noisy and have uneven sampling density, this will
affect effective feature extraction and cause learning difficul-
ties. One of the key problems in point feature extraction is
to select an appropriate scale. Prior to this, several methods
have been developed in the world of geometry processing
or photogrammetry and remote sensing. Compared with all
this work, our approach learns to extract point features and
balance multiple feature scales in an end-to-end manner.
In three-dimensional measurement space, in addition to point
sets, there are several commonly used in-depth learning rep-
resentations, including volume grids [28], [29], [30] and
geometries [31], [32], [33]. However, in all these efforts,
the computation time and complexity are not explicitly
considered.

Among all learning models, CNN is the most prominent
one. However, convolution is not suitable for unordered
point sets with distancemeasurement. Although PointNet and
PointNet++ have partly solved this problem, due to the huge
amount of point cloud data and its very important set struc-
ture, it is inevitable to select similar points as particles in the
selection of particles. However, this will lead to the extraction
of similar or same feature information through CNN learning,
resulting in computational redundancy and reduced training
accuracy. In order to solve this problem, we propose a new
sampling method, namely CPS. The overall idea of CPS is
to calculate the contribution rate of each point to the point
cloud, and then get the importance of each point in the
point cloud. According to this contribution rate, the original
point clouds are sorted according to the order of contribu-
tion rate, so as to transform an unordered point cloud into
an ordered one. Then, a group of points that best repre-
sent the original input point cloud are selected from this
ordered set of points as our sampling points. In this way,
we can avoid extracting similar or same points as our par-
ticles due to the huge amount of point cloud data. Here,
we propose two forms of sampling points according to this
idea. One is sampling points at equal intervals, which we call
average point sampling (APS); the other is to extract some
points with high contribution rate, which we call main point
sampling (MPS).

PointNet++ proves the superiority of hierarchical learn-
ing. However, the idea of hierarchical learning adopted by
PointNet++ is single-scale. This means, there is a proba-
bility that similar points will be selected as particles when
selecting particles, resulting in insufficient information in
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feature extraction. From this point of view, we construct the
multi-scale hierarchical learning idea. Specifically, a number
of different sets of points are sampled as particles at each
scale, and the feature information extracted at each scale
is joined into one feature information through hierarchical
learning ideas. This allows us to extract to a large extent
the feature information of the original input point cloud. The
more feature information extracted, the better the training
effect will be.

III. RESOLVENT
Our PCAPNmust solve two problems: (a) How to ensure that
the selected centroid of each scale is not repeated; (b) How to
extract the feature information of point cloud as much as pos-
sible. Our work can be seen as the extension of PointNet++,
which increases the multi-scale training structure, and also
designs two different sampling methods based on one theory
to make our PCAPN more effective. Firstly, mathematical
knowledge is used to derive our sampling algorithms APS
and MPS (section A). Then, we introduce the important
structure of PointNet++ with deep-seated feature learning
(Section B), which can learn features robustly and reduce the
computational complexity to a certain extent.

A. MPS AND APS
First, we assume that the original point cloud is an n×m
dimensional matrix. For example, formula (1).

X =

 x11 · · · x1m
...

. . .
...

xn1 · · · xnm

n×m. (1)

In order to facilitate our subsequent calculation, a zero-
mean is first applied, as shown in formula (2).

X =

 x11 − u1 · · · x1m − um
...

. . .
...

xn1 − un · · · xnm − um

n×m, (2)

where uj = 1
n
∑n

j=1 xji represents the mean of the column
vector; Our goal is to find the relationship between each
point and other points from the original input point cloud,
and then filter out similar points when selecting particles,
which can avoid extracting duplicate information and com-
puting redundancy. Now that we are looking for relationships
between each point and other points, we first think about
the covariance of the matrix. As shown in formula 3, the
covariance of the original input point cloud is calculated.

C =
1
n
XTX =

Cov(x1, x1) · · · Cov(x1, xk)
...

. . .
...

