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ABSTRACT Recently, various visual information presentation systems known as human–machine interfaces
(HMIs), such as road projection lamp systems, have been developed for safe driving. However, it is unclear
how theseHMIs change the drivers’ gaze behavior and improve their cognitive awareness of the environment.
Therefore, in this study, we introduce the concept of potential attention to propose a probabilistic method
to estimate drivers’ gaze behavior when using HMIs. The potential attention hypothesis can propose an
explanation to understand gaze behavior. This method assigns potential attention to objects the driver is
likely to gaze, such as vehicles and pedestrians, thereby estimating the driver’s potential gaze point from
potential attentions. The study is divided into two steps. The first step analyzes the drivers’ gaze behavior
in the simulator experiment when a road projection lamp is displayed to alert pedestrians. In the second
step, we propose a method for estimating the driver’s gaze through the potential attention method based on
the results of the simulator experiment. The modeling results for gaze behavior measured in the simulator
experiment as the first step show that gaze behavior can be estimated with high accuracy. This proposed
method is expected to apply to a method to determine where the HMI display should be placed.

INDEX TERMS Gaze behavior, gaze modeling, human–machine interface.

I. INTRODUCTION
Recently, various human–machine interface (HMI) systems
have been developed for driving support. Some systems
use augmented reality (AR), head-up displays (HUDs),
and road projection lamps to display various visual infor-
mation directly in the driving environment. These sys-
tems keep the driver’s gaze on the road by displaying
information, such as the speedometer, on the windshield
or road surface, whereas the conventional head-down dis-
play (HDD), presents information on an in-vehicle moni-
tor or instrument panel display. In addition, these systems
can directly highlight objects such as signs and pedestri-
ans, thereby, making them easily detectable for drivers.
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These systems are, thus, expected to induce safer driv-
ing behavior and improve driver’s ability to recognize the
environment.

Various methods for displaying information using AR and
HUD have been proposed [1]. In previous studies, the effects
on driver behavior were compared between HUD and HDD
systems. In terms of gaze behavior, the results show that the
HUD can keep the driver’s gaze on the road in the simu-
lator environment [2], [3]. The results also show that the
HUD can assist drivers in recognizing information quicker
in a real vehicle environment. [4]. As the driver’s gaze is
fixed on the road, they can afford to drive and pay attention
to the surrounding environment. Regarding driving perfor-
mance not limited to gaze behavior, it was found that using
a HUD allows for more stable steering and faster reaction
times [3], [5], [6].
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To induce safe driving behaviors correctly through HMI
displays, we need to understand how the HMI display
changes the drivers’ attention and gaze behavior. For exam-
ple, HMIs can visually highlight objects that are difficult for
drivers to pay attention to, such as pedestrians. This visual
support allows drivers to detect potential dangers early on.
The effect of HMI warnings on risks has been validated in
previous studies. The results show that the timing of braking
is faster, and drivers are more aware of dangers [7], [8].
It has also been shown that highlighting objects in the driving
environment, such as pedestrians and signs, makes it easier
for drivers to recognize them [9]. Even in complex environ-
ments, AR and HUD can control the allocation of drivers’
attention by appropriately displaying the points they should
pay attention to [10].

However, previous studies have not clarified how HMI
improves drivers’ awareness of the environment. In general,
it is known that the driver’s gaze behavior is significantly
influenced by their attention to the environment when using
HMIs. [11], [12]. Therefore, it is important to understand the
mechanism that induces gaze behavior to elucidate drivers’
attention when using HMIs. By understanding drivers’ gaze
behavior when using HMIs, it will be possible to examine
the optimal HMI display method for drivers to recognize the
driving environment efficiently.

Many studies have been conducted on estimating the
drivers’ gaze points using machine learning methods. Most
of these studies used a method to estimate the gaze point
by detecting the physical features of drivers, such as facial
orientation, from in-vehicle cameras [13]–[15]. The advan-
tage of this method is that the gaze point can be calculated
geometrically bymeasuring the physical characteristics accu-
rately. This method can also estimate where the driver gazes
inside or outside the car. However, it is difficult to accu-
rately estimate physical characteristics due to the influence
of sunlight, glasses and bumpy road [16], [17]. End-to-end
learning is another estimation method, and uses the image of
the outside camera and the result obtained by the eye tracker
as training data. This method does not use the estimated phys-
ical features of drivers for detecting gaze points [18]–[20].
In these studies, highly accurate gaze estimation was
performed by using classification information in the road
environment, which was obtained by the input of semantic
segmentation [18], [19]. Although they cannot estimate the
gaze point inside the vehicle, they use only a few sensors,
such as an exterior camera.

