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ABSTRACT Coordinating a team of autonomous agents to explore an environment can be done by
partitioning the map of the environment into segments and allocating the segments as targets for the
individual agents to visit. However, given an unknown environment, map segmentation must be conducted
in a continuous and incremental manner. In this paper, we propose a novel real-time hierarchical map
segmentation method for supporting multi-agent exploration of indoor environments, wherein clusters of
regions of segments are formed hierarchically from randomly sampled points in the environment. Each
cluster is then assigned with a cost-utility value based on the minimum cost possible for the agents to
visit. In this way, map segmentation and target allocation can be performed continually in real-time to
efficiently explore the environment. To evaluate our proposed model, we conduct extensive experiments
on map segmentation and multi-agent exploration. The results show that the proposed method can produce
more accurate and meaningful segments leading to a higher level of efficiency in exploring the environment.
Furthermore, the robustness tests by adding noises to the environments were conducted to simulate the
performance of our model in the real-world environment. The results demonstrate the robustness of our
model in map segmentation and multi-agent environment exploration.

INDEX TERMS Autonomous agents, intelligent agents, multi-agent systems, agent-based modeling, image
segmentation.

I. INTRODUCTION
Effective coordinated exploration of environment by a fleet of
autonomous agents has remained a critical problem in appli-
cation domains like search and rescue [1], cleaning [2], and
sensor deployment [3]. As the environment can be partially
or totally unknown, a model or map representation of the
environment must be constructed incrementally in order to
plan and assign the exploration tasks to the individual agents.
What each agent should do or where it should go to visit next
can only be determined after the map is constructed at least
partially.

A typical approach to tackle this exploration problem is
by identifying the so called frontier points (locations at the
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boundary between the known and unknown areas) as the
locations to visit by the different agents [4]. As an agent
reaches a frontier point, new areas or regions are unfolded
as the agent scans its surroundings so that new frontiers
can be identified and allocated to the agents. This process
may be repeated until all the areas in the environment are
explored. For efficiency consideration, an agent is typically
allocated to the frontier with the least-cost to visit (i.e., the
nearest frontier location to the agent) [4]. Depending on the
situation in hand, the basic frontier-based method may not
be optimal especially when multiple agents are involved.
Since agents are allocated to visit nearby points or locations,
they may explore a relatively small area together instead of
spreading more evenly to discover unknown places. One way
to tackle this is by assigning every agent to a frontier location
based on the utility or cost of visiting it given the number
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of surrounding agents [5]. However, the effectiveness of this
approach still depends on the condition of the environment
to explore. The target frontiers to be allocated may also still
be nearby to each other leading the agents to visit confined
areas together at the same time. Another way to optimize
this allocation is by firstly partitioning the scanned areas in
the environment into regions or segments [6]. Based on the
topological structure of the segments, the allocation to assign
the agents to explore different locations can be done more
efficiently. Wurm et al. employed the Voronoi algorithm to
generate segments from a map of the environment and the
Hungarian method to allocate the agents to the appropriate
segments [6]. However, this approach is effective only when
the initial information about the environment is available so
that the partitions or segments for generating the topological
structure are sufficient to make the efficient allocation.

More recent methods employ classical search and planning
algorithms to handle the exploration and search allocation
tasks in a decentralized manner [7]–[10]. However, the dis-
tributed versions of the allocation methods in [7] and [9]
still need some offline mapping and evaluation of the envi-
ronment beforehand. On the other hand, Best et al. [8] and
Smith et al. [10] proposed decentralized control approaches
to allow real-time and incremental allocation process, but
they may require a great deal of computation and training
time, especially to deal with large environments.