Cov(xk, x1) · · · Cov(xk, xk)

, (3)
From the formula (4), it is clear that the two elements on

the diagonal line of this matrix are the variance of two vectors,
while the other elements are the covariance. They are unified
into a matrix.

Based on the above derivation, we find that to achieve
the desired effect, we are equivalent to diagonalizing the
covariance matrix: that is, to make all the elements except the
diagonal zero, and to arrange the elements on the diagonal
from top to bottom in size, so that we can achieve the opti-
mization goal. This may not be clear yet. Let’s take a closer
look at the relationship between the original matrix and the
matrix covariancematrix after the base transformation: set the
covariance matrix corresponding to the original data matrixX
to C, and P to a set of rows of matrices, set Y=PX, then Y to
X to base the transformed data of P. Setting the covariance
matrix of Y toD, we deduce the relationship between D
and C:

D =
1
n
YYT

=
1
n
(PX) (PX)T = P

(
1
n
XXT

)
PT = PCPT

(4)

It is easy to see from formula (4) that the P to be found
is not something else, but a P that diagonalizes the original
covariance matrix. In other words, our goal is to find a
matrixP that satisfies that PCPT is a diagonal matrix and the
diagonal elements are arranged from large to small, so the
first K rows of P are the basis to be searched. Multiplying X
by the matrix composed of the first K rows of P reduces X
from N to K dimensions and satisfies the above optimization
conditions.

So far, we have focused all our attention on the diagonal-
ization of the covariance matrix, since covariance matrix C
is a symmetric matrix, according to the properties of the
symmetric matrix:

1) The eigenvectors corresponding to different eigenval-
ues of a real symmetric matrix must be orthogonal;

2) Set up eigenvectors λ If the multiplicity is r, there
must ber linearly independent, eigenvectors corre-
sponding to λ, Therefore, theR eigenvector units can be
orthogonalized.

From the properties of the two real symmetric matrices
above, we can see that a real symmetric matrix with n rows
and N columns must find n unit orthogonal eigenvectors.
If this n eigenvectors are set, we will make up the matrix
with E= (e1, e2, . . . , en) columns. Then covariance matrixC
concludes as follows:

ETCE = 3 =

 γ 1 · · · 0
...

. . .
...

0 · · · γ n

, (5)

where3 is a diagonal matrix and its diagonal elements are the
eigenvalues corresponding to each eigenvector (whichmay be
duplicated).

Here we find that we have found the required matrix P:
P=ETP=ET. P is a matrix arranged by rows after the eigen-
vectors of the covariance matrix are united, where each row
is a eigenvector of C. Here we have the eigenvalues of the
covariancematrix. Let’s recall our goal of giving each point in
the original input point cloud a specific order, where we cal-
culate the information contribution BJ as we think. As shown
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in formula 6. Although there are equal eigenvalues in the
covariance matrix, we can assume that it contributes equally
to the information of our entire point cloud and that only one
value can be retained when we sample. The remaining point
clouds, as required by our sample points, are extracted from
the remaining points. Here we propose two solutions: one is
APS; The other is MPS. APS refers to the equal-difference
extraction of a set of points from an ordered set of points.
As shown in Figure 1, a set of points is extracted from
an ordered set of points at equal intervals according to the
number of sampleswe need.MPS refers to the point wherewe
extract the largest contribution rate of information from this
set of ordered points. As shown in Figure 2, according to the
number of sample points we need, we extract the points with
the largest contribution rate from the largest to the smallest.

Information contribution rate bj =
γ j∑k

m=1 γm

(6)

FIGURE 1. APS (The original input point cloud is given a sequence by the
contribution rate of information, and then some points are extracted at
medium intervals from the given sequence as the points after sampling.
The middle black dot represents the point after sorting, and the right side
represents equal interval to extract part of the point (red dot represents)).

FIGURE 2. MPS (The original input point cloud is given a sequence by the
contribution rate of information, and then a portion of the points with a
higher contribution rate of information is extracted from the given order
as the points after sampling. The middle black dot represents the point
after sorting, and the right part represents the extracted point (red dot
represents)).