To the best of our knowledge, no studies have focused on
methods for gaze estimation using an HMI. Moreover, due
to the characteristics of machine learning, generalizing the
drivers’ gaze behavior when using HMIs is difficult. In addi-
tion, another machine learning model is needed to forecast
where driversmight gaze. Thus, due to the lack of understand-
ing of generalized driver gaze behavior, it is difficult to deter-
mine the optimal displaymethod of HMIs when attempting to
understand gaze behavior throughmachine learningmethods.
Therefore, we proposed a probabilistic mathematical method

FIGURE 1. Examples of a road projection lamp. The road projection lamp
indicates navigation information.

to estimate the gaze behavior of drivers when using HMIs.
Due to the proposed method being a probabilistic method
that can be applied to various environments, it is expected
to understand generalized driving behavior, which is difficult
within the field of machine learning.

In this study, we modeled the drivers’ gaze behavior when
a road projection lamp was displayed. A road projection lamp
is a system that presents information on the road surface,
as shown in Fig. 1 [21]. To construct the proposed method
to estimate gaze behavior, we needed to collect and analyze
data on drivers’ gaze behavior when using HMIs. Therefore,
this study is divided into two steps. We firstly conducted a
simulation experiment to measure the drivers’ gaze points.
The purpose of this experiment was to clarify the impact
of road projection lamps on drivers’ gaze behavior. Next,
we proposed a probabilistic mathematical method based on
the experimental results to reproduce gaze behavior when
using an HMI. To verify the usefulness of the proposed
method, we modeled the data obtained from the simulator
experiment and validated the estimation accuracy. If the
gaze point can be correctly estimated when using the HMI,
it will lead to an understanding of the drivers’ gaze behav-
ior, which will greatly contribute to the development of
the HMI.

This study makes two contributions to understanding
drivers’ gaze behavior when using HMIs. First, we conducted
a simulator experiment to analyze gaze behavior when a
road projection lamp is displayed. The experimental setup for
understanding gaze behavior can be applied not only to road
projection lamps but also to various HMIs for more efficient
development. Second, we propose a mathematical method for
estimating the drivers’ gaze behavior when using an HMI.
This proposed method can be applied to any type of HMI or
in the absence of an HMI. In addition, it can contribute to
the understanding of drivers’ gaze behavior, as the method is
based on a hypothesis of drivers’ attention.

In this paper, in Section II, a simulator experiment using a
road projection lamp to collect the driver’s gaze behavior to
be modeled is described. Section III provides the results of
the driver’s gaze behavior obtained by the simulator exper-
iment. Section IV describes the characteristics of the pro-
cess of the driver’s gaze behavior for modeling when using
the HMI. Section V proposes a gaze behavior modeling
method, and Section VI describes the results of the proposed
method. Sections VII and VIII provide discussions and con-
clusions for this study, respectively.
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FIGURE 2. Driving simulator with AR markers. AR markers were used to
calculate the driver’s gaze point on the screen.

II. EXPERIMENT
In a simulator experiment, we measured the drivers’ gaze
points when using road projection lamps. The aim of this
experiment is to examine the influence of the road pro-
jection lamp on the driver’s gaze behavior. The results in
this experiment are applied to design the theory of the pro-
posed method for estimating gaze behavior, as described in
Sections IV and V, and to model the gaze behavior,
as described in Section VI. The participants drove the course
assuming a night-time simulation test on a driving simulator.
The night-time situation means that objects appearing in the
simulation that the participants can recognize are limited.
On the road, some pedestrians appear at regular intervals
and are alerted by road projection lamps. We measured and
analyzed the drivers’ gaze behavior while the road projection
lampwas displayed. This studywas approved by the Research
Ethics Committee of RitsumeikanUniversity (reference num-
ber: BKC–HitoI–2019–069). The study complied with all the
guidelines of the Declaration of Helsinki.

A. PARTICIPANTS
Ten university students participated in this study (10 males,
20–25 years; mean = 21.8 yrs). All participants had held a
driving license for more than one year (mean= 2.8 y) and had
no vision problems. The participants signed informed consent
forms, which allowed for the use of the collected data for
scientific purposes and publication. The participants received
1,000 JPY per hour for their participation.

B. APPARATUS
The simulator environments were generated using Vizard 5.0
(WorldViz). The distance between the participants and the
screen was 1.6 m, and the screen size was 1.36 m long ×
2.43 m wide (field of view: 46.1 × 74.5. The field of view
in the simulator has been adjusted to suit this environment.
We used a Logitech G29 wheel (Logitech) for vehicle con-
trol, and an eye movement measurement device (Tobii Pro
Glass 2, Tobii Technology) to measure the gaze point. The
driving simulator used in this study is shown in Fig. 2.