In this paper, we propose a novel incremental cluster-
ing method for real-time map segmentation and multi-agent
exploration task allocation. The map segmentation method is
designed to partition a given indoor environment map into
meaningful segments (e.g., rooms, corridors, corners), in an
incremental manner. Instead of requiring the entire map to be
available upfront, the method is designed to work when the
map is initially available only partially or totally unknown.
The real-time incremental segmentation is conducted through
a novel hierarchical clustering method inspired by Adaptive
Resonance Theory (ART) neural network [11] that cate-
gorizes the point sampled or sensed by the agents in the
environment.

Based on the segmented map, a task allocation method is
applied to assign each agent to a segment based on a cost-
utility function. While the cost measures the distance from
the selected agent to a target location, the utility measures the
potential of discovering a new target location. By applying
the cost and utility function, we not only consider the cost of
visiting the targeted location by an agent, but also consider
the potential discovery of new areas during the exploration.

Overall, our proposed method offers a real-time incremen-
tal and continual exploration model for multiple agents in
optimal and efficient manner while the information, knowl-
edge, or map about the environment is initially lacking.

We compare our proposed hierarchical map segmentation
method with the state-of-the-art segmentation methods based
on a collected set of 30 real-worldmaps. The results show that
our proposed method outperforms the state-of-the-art meth-
ods in producing more accurate and meaningful segments.

We further conduct comparative experiments under two
settings: exploration based on known environments (wherein
the map of the environment is available at the begin-
ning) and exploration in unknown environments (wherein
no map is available and one must be made from scratch).
We compare the proposed method with the other state-
of-the-art segmentation-based exploration methods, includ-
ing Voronoi segmentation, distance-transform segmentation,
feature-based segmentation, and morphological segmenta-
tion for task allocation in known environments. We also
compare with the Frontier-based exploration method as the
baseline for exploration in unknown environments. The eval-
uation results show that the proposed method outperforms
all the methods mentioned above in terms of efficiency in
reducing the distance travelled by the agents.

The remainder of this paper is organized as follows.
Section II discusses the prior literature related to the multi-
agent exploration problem. In Section III, we present the
hierarchical adaptive clustering method for multi-agent map
exploration, including segmenting a known map and incre-
mentally segmenting an unknown map during exploration.
Section IV describes the series of experiments conducted
on multi-agent map exploration, with performance com-
parison with the frontier-based map exploration method
and other segmentation based exploration method, includ-
ing Voronoi segmentation, Morphological segmentation,
distance transform segmentation and feature-based segmen-
tation. Section V discusses the results of map segmentation
and environment exploration. Finally, in Section VI, we con-
clude and discuss future work.

We summarize the contribution of our works as follows:

• We propose a new method called Hierarchical Adaptive
Clustering to conduct map segmentation.

• Based on the Hierarchical Adaptive Clustering method,
we further propose a multi-agent map exploration
method, which leverages real-time map segmentation to
coordinate multi-agent explorations.

• We conduct extensive experiments to compare our
proposed methods with the state-of-the-art map segmen-
tation and multi-agent exploration methods. The exper-
iments show the superiority of our methods in both map
segmentation and multi-agent exploration coordination.

II. RELATED WORK
In this section, we present and discuss other methods and
approaches related to ourworkwhich includemethods ofmap
segmentation and multi-agent exploration.

A. MAP SEGMENTATION
Semantic map segmentation have been developed and stud-
ied for decades. Among them, Morphological Segmentation,
Distance Transform-based Segmentation, Voronoi Graph-
based Segmentation, and Feature-based segmentation can be
considered as representatives of the existing map segmenta-
tion methods [12].
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The morphological method of segmentation [13] worked
on a grid map. During the segmentation, boundaries grow
iteratively one pixel at a time into separate regions through
the difference between dilation and erosion functions. If a
separated region has a certain size between a lower and
higher threshold, all the cells in this region are classified as
an individual segment. This dilation-erosion process repeats
until all the accessible cells in the grid map are marked as
inaccessible. Afterwards, the labeled areas are extended to
occupy all the unlabeled accessible area with a wavefront
propagation. This process results in a well-labeled segmented
map.