B. FEATURE EXTRACTION NETWORK
PointNet++ builds a hierarchical feature extraction network,
which consists of three key layers i.e. sampling layer, group-
ing layer and PointNet layer. The sampling layer selects a
set of points from the input points to define the centroid of
the local area. Then, the grouping layer constructs a local
region set by finding ‘‘adjacent’’ points around the centroid.
The PointNet layer encodes local regions as eigenvectors.

This hierarchical network can extract features and the training
results are good. However, since the idea is to filter out as
many points as possible with similar information contribu-
tions and reduce computational redundancy, it is clear that
the FPS used by PointNet++ does not meet our require-
ments. Moreover, a calculation is needed to select the cen-
troid at each sampling time, which increases the computa-
tional redundancy and obviously does not meet the require-
ments of our design. For this reason, we have optimized the
PointNet++ hierarchical network feature extraction, which
be introduced in the following section.

Our multi-scale feature extraction network uses four key
layers i.e. sampling layer, grouping layer, PointNet layer,
and stitching layer. As shown in Fig. 3, the sampling layer
uses APS and MPS sampling methods to sort and sample
the points in the original input point cloud as the centroid
of the local area. Then the grouping layer constructs a set of
points in the local area by finding ‘‘adjacent’’ points around
the centroid. The PointNet layer then codes the local area as
a feature vector. Finally, the eigenvectors from each scale are
stitched. The following part A will describe the specific role
of each key layer separately.

1) SAMPLING LAYER
Given the input points {x1, x2, . . . , xn}, we need to extract
features at multiple scales, So, we use MPS and APS to
select a subset of point {xi}, that is, to find more than one
set of the most representative particles from this point set
in a given order as our particles. The main steps are as
follows. Assuming that the original set of input points is
sorted to obtain N points, we need m scales; The point m1
required by the first set of scales is sampled from the ordered
points as the particles in our first set of scales, and there are
(N-m1) remaining points. Then the second set of points M2 is
sampled from this(N-m1) point as the particles in our second
set of scales. On the steps continues all our scale midpoints
are sampled.

2) GROUPING LAYER
The input to this layer is a set of points of size N × (d + C)
and a set of coordinates of the centroid of size N0 × d . The
output is a set of points of size N ′ × K × (d + C), where
each set corresponds to a local region and K is the number of
points in the neighborhood of the centroid point. It should be
noted that K varies among different groups, but subsequent
point network layers can convert a flexible number of points
into a fixed-length local area eigenvector. In the point set
sampled from the metric space, the neighborhood of the point
is defined by the metric distance. Just like the grouping layer
of PointNet++.

3) POINTNET LAYER
The PointNet layer here still uses the PointNet layer in
PointNet++, where the input is N ′×K × (d +C) local area
of the point. Each local area in the output is extracted from
its centroid, local features encode its neighborhood, and the
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output data size is N ′ × (d + C ′). The goal is to extract the
characteristics of the largest pool for subsequent connections
to the full connection layer.

4) STITCHING LAYER
We have sampled m scales together. It is obvious that we can-
not calculate the score for each scale. Then we need to stitch
the features from each scale to get our final features. The final
set of features to the fully-connected layer to complete our
classification scoring and our classification tasks.

FIGURE 3. PCAPN network model (First, we will sample the point set, get
the points after sampling, take our specific training data to say, each
training set and dataset of ModelNet40 are 10,000 points, where we sort
the 10,000 points once (note that only one sort can be done here), and
then select 1024 points, 512 points and 256 points for these sorted points
respectively; These points are then grouped and PointNet operated, and
the intermediate sampling, grouping, and PointNet layers are divided
three times in our actual training. Finally, the information obtained from
these three sampling points is stitched and fed into the full-connected
layer for classification.)