C. DRIVING ENVIRONMENTS
The driving courses are extracted from real road maps with
low curvature, and the course width is 3 m. We created

11 courses, each with a five-minute completion time. Courses
are assigned as follows: one course for practice, two courses
for testing the control condition (without road projection
lamp), and eight courses for testing conditions in which all the
road projection lamps are displayed, respectively. All these
lamps are mentioned in the following section of this paper.
The course is with white road edges, making it difficult for
drivers to perceive the speed they are moving at. Random
visual markers that in the passing environment are known to
generate optic flow [22]; therefore, we displayed random dots
on the course with an average density of six dots/m2.
To verify the drivers’ attention allocation, pedestrians and

pigeons are projected randomly on the left and right sides
of the road edges. Pedestrians appear four times during
each course, at approximately 60 s intervals (for example,
Fig. 3). One out of these times, the pigeons appear on the
opposite side of the road (e.g., Fig. 3(b)). We measured the
driver’s reaction time to the pedestrians and pigeons to verify
their attention to the surrounding environment. In addition,
to prevent the driver’s gaze point from being fixed, other
objects such as a ball and an ornamental plant appear. These
objects appear approximately 15 times at approximately 20 s
intervals. As the test is set in a night-time environment in
which vision is limited, all objects appear only when they are
within 10 m from the vehicle. In addition, we assumed that
the vehicle would be able to recognize pedestrians through
various sensors before they became visible to the human
eye. Therefore, the road projection lamp displayed an alert
to indicate the presence of pedestrians before the drivers
could observe them. The alert from the road projection lamp
is displayed when the distance between the vehicle and the
obscured pedestrian approaches 20 m.

D. CONDITIONS
In this experiment, we used eight types of road projection
lamps with different icon types (arrow, exclamation mark),
blinking frequencies (0 Hz, 10 Hz), and display duration
(1.0 s, 3.6 s). The experiments were conducted under nine
conditions, which included eight road lamp display condi-
tions (two icons × two frequencies × two durations) and
one control condition without road lamp display. A detailed
explanation of each condition follows below.

1) ICON TYPE (ARROW, EXCLAMATION)
To investigate the effect of the road projection lamp, we pre-
pared the arrow and exclamation road projection lamps. The
conditions for displaying each icon were defined as the arrow
condition and the exclamation condition. The condition in
which the road projection lamp is not displayed is defined
as the control condition. In the arrow and exclamation con-
ditions, the road projection lamp is displayed in the center
of the road to alert the driver to the presence of a pedes-
trian (for example, Fig. 3). In the arrow condition, arrows
are displayed pointing in the direction of the pedestrian so
that the driver is alerted of where the pedestrian appears
(for example, Fig. 3(a)).
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FIGURE 3. Example of arrow and exclamation conditions of a road projection lamp for alerting pedestrians. The arrow
indicates the direction of the appearance of pedestrians. The pigeon appears on the opposite side of the pedestrian.

2) FREQUENCY
The previous study shows that flashing headlights increased
the recognition rate of pedestrians at night [23]. To verify the
blinking effects of road projection lamps on drivers, we con-
ducted tests under two conditions: one with a blinking road
projection lamp and one without blinking. In the blinking
condition, the blinking frequency was set to 10 Hz.

3) DISPLAY DURATION
We considered that the display duration might influence the
drivers’ gaze behavior. To verify the effect of display dura-
tion, we tested conditions with different display durations.
The road projection lamp is displayed for approximately 3.6 s
from the appearance of the projection lamp until the driver
passes a pedestrian. In contrast, in the condition where the
display duration is changed, the projection lamp is displayed
only for 1 s after the appearance of the road projection lamp.

E. PROCEDURE
The participants were instructed to drive safely and only
had to steer the vehicle. The vehicle speed was constant
at 20 km/h. Before the experiment, the participants drove on
a practice course to become familiar with the simulator envi-
ronment. After the participants were sufficiently familiarized
with the driving operation on the simulator, the experiment
was initiated by randomizing the course order for each par-
ticipant. A five-minute rest period was provided after each of
the five courses to reduce the burden on the participants.

F. ANALYSIS OF GAZE BEHAVIOR
Eight AR markers, displayed on the simulation screen, can
be used to calculate the gaze point in the screen coordinates,
as shown in Fig. 2. To evaluate the influence of road pro-
jection on drivers’ gaze behavior, we calculated the visual
angle between the road projection lamp and fixation (VARF).
The angle that indicates the positional relationship of the gaze
points around the road projection lamp or pedestrian was cal-
culated and defined as the polar angle (PA). When analyzing
road projection lamps and pedestrians, the reference point
of the PA is different, respectively. Since pedestrians appear
randomly on the left and right sides of the road, the PA was
calculated based on when the pedestrian appeared on the right

FIGURE 4. Example of VARF, VAPF and PA.

side and was reversed when the pedestrian appeared on the
left side. Using VARF and PA, the drivers’ gaze points were
plotted in a polar coordinate format for the visualization of the
gaze position centered on road projection. The visual angle
between the pedestrian and fixation (VAPF) was calculated
in the same way. The variables are summarized in Fig. 4.
The VARF, VAPF, and PA were calculated in two sections,
namely the Symbol and Avatar sections. We define the Sym-
bol section as the duration from the appearance of the road
projection lamp to the appearance of the pedestrian, and the
Avatar section as the duration from the appearance of the
pedestrian to the disappearance of the pedestrian. We com-
pared the drivers’ gazes in these two sections and examined
changes in gaze behavior.