Diosi et al. [14] proposed a semi-autonomous method to
perform map segmentation based on a distance transform
method. The main idea of the distance transform-based seg-
mentation is to find the centre of each segment via the
distance transform and label the accessible areas with the
wavefront propagation, which is similar to the morphologi-
cal segmentation. The distance transform of each accessible
pixel is the distance of this pixel to the nearest inaccessible
pixel, and the local maxima of the distance transform lies at
the center of a room. The room centers are uniquely labeled
and the wavefront propagation extends the labeled area to the
entire map.

The feature-based segmentation [15] uses features from
360◦ laser scanners which are placed at every accessible cell.
The features are classified by Adaboost classifier to get the
room labels such as office or corridors. Neighbour pixels with
the same labels are merged to get the segmented map. The
feature-based method requires a pre-training process from a
pre-existing dataset.

The Voronoi graph-based segmentation is the best per-
forming method among the others mentioned above [12].
It firstly computes a Voronoi graph on the map, and gets
the critical points which have exactly two closest obstacle
cells from the graph. The critical lines, which are the lines
connecting the critical points and the closest obstacles, are
drawn to separate the map into Voronoi cells. Finally, the
cells are merged to form a segmented map according to
a set of pre-defined rules. Relative methods for computing
Voronoi graph have been elaborated in [16]–[18]. Although
the Voronoi method can achieve the best performance among
the others [12], it requires a set of manually defined rules
to guarantee good performance. Similarly, the morphological
and the distance transform-based approaches of segmentation
also require manually set parameters to secure the perfor-
mance.

In recent years, deep learning based methods achieve
a high level of performance in segmentation tasks [19],
such as R-CNN based models [20]–[22], Dilated Convolu-
tional Models [23]–[25], RNN-based models [26], [27], and
attention-based models [28], [29]. However, most deep learn-
ing methods require abundant training data for learning to
perform proper image segmentation. Since in our dataset, the
data samples, i.e., maps of the indoor environment available,
are inadequate for training deep neural networks, we are not

able to conduct experiments and perform comparisons with
deep learning methods.

B. MULTIAGENT EXPLORATION
Studies on multi-agent exploration have emerged since last
decades. Different techniques and approaches have been used
like the frontier-based method wherein each agent makes its
own decision to select a target to visit though they share a
global world representation [30]. Bautin et al. improved the
frontier-based exploration by ranking the agents to allocate
to a particular frontier location based on their travel dis-
tances to the frontier [31]. More recently, the frontier-based
exploration has also still been demonstrated as effective to
construct a topological map of the environment by assigning
an agent to visit a location based on the cost-utility function
taking into account geometric, topological, and semantic cri-
teria [32]. Other recent variants of frontier-based exploration
on multi-agent exploration include a distributed multi-robot
model [33] and some others involving communication con-
straints and collaboration among the agents [34]–[36].

The complexity of assigning many frontier points to differ-
ent agents was significantly reduced by allocating the agents
to segmented areas instead of frontiers. Wurm et al. used
Voronoi algorithm to segment the floor plan into several
regions and applied Hungarian method to optimally allocate
the agents to the proper segment [6]. Voronoi algorithm scans
areas in the map to generate a graph structure forming the
segments’ boundaries. The Hungarian method searches for
optimal configuration of assigning the agents to the segments
based on the costs taken to visit the corresponding locations.
Although it can provide a cost-optimal solution for the agents
to explore the environment, the allocation must be made
simultaneously for all the agents and no values regarding
exploring unknown areas are taken into consideration. Other
segmentation-based exploration methods like morphologi-
cal method, distance transform-based method, and feature-
based method have also been proposed [12] though they
are more context or domain dependent in terms of optimal-
ity compared with the Voronoi-Hungarian approach. More
recently, several works have consideredmaking the allocation
in a distributed manner allowing exploration to be done in
real-time. Omidshafiei et al. [7] and Chopra et al. [9] have
proposed allocation methods that, however, require offline
pre-processing of the map with strict spatio-temporal con-
straints for exploration. Best et al. [8] and Smith et al. [10]
made use of Monte-Carlo Tree Search to incrementally pro-
duce exploration tree to share among the agents. The later,
however, demands much more computation and exploration
time.