IV. EXPERIMENT
The proposed network was evaluated in four ways. First, the
MIou evaluation method was used to evaluate the model on
the ShapeNet part dataset (Sec A). Then the PointNet++
model was adopted to compare our sampling algorithm with
the FPS (Sec B). Nest, detailed experiments were conducted
to validate our network design (SecC). Finally, we show some
visualization of content (Sec D).
ModelNet40: 40 categories of CAD models (mainly man-

made), 9843 shapes for training, and 2468 shapes for testing
datasets as our main training and testing dataset for this
experiment.
ShapeNet Part Data Set: contains 16,881 shapes from

16 categories, annotated with 50 parts in total. Most object
categories are labeled with two to five parts. Ground truth
(GT) annotations are labeled on sampled points on the shapes.

A. mIoU EVALUATION METHOD
Part segmentation is a challenging fine-grained 3D recog-
nition task. Given a 3D scan or a mesh model, the task is
to assign part category label (e.g. chair leg, cup handle) to
each point or face. The proposed network was evaluated on
ShapeNet part data set from [34]. We formulate part seg-
mentation as a per-point classification problem. Evaluation

metric is mIoU on points. For each shape S of category C, the
shape’s mIoU is calculated as follows: For each part type in
category C, IoU between GT and prediction compute. If the
union of GT and prediction points is empty, then part IoU is
counted as 1. Then, the IoUs for all part types in category C
are averaged to get mIoU for that shape. To calculate mIoU
for the category, we take average of mIoUs for all shapes in
that category.

In this section, we compare our segmentation version
PCAPN (a modified version of Table 1, Segmentation Net-
work) with two traditional methods [34], [35] that both take
advantage of point-wise geometry features and correspon-
dences between shapes, as well as our own 3D CNN baseline.

B. NETWORK MODEL ANALYSIS
In this section, two sets of experiments were carried out to
demonstrate the advantages of our model. The first set of
experiments is to compare the accuracy of some of the main-
stream network models retained in the training model. In the
second experiment, the training time of the PointNet++
network model and the PCAPN network model were com-
pared while the sampling algorithm was unchanged. In all
the experiments, we selected the internationally-recognized
ModelNet40 datasets as our main training and testing dataset
for this experiment.

On one hand, the first set of experiments. Table 2 lists a
number of popular point cloud classification algorithms (e.g.
PointNet, MVCNN [38], PointNet++, SO-Net [8], PAT [39],
etc.). From the table, we can see that our PCAPN algo-
rithm has certain advantages in accuracy, which is 2.9%
higher than PointNet, the pioneering work of point cloud
classification and 1.1% than higher the optimized version of
PointNet++. Although the improvement is not that signif-
icant points, it is important to know that the more accurate
the model is, the more difficult it can be improved. Even a
few percent improvement is a qualitative leap in performance.
Many of the later algorithm improvements remain at a few
percentage points. So this also has a good meaning for our
PCAPN algorithm. From the point of view of calculation
time, we only compare PointNet++ with our PCAPN algo-
rithm here. As shown in Table 3, our PCAPN algorithm
is superior to PointNet++ algorithm in training time. The
main reason is that our network structure and our sampling
algorithm sort and classify all points from the very beginning.
It is important to do this only once, and the complexity of
the FPS algorithm we have analyzed above is o(N2), which
is squared with the number of points, greatly increasing the
computational complexity. Moreover, our network structure
can reuse the ordered point set, which also reduces the com-
putational time to some extent and avoids multiple ordering
of the point set. Another interesting thing is that our network
had an accuracy of very close to 90% at the beginning of
the training. This might be due to the special relationship
between our sampling algorithm and the feature of the object
represented by the 3D point cloud.

20790 VOLUME 11, 2023



Y. Ji et al.: PCAPN: An Enhanced Feature Extraction Framework for Point Cloud

TABLE 1. Segmentation results on ShapeNet part dataset. Metric is mIoU(%) on points. We compare with two traditional methods [36] and [37] and a
3D fully convolutional network baseline proposed by us. Our PCAPN method achieved the state-of-the-art in mIoU.