III. RESULTS OF EXPERIMENT
The experiment results revealed no significant differences in
gaze behavior in relation to blinking frequency and display
duration. The main aim of this study was to propose an
estimation method for driver gaze. Therefore, to show only
the results in line with the aim of this study, we report only the
results of the effects of the different icons on gaze behavior.
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FIGURE 5. Result of fixation heat map between the VARF and PA around road projection lamp during symbol section. The color of the heatmap is
determined by the number of times the driver gazed at each section.

FIGURE 6. Result of fixation heat map between the VARF and PA around road projection lamp during avatar section. The color of the heatmap is
determined by the number of times the driver gazed at each section.

A. RESULTS OF GAZE POINTS AROUND ROAD
PROJECTION LAMP
Figs. 5 and 6 show the heat maps of the gaze points around
road projection lamp in polar coordinates for all participants
in the Symbol section and Avatar section. Fig. 5 shows that
gaze dispersion around the road projection in the Symbol
section is different for each condition. In the control condi-
tion, the gaze points were concentrated at the front of the road
projection lamp. In contrast, the gaze points were distributed
around the road projection lamp in the arrow and exclamation
conditions. Especially in the arrow condition, the gaze points
are distributed in the direction where the pedestrian appears.
Fig. 6 shows no significant difference between each condi-
tion. The gaze points in the Avatar section were distributed in
front of the road projection lamp under all conditions.

B. RESULTS OF VISUAL ANGLES
Fig. 7 shows the result of VARF in the Symbol Section.
A Jarque-Bera test and Bartletts’ test do not indicate that
normality (p = .500) and equal variances (p = .364) are
violated. Therefore, the result of VARF was analyzed using a
one-way repeated measures analysis of variance (ANOVA),
through which significant differences between conditions

FIGURE 7. Results of VARF in symbol section.

were revealed (F(2, 27) = 12.0, p < .001, η2 = .35).
Bonferroni test as the post-hoc test shows a significant differ-
ence in the control condition with the exclamation condition
(t(9) = 3.67, p = .005, r = .77). It also showed a
significant difference in the arrow and exclamation conditions
(t(9) = 2.69, p = .025, r = .67). No significant difference
was revealed between the control and the arrow conditions
(t(9) = 1.22, p = .255, r = .38).
Fig. 8 shows the result of VAPF in the Symbol section.

A Jarque-Bera test and Bartletts’ test do not indicate that the
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FIGURE 8. Results of VAPF in symbol section.

observed data are not consistent with a normal distribution
(p = .061), and the equality of the error variances (p =
0.151), respectively. Thus, the results of VAPF were also
analyzed using ANOVA, and significant differences between
conditions were revealed (F(2, 27) = 12.0, p < .001, η2 =
.47). The Bonferroni test as the post-hoc test showed a sig-
nificant difference in the control with the arrow condition
(t(9) = 4.49, p = .002, r = .83), and the control and
exclamation conditions (t(9) = 3.25, p = .010, r = .73).
A significant trend was also observed between the arrow and
exclamation conditions (t(9) = 2.14, p = .061, r = .58).
A Jarque-Bera test did not indicate that the observed data

of VARF and VAPF in the Avatar section are consistent with
a normal distribution (p = .009, p = .003, respectively),
but a Bartlett’s test indicated that the equality of the error
variances was assumed (p = .578, p = .534, respectively).
Accordingly, the results of VARF and VAPF in the Avatar
section were analyzed using Friedman’s test. The results
showed that there was no difference between conditions in
VARF and VAPF (χ2(2) = 5.4, p = .067,W = 0.11;
χ2(2) = 0, p = 1.000,W = 0.00, respectively).

IV. GAZE BEHAVIOR WHEN USING HMI
The experiment results showed that the road projection lamp
changed the driver’s gaze behavior before the pedestrian
appeared (in the Symbol section). Moreover, the changes in
gaze behavior differed depending on the icon type. In the
arrow condition, the gaze was guided in the direction where
the pedestrian appeared, whereas in the exclamation condi-
tion, the gaze was concentrated around the road projection
lamp. In contrast, there was no difference between conditions
after the pedestrian appeared.

Fig. 9 provides an example of the time series data of VARF
in the exclamation condition. The road projection lamp is dis-
played at 0.0 s, and a pedestrian appears at 1.8 s. Fig. 9, shows
that theVARF gradually decreases and remains small until the
1.8 s mark. However, after the 1.8 s mark, VARF becomes
larger since the drivers’ gaze is shifted to pedestrians. The
same gaze behavior was also observed for pedestrians and
other objects that appeared on the road. Therefore, the road
projection lamp is considered an object that assists with driv-
ing safety and drivers should gaze at it while driving. In sum-
mary, the gaze behavior for these objects can be described by
the following three processes (e.g., Fig. 10).