Another approach to efficiently allocate the task is by
semantically labeling features perceived in the environment.
Beetz et al. used the perception method to conceptually
tag features based on natural language labeling as they
are identified during exploration [37]. Besides the map,
the environment is modeled as a graph connecting dif-
ferent classifications of features such as rooms, corridors,
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and doorways [38], [39]. However, this approach requires
domain-dependent labeling and conceptual structure as prior
knowledge.

Recently, some deep reinforcement learning methods
have been proposed to tackle the multi-agent exploration
tasks [40]–[44]. The reinforcement learning methods aim to
learn a policy that maximizes the accumulated reward from
an environment, requiring extensive training procedures to
obtain the appropriate policy in the specific environment.
However, the adaptiveness of the multi-agent exploration
policy to any brand new environments remains a problem of
the reinforcement learning methods.

III. PROPOSED METHOD
In this paper, we propose a hierarchical adaptive clustering
model for map segmentation and a cost-utility based task
allocation method for multi-agent exploration. In this section,
we introduce the segmentation model as well as the multi-
agent exploration task allocation method including detailed
algorithms and performance analysis.

A. HIERARCHICAL ADAPTIVE CLUSTERING
The model of the proposed segmentation method consists
of multiple levels of clustering systems. Each level can be
considered as a modified Adaptive Resonance Theory (ART).
ART is a family of neural network models that categorizes
and grows clusters from inputs in a self-organized man-
ner [45]. The particular ART model employed in this paper is
a modified version that clusters inputs in Euclidean space and
learns the center points (centroids) of the clusters. We apply
two levels of clustering in this architecture: the lower-level
clustering that groups points sampled randomly from the map
or directly from input sensors; and the upper-level clustering
which groups the lower level cluster centers into larger seg-
ments. In contrast, the original ART, as in [11], may represent
clusters as areas or regions in a multi-dimensional space.

1) LOWER-LEVEL CLUSTERING NETWORK
Figure 1 shows the lower-level clustering network. Consider
a location point p = (x, y) in aM × N two-dimensional map
of the environment. A normalized input p = (p1, p2), where
p1 = x

M and p2 =
y
N is computed so that p1, p2 ∈ [0, 1].

A cluster node j in F2 layer is activated based on bottom-up
Euclidean choice function

Tj = 1−
∥∥p− wj∥∥2

where wj is a weight vector associating the input p in F1 with
the node j in F2 and

∥∥p− wj∥∥2 denotes the euclidean distance
between p and wj.
A node J is selected to be the category of p in F2 if it

satisfies the resonance condition such that

TJ = max{Tj | for all j in F2,Tj ≥ ρ}

where ρ ∈ [0, 1] is the vigilance parameter. If no F2 node
satisfies the resonance (for every j, Tj < ρ always holds),

FIGURE 1. The model of hierarchical adaptive clustering, consisting of
three layers, namely the input layer (F1 layer), the lower layer (F2 layer)
for lower-level clustering, and the upper layer (F2’ layer) for upper-level
clustering. The model takes the normalized location points as inputs and
clusters the input points through a two-level hierarchical clustering
procedure. The output is the cluster center to which the input point
belongs.

a new uncommitted node is recruited in F2 to represent the
new input. Thus, the categories (clusters) are growing as the
network encounters novel inputs.

Whenever a node J is selected, a weight update operation
is conducted so that wJ is updated by

w(new)
J ←

mJ .wJ + p
mJ + 1

where mJ is the number of input points categorized as J so
far. Here, the weightwJ represents the center (centroid) of the
cluster.