Besides, for the proposed two sampling algorithms
(APS andMPS), it is not difficult to see from the table that the
APSmethod has an advantage overMPS in terms of accuracy.
The reason may be that the APS method extracts points from
each level. This maximizes the coverage of points in all
areas, extracts more features, and has slightly better accuracy.
While the MPS method extracts the most important points in
the point set, such as inflection points, it is likely to ignore
some other secondarily important points, which is a big loss
for us to extract features. In other words, although the APS
method may miss a small number of important points, it can
extract the features of some minor points, which ensures the
comprehensiveness of our feature extraction. While the MPS
method extracts more features of important points than the
APSmethod, it misses some feature information of secondar-
ily important points. Moreover, in many cases the MPS may
be saturated with the feature information of important points.
This may also be the reason why APS has an advantage over
MPS in accuracy.

On the other hand, the other set of experiment, which
replaces the APS and the MPS algorithms in our network
model with the FPS, and compares them with our PCAPN
algorithm in terms of accuracy and computational time.
Table 2 and Table 3 show when the best models appear and
their accuracy. It is not difficult to see from the table that
using the FPS method is better than using MPS method and
PointNet++, but less accurate than the APS algorithm. This
also demonstrates that our network model has certain advan-
tages. From the point of view of computational time, the APS
sampling method and MPS method can produce the optimal
model earlier than the FPS method, which further confirms
that our APS and MPS methods have some advantages in
computational time.

C. ANALYSIS OF SAMPLING METHODS
To further verify the feasibility of our proposedAPS andMPS
sampling methods, we did a comparative experiment with
PointNet++ network model and FPS using the control vari-
able method. In this experiment, we selected internationally-
recognized ModelNet40 (40 categories of CAD models,
9843 shapes for training, and 2468 shapes for testing) as
our main training and testing dataset for this experiment.
The experiment, consists of three steps. Firstly, Model-
Net40 dataset was trained using the PointNet++ network
model (the FPS method used in PointNet++), the training

TABLE 2. Current main algorithms for three-dimensional point clouds
and their accuracy(left column as method, right column as accuracy,
counted by percentage).

TABLE 3. Column 2 compares the time required for the PointNet++ and
Point PCA methods to achieve 90% accuracy. The third column compares
how long it takes these three algorithms to produce the best model. The
fourth column compares the accuracy of the best models. (All the time
here is a rough number, not a specific time. There may be varying degrees
of training between different machines, time units are hours).

result with accuracy reaching 90% and the final accuracy
was record. Secondly, while keeping the other conditions
unchanged, all the places of PointNet++ that use the FPS
algorithm were replaced with APS and MPS sampling meth-
ods, and the training results with 90% accuracy and final
accuracy were recorded. Thirdly, the feasibility of our sam-
pling method was proved by comparing the advantages and
disadvantages of APS, MPS and FPS for these three sets of
data analysis.

As shown in Fig. 4, it is clear that when the training
accuracy is more than 90%, APS reduces training time a
lot compared to the FPS in the same configuration on the
computer. One interesting thing to discover is that only two
batches have been trained with our APS. This also reflects
from the side that our APS is less computationally complex

VOLUME 11, 2023 20791



Y. Ji et al.: PCAPN: An Enhanced Feature Extraction Framework for Point Cloud

FIGURE 4. Accuracy of three sampling algorithms training in PointNet++

model.

than the FPS. Under the same conditions, APS takes prece-
dence over the FPS for more than 90% accuracy, and the final
training results are close to 90.7%, which is very close to
the training results of PointNet++. To sum up, our APS is
less computationally expensive than the FPS and has little
difference in coverage.

Through this comparative experiment, it can be found that
our APS and MPS algorithms are feasible, and also have
some advantages in time, with 90% accuracy over the FPS.
Furthermore, our sampling algorithm reached 90% accuracy
quickly over a period of training and tended to be stable, with
little variation around the 90% accuracy. It is plausible that
to some extent, the points we have extracted are likely to be
representative; to a large extent, this portion of the sample
points can be used to approximate our original input sample
points.