FIGURE 9. An example of the time series data of VARF in exclamation
condition. 0.0 s indicates the timing when the road projection lamp
appeared, and the red dotted line (1.8 s) indicates the timing when the
pedestrian appeared.

FIGURE 10. The process of changing gaze position. The gaze position is
depicted as a star.

(i) Condensing Process: The gaze is attracted from the
position where drivers usually gaze at to the position
where the object appears.

(ii) Gaze Process: The gaze is concentrated and remained
around the object.

(iii) Diffusion Process: The gaze returns from the object to
the position where drivers usually gaze at.

These results indicate that the road projection lamp can
temporarily guide the driver’s gaze. However, this effect
differed depending on the individual and the type of road
projection lamp (and other HMIs). For future applications of
road projection lamps (and other various HMIs), the display
method needs to address these individual differences and
situations.

V. MODELING OF GAZE POINT
The purpose of this section is to express the potential attention
as a probabilistic mathematical method. If gaze behavior
can be estimated, it will be possible to design the ideal
display position of road projection lamps according to the
gaze behavior influenced by HMIs.

A. POTENTIAL ATTENTION
Potential attention is a hypothesis that explains the gaze
behavior proposed in the field of machine learning [19].
In the field of machine learning, many methods are used
to estimate the drivers’ gaze points by estimating the items
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of potential attention that the driver is likely to be paying
attention to. For example, traffic lights, other vehicles, and
pedestrians in the road environment have potential attention
because we assume that drivers should pay attention to them
for safe driving. This method assumes that the actual gaze
point is determined from the potential attention depending
on the driver and their prior gaze behavior. By applying this
hypothesis, we can estimate the drivers’ gaze behavior when
using HMIs. From the experiment results, it was considered
that the road projection lamp (and other HMIs) should be
gazed at as well as other objects, such as pedestrians. In other
words, when using HMI, potential attention should be paid
to the following three areas: 1) areas for driving, such as
future path points [24]; 2) areas for safe driving, such as other
vehicles and pedestrians; and 3) areas for obtaining supple-
mentary information through HMIs. If this hypothesis can be
expressed by probabilistic mathematical method, it will be
possible to estimate gaze behavior corresponding to various
HMIs and individual drivers. In addition, the estimation
results can be applied to determine the optimal HMI display
method.

B. MATHEMATICAL METHOD FOR ESTIMATING GAZE
The results of the simulation experiment showed that the
effect of the road projection lamp varied among individuals.
In the estimation of driver gaze behavior using machine
learning methods, it has been shown that the estimation
accuracy can be improved by incorporating probabilistic
methods to deal with individual differences and situation
dependence [20]. For this reason, we also estimate the gaze
point probabilistically. In this study, we focused on gaze
estimation in a two-dimensional screen system, as shown in
Fig. 3, but the proposed method can be applied to various
coordinate systems such as a three-dimensional space.

As shown in the previous section, this study hypothesizes
that potential attention is generated for three factors (for
driving, for safe driving, and for information by HMIs). All
of these potential attentions are represented by a Gaussian
probability density function p(x), as shown in (1).

p(x) = N (µ,6) =
1

2π
√
|6|

× exp
(
−
1
2
(x− µ)T6−1(x− µ)

)
. (1)

where, for estimation in a two-dimensional screen coordinate
system (X ,Y ), x = [X ,Y ]T , µ is the mean value of x, the
covariance matrix 6 = diag(σ 2

X , σ
2
Y ), and σ

2 is the variance
value of x.

When the number of the object that generate the potential
attention is M , and the gaze point distribution pfix(x) is esti-
mated as follows:

pfix(x) = η
∫
x

M∏
i=1

pi(x)dx = N (µfix,6fix). (2)

where η is constant value for normalization.

FIGURE 11. Example of estimating fixation distribution. The mean of the
estimated fixation distribution is close to N2 because the variance of N2
is smaller than that of N1.

Considering (2) it is clear that the mean value of the gaze
estimation distribution pfix(x) will be close to the distribu-
tion with the smallest variance in each potential. Fig. 11
shows an example of generating a gaze estimation distribu-
tion with one-dimensional probability density functions N1
(µ1 = 5, σ 2

1 = 3) and N2(µ2 = −5, σ 2
2 = 2). It can be

seen that the mean value of N3 calculated by (2) is close to
the distribution of N2 because the variance of N2 is smaller
than that of N1. By setting a small variance for objects that
are considered particularly important, it is possible to express
the gaze points that are concentrated around the object.

C. DISPERSION FUNCTIONS DESIGN
The previous section shows a method for estimating the
drivers’ gaze behavior by designing the variance of the dis-
tribution for each potential attention. In the simulator exper-
iment, the driver gazed at the object immediately after its
appearance (condensing process), continued gazing at it for
a certain period of time (gaze process), and then returned to
the gaze position before its disappearance (diffusion process).
For this reason, in this study, each potential attention for road
projections and pedestrians was generated using a probability
density function with its variance value changing over time.
The variance function σ 2(t) for road projections and pedes-
trians is designed as follows:

σ 2(t) = max(α, β(t − γ )2), (3)

where the time elapsed since the appearance of the target
object is t , and α, β, and γ are parameters to be optimized
for each individual. Fig. 12 shows the example of the vari-
ance function. This represents the condensing process – gaze
process – diffusion process and is expected to represent the
gaze behavior when using HMIs.