In the lower-level clustering, we consider a point p is inside
a category j if its normalized position (px , py) has the closest
Euclidean distance towards j (located at wj) while no greater
than ρ as the resonance criteria. From empty areas on themap,
n points are randomly sampled to make the set of sampled
points P = {pi}ni=1. Each pi ∈ P is presented consecutively
as an input to be clustered or grouped as a node J . Thus, each
node j in F2 represents a segment in the map with a center
point p̂j = (x̂ j, ŷj) as the inverse normalization of its weight
vector wj.

2) UPPER-LEVEL CLUSTERING NETWORK
Every center point p̂j of every lower-level cluster node j in
F2 is then presented consecutively as the input to F1’ layer
of the upper-level clustering network to generate the upper-
level segments or clusters in F2’ (Figure 1). This upper-level
network works similarly as the lower-level one. However, it is
modified so that the resonance criteria to select the matching
category include an additional check if no obstruction (e.g.,
walls, obstacles) exists between the input point and the center
point of the category being selected. This extra check is used
so that any pair of upper-level cluster and low-level input
cluster with a non-empty point (e.g., door, wall, partition) in
between will be excluded from the cluster.
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FIGURE 2. The process of hierarchical adaptive clustering: (a) Points sampling; (b) Lower level cluster centres; (c) Upper level
clusters; and (d) The graph representation constructed form the upper level clusters.

FIGURE 3. The process of incremental segmentation during exploration:
(a) Points sampling in the partially known area; (b) Lower level clustering
and (c) Lower and Upper level clustering on the partially known area; and
(d) Incremental graph construction based on the growing segment
clusters.

B. MAP SEGMENTATION AND GRAPH CONSTRUCTION
Before the lower level segmentation starts, a pre-processing
is conducted using the Shi-Tomasi approach to detect doors
and door features within the area to be partitioned [46], [47].
The clustering is then conducted within a known or mapped
area A in the environment. If the environment has been
completely known or mapped prior to the segmentation, A
is considered covering the entire area of the environment.
Algorithm 1 shows the steps included in the segmentation
process by the hierarchical clustering method. In this case,
unknown or unexplored areas in the environment are consid-
ered unsegmented.

At the end of the upper-level segmentation, a graph repre-
sentation structure G can be formed by connecting the center
points in the upper level cluster centres SU to each other.
Each segment center corresponds to a node (vertex) with
the edge connecting to another associated with their path
distance, where the path is calculated by A* path planning

Algorithm 1: Hierarchical Clustering Segmentation
Input : Area A in the map
Output: The list of segments with the corresponding centroids

1 Pre-process A for door and door features with Shi-Tomasi
approach

2 Sample n points P = {(xi, yi)}ni=1 on A
3 for each pi in P do
4 Normalize pi into input vector p to present to lower level

network in F1
5 Perform clustering with lower-level network to generate

the set of cluster center points SL in F2
6 end
7 for each p̂j in SL do
8 put (normalized) p̂j as the input to upper level network in

F1’
9 Perform clustering with upper-level network (excluding

points with obstruction in between the cluster center) to
generate the set of cluster center points SU in F2’

10 end
11 Construct graph G based on SU

algorithm [48]. To simplify the matter, we set a threshold δ
such that edges larger (longer) than δ can be excluded. In our
experiment, we set δ to be the length of the shorter side of each
2-dimensional map. This process is performed in the last step
of Algorithm 1. When the map of the environment is known
in advance, the segmentation process and the construction of
G are illustrated in Figure 2 (a) to (d).

C. COST-UTILITY BASED EXPLORATION TASK ALLOCATION
Based on the segments clustered from the map, an agent can
be allocated to visit a segment based on a certain criteria. The
criteria used in this paper is the least cost the agents need
to spend to visit. Another criteria is the best opportunity or
utility for a segment to be visited and explored.

In this part of the section, the values of the target allocation
to select with the trade-off of utility and cost during the
exploration are defined.