D. VISUALIZING
In this section, we focus on our sampling methods, as well as
farthest point and random sampling. We visualized FPS, RS,
APS, and MPS.

Here, we selected 1024 points, 512 points, 128 points,
64 points and 32 points from RS, FPS, APS and MPS
respectively. As shown in Fig. 5, 6, 7, 8, when we selected
1024 points and 512 points, the results of RS, FPS, APS,
and MPS methods still indicate that this is a chair. However,
when we continued to reduce the number of sampling points,
such as 128 points, 64 points or even fewer, random sampling
hardly recognized what the point cloud representd. To say
32 points without exaggeration, you only know that it is a
point. On the contrary, the most FPS, APS and MPS can still
recognize this chair at 128 points and 64 points. When the
number of points was reduced to 32 points, only the outline
of the chair.

Here is the possible reason. As we all know, random sam-
pling is to take some units from the whole unit as samples
according to the principle of randomness. Here we randomly
select a part of points {xi, xi+1,. . . , xi+m} from the input
point {x1, x2,. . . , xn} (where xi, xi+m <{x1, x2,. . . , xn}),
which shows that the selection of sampling points is random,

FIGURE 5. APS (number of sample points from left to right is 1024, 512,
128, 64, and 32, respectively).

FIGURE 6. MPS (number of sample points from left to right is 1024, 512,
128, 64, and 32, respectively).

FIGURE 7. Farthest point sampling (number of points from left to right is
1024, 512, 128, 64, and 32, respectively).

FIGURE 8. Random sampling (number of points from left to right is 1024,
512, 128, 64, and 32, respectively).

and when we select more sampling points, we will be very
close to the input point. However, as the number of sampling
points decreases and the sampling points are random, they
will gradually deviate from the input points or even be com-
pletely unrecognized. This confirms the phenomenon in our
previous experiment that, why random sampling identifies
a chair when 1024 points, 512 points and 128 points are
selected. However, when 64 points and 32 points are selected,
it is not even recognizable at all, knowing that this is a bunch
of points; FPS calculates the Euclidean distance between
points and calculates the farthest point from the previous
point. Thus, FPS also has a high coverage, and the points sam-
pled can be outlined. Our sampling method is to calculate the
contribution ratio of each point, sort the original set of input
points by the contribution ratio, select the medium difference
or select the main points; Therefore, the point coverage is not
inferior to the FPS method. The most important thing is that
this method can control the points sampled without repeating
the selection, which is more suitable for our network model.
Conclusion: in this work, we propose multi-scale point,

a convolutional neural network algorithm for processing point
cloud in metric space. In order to reduce computational
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redundancy and reduce the probability of sampling to dupli-
cate points, we propose two new sampling methods, namely
APS and MPS. In order to extract more feature information
of the input point cloud, we use a multi-scale hierarchical
convolution neural network to extract the feature information
of the point cloud, and splice and integrate the feature infor-
mation extracted at each scale. It is not difficult to see from
our experiments that our network has obvious advantages in
accuracy, mIoU and efficiency.

V. SUMMARY
In this algorithm, we propose a multi-scale point network
model and two sampling algorithms, namely APS algorithm
and MPS algorithm. They have certain advantages in accu-
racy and reducing computational redundancy. Firstly, we ana-
lyze the advantages of PointNet and PointNet++ and the
problems of these two network models. Then we propose our
solution. Finally, we evaluate the advantages of our network
model by comparing mIoU, accuracy and network model
performance. Our network model improves the accuracy by
1.1% to 91.8% based on the 90.7% accuracy of PointNet++,
which exceeds state-of-the-art many network models or algo-
rithms about 3D point cloud. In order to further verify the
superiority of the proposed algorithm, experiments were car-
ried out. The results were evaluated from the aspects of
efficiency, sampling method and training accuracy to prove
the feasibility and superiority of the proposed algorithm.
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