D. PARAMETER ESTIMATION OF VARIANCE FUNCTIONS
AND ITS APPLICATIONS
The simulator experiments in this study generated road pro-
jection lamps, pedestrians, pigeons, and other objects while
driving. However, for simplicity, we used a situation where
only road projection lamps and pedestrians appear for model-
ing. As a potential attention, we need to estimate the distribu-
tion of gaze points pfix(x) using three distributions: the normal
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FIGURE 12. Distribution function with condensing, gaze, and diffusion
processes.

gaze distribution pn(x) (when there are only road edges),
pr (x) for road projection lamps, and pp(x) for pedestrians.
There are two applications in this estimation.

1) STEP1: ESTIMATING PARAMETERS OF THE VARIANCE
FUNCTION OF ALL OBJECTS
By using the data measured in the simulator experiment,
we can estimate the parameters of the variance function of
all objects for the road projection lamp and the pedestrian,
as shown in (3). Once the parameter estimation is completed,
it is possible to estimate how the driver’s gaze point is influ-
enced by the HMI, without measurement. The normal gaze
distribution pn(x) can be estimated based on the road shape
and vehicle state [25]. However, in this study, the mean value
and variance were calculated from the measured gaze data
for 10 s before the road projection lamp was displayed. The
mean value of pfix(x) is the measured gaze data during the
appearance of road projection lamps and pedestrians, and
the variance of pfix(x) is set to a constant value of 0.01 as
observation noise. The mean values of pr (x) are the cen-
ter coordinates of the road projection lamp display. Simi-
larly, the mean value of pp(x) is the central coordinate at
which the pedestrian appears. Therefore, we need to find
the elements σ 2

rX , σ
2
rY , σ

2
pX , σ

2
pY in the covariance matrices

6r and 6p. To simplify the estimation, only the variance
in the X direction was estimated using (3), and the vari-
ance in the Y direction is determined by the display ratio
of the target object. Thus, we estimate the parameters θ =
[αr , βr , γr , αp, βp, γp]T in σ 2

rX , and σ
2
pX . The maximum like-

lihood estimation method is used to estimate the parameters.
The following formula indicates the extent to which the accu-
racy S of the data is estimated using the maximum likelihood
estimation method. The value of S is 1.0, when the driver’s
gaze is estimated correctly without error.

S =

∑N
i=1 f (xi; θ)
N · Fmax

, (4)

where N is the number of data, xi is the estimated value of the
model, f (xi; θ) is the likelihood, and Fmax = f (x = µ; θ ) is
the maximum likelihood.

In this study, we modeled the gaze behavior in the excla-
mation condition (display duration of 3.6 s) and the control
condition (no projection lamp), which were measured from

the simulator experiments. The gaze point in the arrow con-
dition was directed to the direction in which the pedestrian
appeared, whereas in the exclamation condition, the gaze was
fixed on the road projection lamp. Therefore, due to its simple
results, only the exclamation condition was chosen. Because
there was no difference in gaze behavior in relation to fre-
quency, the data obtained in the 0 Hz and 10 Hz conditions
were modeled as identical. In addition, pedestrians appear
four times under one condition, but one of them is excluded
because the pigeon also appears. Therefore, each of the six
trials was modeled for each participant. Five trials were
used for training, and one trial for validation. Subsequently,
we verified the generality of the estimation.

2) STEP2: DESIGN OF HMI DISPLAY POSITION TO INDUCE
IDEAL GAZE BEHAVIOR
We estimated the variance function for road projections and
pedestrians in STEP 1. It is possible to design an HMI display
position from the estimation results, that induces ideal gaze
behavior. We design the gaze line pfix(x, t) in advance. This
indicates where the driver should gaze, such as the ideal gaze
for novice drivers and complex environments. It is, thereby,
possible to calculate the mean value µ(t) of pr (x, t) (the
display position of the road projection lamp to induce the
driver’s gaze to ideal behavior). However, the investigation
of STEP 2 by numerical calculations was not carried out in
this study.

VI. RESULTS OF MODELING
A. ACCURACY OF MODELING
Table 1 shows the estimation accuracy S of the training
and validation data for each participant. First, we evaluated
the extent to which the proposed method reproduced the
gaze points based on the estimation accuracy of the training
data. The results show that the drivers’ gaze behavior can
be estimated with high accuracy. In particular, the estimated
accuracy values for Participants 4 and 10, in the exclamation
condition, and Participants 1 and 7, in the control condition,
exceeded 0.9. The participants with such high estimation
accuracy showed consistent gaze behavior throughout the
entire training course. In contrast, the gaze behavior of par-
ticipants with a relatively low estimation accuracy was not
consistent throughout the entire course. For example, half of
the training data reflects the road projection lamp being gazed
at, whereas it was ignored in the other half. Therefore, the
estimation accuracy varied among individuals. However, the
average estimation accuracy of the training data exceeded 0.8,
in both the exclamation and control conditions. The proposed
method can, thus, estimate a driver’s gaze behavior with high
accuracy.