1) Cost
The cost of visiting a location by an agent is based on the
traveling distance from the original location of the agent
to the target. In this case, the shortest path distance based
on A* path planning algorithm for 2D grid map is used.
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With segmentation, the A*-based path distance from agent
k to segment i is denoted as dA∗k,i . The location of i is then
determined by the segment center point. Let CI ,K be the set
of possible cost of an agent to visit a segment i so that,

CI ,K =
{
dA∗k,i | ∀k, i k ∈ [1,m], i ∈ [1, n]

}
. (1)

2) Utility
When an agent is allocated to a segment location, it is rea-
sonable not to allocate another agent to the same location
especially when there is still another segment unexplored.
The utility value can be considered as a measurement to
predict whether a segment is worthwhile to visit given other
segments and other agents in the area. Let Ui be the utility of
segment i.Ui can be defined as the minimum cost of an agent
within a range surrounding i to visit the segment as follows,

Ui← min
i

ci,k
β
, ∀i, k, ci,k < β, (2)

where ci,k ∈ CI ,K and ci,k is the cost for agent k to travel to
segment i. β is the maximum limit of the cost for an agent
to be considered in the utility. In our experiment, we set β
equals to the shorter side of each 2-dimensional map.

Given the utilities of the segments and the costs to visit
them by the agents, the allocation for agent k can be obtained
as follows,

sk ← argmax
i
(Ui − γ.ci,k + σ.wi), (3)

where γ is the cost significance parameter, ci,k is the cost of
agent k to visit i, σ is the weight significance parameter, and
wi the importance weight of segment i. The weight wi can be
used to determine if particular segments are more important
than the others. The weight of segment i can be defined as

wi = 1−
ei

max
j
(ej)

, (4)

where ei is the importance score of segment i, indicating
the centrality of segment i. Intuitively, after the map is seg-
mented, the border region should be explored preemptively
comparing to a centre regions, as centre regions are easier
to be visited by any agents in subsequent exploration. Based
on the graph representation G obtained by segmentation in
Algorithm 1, a Google Power Iteration [49] can be applied.

The Google Power Iteration, presented by Bryan et al.
[49], is a well-known page ranking algorithm to calculate
the importance value for each webpage, where each webpage
is a node in the network or graph. This method outputs
the centrality score for each node. We adopt the centrality
score as the importance score (e1, . . . , en) for the nodes in
graph G in Eq (4). The importance score of a node is high
if it connects to many other nodes, and vice versa. Thus,
by conducting power iteration, nodes located at the center
may have high importance scores, while those around the
border of the environment tend to have lower scores.

Besides the significance of centrality in the environment,
it is also possible to assign wi in relation to another factor
related to the environment or task conditions.

Algorithm2:Exploration TaskAllocation based onCost-
Utility Measure
1 perform segmentation with Algorithm 1 if known area A is

initially available
2 while exploration is unfinished do
3 for each agent k do
4 if new area A is uncovered by agent k then
5 perform segmentation in A with Algorithm 1
6 end
7 for each segment i do
8 update costs CI ,K and utility Ui
9 end
10 allocate agent k to segment sk , where

sk ← argmaxi(Ui − γ.ci,k + σ.wi)
11 if no unallocated sk is available (all have been

allocated to other agents) then
12 find the set of frontier points V within the

segment where agent k is currently in
13 allocate a frontier v ∈ V to agent k to visit
14 end
15 end
16 end

3) INCREMENTAL SEGMENTATION AND EXPLORATION
Every time an agent moves to its designated area, the cost
and utility corresponding to the agent and its target change
according to equations (1) and (2). Similarly, the best tar-
get segment to allocate may change as well according to
equation (3). When the agent arrives at its allocated target,
it scans its surroundings and the information from the sen-
sor readings updates the current map of the environment in
the corresponding area surrounding the agent location. This
uncovered area resulting from the scan readings is considered
as a newly explored area A and subjected to the segmen-
tation process. In this case, the task allocation process can
be conducted continually and incrementally as each agent
moves and scans its surrounding. It can also be performed in
parallel for each unfolding area on the map or separately in
a decentralized manner when multiple agents are involved.
The incremental segmentation process can be depicted in
Figure 3.