Next, from the estimation accuracy of the validation data,
we verify the generality of the proposed method for the
estimation. The results show that the estimation accuracy for
the validation data was as high as that of the training data.
The participants with high estimation accuracy in the training
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TABLE 1. Estimation accuracy S of drivers’ gaze behavior. The sign
indicates the highest and lowest values for each condition.

data also tended to have high estimation accuracy in the
validation data. In addition, the participants whose accuracy
was low in the training data tended to have low estimation
accuracy in the validation data. One possible reason for this is
that the accuracy of parameter estimation has been improved
due to consistent gaze behavior throughout all the training
data. The results indicate that the estimation accuracy of
the verification data shows almost the same performance as
that of the training data. Therefore, once the parameters are
estimated, the proposedmethod can estimate the driver’s gaze
generically.

We also created an average model that trained the gaze
behavior of all drivers instead of individual drivers. The
results of estimation accuracy S are 0.846 and 0.839
(training and validation) in the exclamation condition, and
0.825 and 0.836 (training and validation) in the control condi-
tion, respectively. These results are close to the average value
of the training results for the individual drivers, as shown
in Table 1, and it is considered that the proposed model
simulates the gaze behavior of the average driver.

B. MODELING RESULTS IN EXCLAMATION CONDITION
Fig. 13 shows an example of the result of the validation data.
Fig. 13(a) shows the results of Participant 1 in the exclamation
condition. The red, blue, and green ellipses indicate the nor-
mal gaze distribution pn(x), distribution for road projection
pr (x), and distribution for pedestrian pp(x). In addition, the
red crosses are the measured gaze points, and the orange
ellipses show the estimated gaze distribution pfix(x). If the
red cross is included in the orange ellipse, it means that the
gaze estimation is accurate. The estimated parameters of Par-
ticipant 1 are θ = [0.0024, 0.35, 0.88, 0.0004, 0.06, 0.39]T .
Fig. 13(a) shows that the estimated gaze point is approxi-
mately correct throughout the entire process, although the
estimation error is a bit large when estimating the gaze for
pedestrians (t = 1.88 s).

Fig. 13(b) shows the results of Participant 5, whose
estimation accuracy was lower in the exclamation condi-
tion. The estimated parameters of Participant 5 are θ =
[0.0032, 0.64, 1.50, 2.97, 0.96, 0.89]T . It can be seen that
the gaze point is not included in the orange gaze distri-
bution pfix(x) which means the estimation error is large.

It is considered that the gaze behavior of Participant 5 was
not consistent throughout the entire data, as described in the
previous section. In the five training data analyses, there were
some scenes in which the driver gazed at the road projection
and pedestrians, but there were also scenes in which the
driver did not gaze at either of these. The variance functions
pr (x) and pp(x) did not become sufficiently small when the
driver did not gaze at either the road projections or pedes-
trians. Therefore, the estimation error is large, and the gaze
estimation distribution pfix(x) does not overlap the measured
gaze point. In addition, due to the normal gaze point being
unstable, the normal gaze distribution pn(x) of Participant 5
can be observed as being larger than that of Participant 1.

C. MODELING RESULTS IN CONTROL CONDITION
Fig. 13(c) shows the results of Participant 2 in the control
condition. The estimated parameters of Participant 2 are θ =
[1.00 × 10−14, 0.02, 0.37]T . In this situation, we generate
potential attention only for the pedestrian because the road
projection lamp is not displayed. Fig. 13(c) shows that the
estimated gaze point is approximately correct throughout the
entire process, although there is an estimation error when
estimating the gaze for pedestrians (t = 1.81 s).

VII. DISCUSSION
In this study, the drivers’ gaze point when using HMIs is rep-
resented by a probabilistic mathematical method that applies
potential attention. As a result of modeling the data measured
in the simulator experiment, the average estimation accuracy
of the training data exceeded 0.8. This result suggests that
the proposed method can estimate drivers’ gaze behavior
with high accuracy. We also confirmed that the estimation
accuracy of the validation data was as high as that of the
training data and that driver gaze estimation was possible,
in general.

The proposed method can deal with any number of objects
as long as the objects in the road environment can be recog-
nized by various sensors. In addition, we consider that our
proposed method can be applied to any type of HMI and to
situations without HMIs. That are considered advantageous
of our proposed method over those of other studies. For
example, a machine learning method for estimating drivers’
gaze behavior needs to be trained in a variety of environ-
ments [18]–[20]. In addition, it is necessary to retrain the
machine learning methods when the HMI is used because
they are usually trained in situations without HMIs, and
the gaze behavior is influenced by the HMIs. The method
proposed in this study allows us to estimate how the driver
is influenced by the road projection without measuring the
driver’s gaze point once the parameter estimation of the vari-
ance function for specified objects is performed. In addition,
since correct gaze estimation was performed by our proposed
method, potential attention can be considered as one of the
methods of human attention allocation. Thus, it can also
be assumed that it expresses the mechanism by which gaze
behavior is induced. Therefore, the two main contributions of
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FIGURE 13. An estimation example of drivers’ gaze behavior. The red cross, red circle, blue circle,
green circle, and orange circle indicate the measured gaze point, normal gaze distribution pn(x),
road projection lamp distribution pr (x), pedestrian distribution pp(x), and estimated gaze
distribution pfix (x), respectively. An ellipse of distribution is drawn with 2σ . The time when the
road the projection lamp appears was set to t = 0.0 s.

this study are the proposal of a simpler method for estimating
gaze points and understanding the mechanism of driver gaze
behavior using potential attention.

However, this study has several limitations.
(i) The estimation accuracy is worse for the participants

whose gaze behavior was not consistent. We assume
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that the parameters of the variance function of poten-
tial attention for objects in our proposed method are
constant. Thus, gaze behaviors that differ from those
during training cannot be estimated. In addition, it is
possible that drivers will become accustomed to the
HMI display and will gradually decrease the extent to
which they pay attention to the road projection. In this
case, the gap between the estimated parameters gradu-
ally increases. To solve these problems, it is necessary
to optimize the system for each driver by using an
online parameter estimation or changing the estimation
algorithm to take the time series of the driver’s gaze
behavior into account.

(ii) In this study, we estimated the gaze behavior of
10 drivers studies on driver modeling. The number of
the participants were determined based on similar driv-
ing behaviour experimental research (eg. [26]–[28]).
However, as mentioned in limitation (i), the estima-
tion accuracy depends on each driving behavior. The
proposed method cannot be a general method to esti-
mate the gaze behavior of all drivers due to individ-
ual differences. In addition, this study cannot exam-
ine the results of the participants’ driving experience.
The average driving experience of the participants of
this study was 2.8 years; thus, the results depend on
the driving behavior of relatively young drivers. It is
generally known that novice drivers are less dependent
on peripheral vision for vehicle control [29]. There-
fore, we assume that the gaze behavior (condensing-
gaze-diffusion process) can be observed from experi-
enced drivers but the movement of the gaze behavior is
smaller than that of novice drivers. Thus, the results of
modeling accuracy for experienced drivers may differ.
To validate the proposed method sufficiently, it is nec-
essary to increase the number of participants in various
situations.

(iii) Gaze behavior in real environments is influenced by a
much greater extent of information, although, we sim-
ply assume the usual gaze point as the location to
generate potential attention, surrounding objects, and
HMIs. Therefore, it is necessary to consider what
objects should generate potential attention. If we use
too few areas to generate potential attention, the accu-
racy of the estimation by the proposed method will
be poor. Then, using conventional machine learning
methods is better for estimating the driver’s gaze.
It is necessary to examine which object informa-
tion influences gaze behavior in a more complicated
environment.

VIII. CONCLUSION
The purpose of this study was to estimate the drivers’ gaze
points when using an HMI. First, we measured and ana-
lyzed the drivers’ gaze behaviors when using the HMI in
the experiment. The experimental results show that the road
projection lamp guided the driver’s gaze point. In addition,

a series of gaze behaviors were observed when drivers gazed
at pedestrians or road projections, such as gazing at an object
immediately after its appearance (condensing process), keep-
ing their gaze on the item for a certain period of time (gaze
process), and returning to the gaze position before its disap-
pearance (diffusion process).

Next, we proposed a probability method for estimating
the drivers’ gaze based on the experimental results when
using HMIs by applying potential attention prediction to
that which the driver is likely to be paying attention to.
The gaze point data obtained in the experiment was used
to verify the estimation accuracy and generality of the pro-
posed method. We confirmed that the proposed method
could estimate the gaze points with high accuracy, averag-
ing 0.850 and 0.838 in the control and exclamation condi-
tions, respectively. It is expected that the proposed method
is to be applied to the system’s design and that an ideal
display position for the road projection lamp (as well as
other various HMIs) will be established to induce ideal gaze
behavior.

In this experiment, we used a simulator to measure gaze
behavior when using HMIs. To apply HMI systems, such
as road projection lamps, to vehicles, it is necessary to ver-
ify gaze behavior in more complex environments with vari-
ous HMIs. In addition, we need to verify the accuracy of the
estimation of gaze points in real environments.

We believe that the merit of this study is that display posi-
tion and timing of HMIs can be automatically designed from
drivers’ gaze behavior, which is described in V.D. Step 2,
when applying the results of this study to an actual HMIs.
However, since the proposed HMI design method is only a
theoretical attempt, the evaluation of the applicability of this
study is also future work.
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