In this paper, it is assumed that the segmentation and
task allocation are conducted in every cycle of the agent
execution. The cycles can be either synchronously or asyn-
chronously performed among the agents. The segmentation
process is initiated whenever an area A is unfolded by an
agent. Algorithm 2 shows the overall steps taken by the
multi-agent exploration system,which ensures a full coverage
of the entire map exploration. Specifically, the condition in
Line 2 is satisfied if and only if there is no more frontier
point on the map. Since frontier points mark the boundaries
between the explored area and unexplored area, the void of
frontier points indicates that there is no unexplored area in
the map.

The conditional statement in line 11 Algorithm 2 checks
if no segment is available to be allocated to the agent since
all segments have been allocated to others. This condition
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FIGURE 4. Illustration of hierarchical adaptive clustering based
exploration by four agents in an unknown environment. The dark blue
region indicates unexplored area, while the gray region indicates
explored area. (a), (b) and (c) exemplify different exploration stages,
while (d) shows the motion directions of each agent in more detail at the
stage shown in (b).

may occur when the number of identified segments is less
than the number of agents. This also means that two or
more agents may occupy the same segment. In that case,
a frontier-based allocation is applied to the agent. A frontier is
a location in the boundary between known and unknown area.
Line 12Algorithm 2 finds all frontiers (V ) within the segment
or area where the agent is currently resided in. A frontier v is
then selected and assigned to the agent to visit. The selection
criteria for the frontier-based allocation can also be based on a
cost-utility measure. Similar to the approach described in [5],
frontier allocation s′k for agent k can be defined as follows,

s′k = argmax
v

(U ′v − γ · cv,k ) (5)

whereU ′v is the utility value of frontier point v, cv,k is the cost
for agent k to visit v, and γ is the cost significance parameter.
The utilityU ′v is calculated in a similar way as calculatingUi.
Figure 4 illustrates the process of exploration as described

in Algorithm 2 when it starts with an unknown environment.
Figure 4(a) shows the starting condition after the agents scan
the environment with most parts of the map still unknown.
As shown in Figure 4(d), when a group of agents encoun-
ters several clusters, they tend to separate and spread out
to explore different clusters farther away from each other
according to the cost-utility based allocation as described in
Algorithm 2. Since the allocation is based on existing frontier
points available either within or outside segments, it is also
guaranteed that all possible places or regions accessible by
the agents will be visited or explored. In this case, the unavail-
ability of frontier points becomes the termination criteria of
the exploration.

IV. EXPERIMENTS
In this section, we evaluate and compare our hierarchical
adaptive clustering based multi-agent exploration method
with the existing state-of-the-art methods. To put the model in
a practical sense, the evaluation is based on experiments with

a simulation of search and rescue tasks in an enclosed envi-
ronment. The scenario of the simulation is based on explo-
ration tasks by multiple robots or agents to identify victims
trapped in an indoor environment or a ruined building in the
aftermath of a disaster like the earthquake, fire, or flooding.

In this paper, the main task of the agents is scoped to visit
potential enclosed areas and to send some information back
to the base to construct the complete map and model of the
environment in an efficient way possible despite the lack of
prior map or initial information of the aftermath. Based on the
constructed map, as the base receiving information from the
agents, the segmentation process is conducted incrementally
wherein the agents can be further assigned to unexplored
areas.

A. MAP SEGMENTATION
We conduct the map segmentation experiments based
on 30 floor plans extracted from the publicly available
ROS-based room dataset [12], CVC-FP dataset [50] and R-FP
dataset [51]. The floor plans are defined as grid-based map,
where each cell in the map represents either an empty space
or an obstacle.

We list the parameter settings of the segmentation method
as follows.

• Number of sampled points n: 7000
• Lower-level vigilance ρ: 0.05
• Upper-level vigilance ρu: 0.2

To compare with our proposed hierarchical segmentation
method, we use the implementation of the morphological,
Voronoi, distance-based and feature-based methods, with
default parameters as applied in [12].

The results are compared with the human-labeled ground
truths, which are shown in the left-most column in Figure 5.
We utilize the ground truths from [12] for some of the maps,
and we label the ground truths for the rest.

B. DOMAIN CONFIGURATION AND SETTINGS FOR
MULTIAGENT EXPLORATION
We use the grid world simulation to evaluate the performance
of our proposedmulti-agent explorationmodel. The test cases
for multi-agent exploration are ten complex office maps from
the ROS indoor room map collection [12], which are widely
used in similar studies. Each map contains more than 20 sep-
arate rooms.

In our experiments, each map is captured in a grid-based
representation as a n × m matrix, where n is the height and
m is the width. Each cell in the grid is assigned to one of the
following states:

• Explored: This cell is explored or visited by at least one
agent.

• Unexplored: This cell has not been explored or visited
by any agent.

• Obstacle: This cell is occupied by an obstacle that an
agent cannot pass through.
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To make the results comparable among different maps,
we first define the map’s width m = 200 cells, and its height
is determined according to the aspect ratio.

Each agent can move in the environment one point or cell
step at a time towards eight possible directions in a two-
dimensional map. All agents are homogeneous or have the
same kinematic or dynamic properties. The simulation does
not allow an agent to move through an obstacle like a wall
and similarly through each other. In addition, we assume
each agent is equipped with a 360◦ LiDAR (Light Detection
and Ranging) with a radius of r = 15 cells. During the
exploration, in each step, each agent can move to any acces-
sible neighbouring cell while scanning the local area within
a radius r .
The experiments use the following parameter settings for

segmentation:
Hierarchical clustering model
• Vigilance ρ in lower level clustering: 0.05.
• Vigilance ρ in upper level clustering: 0.2.
We set the vigilance ρ in upper layer according to the

sensor range of the agents, such that an agent can explore the
entire segment when it moves to the centre of the segment.

Multi-agent map exploration
• Cost parameter γ : 0.01.
• weight parameter σ : 0.35.
The average travel distance of every agent in an exploration

trial is used as the performance measure to compare. This
kind ofmeasure has also been used commonly in other experi-
ments on exploration [5], [6]. Anothermeasure for comparing
different methods in the experiment is the Average Travel
Distance Reduction defined as follows,

Reduction =
(db − dp)

db
× 100% (6)

where db represents the average travel distance of the baseline
method, and dp represent the average travel distance by the
proposed or the evaluated method.

C. EXPERIMENT WITH KNOWN MAP
The first experiment is conducted to evaluate the efficiency of
the task allocation based on the segmentation method. In this
experiment, performanceswith different configurations of the
number of agents (from 1 to 10 agents) are compared. We test
different numbers of agents over four different starting points
(top left/right corner and bottom left/right corner).

With the known map, the proposed task allocation method
with hierarchical clustering segmentation method is com-
pared with the basic frontier-based task allocation method in
terms of travel distance reduction. The proposed method is
also compared with the existing state-of-the-art methods for
the average travel distance as evaluated as well in [5] includ-
ing Voronoi-based method, Morphological method, Distance
transform method, and Feature-based method. The best seg-
mentation method according to [6] and [12] is the Voronoi-
based method with Hungarian algorithm to optimize the task
allocation.

D. COMPARISON IN UNKNOWN ENVIRONMENT
The second experiment is conducted to demonstrate the real-
time incremental exploration task allocation based on hier-
archical clustering for segmentation. The experiment setting
regarding the number of agents and their starting points are
the same as the experiment with the known map exploration.

In this experiment, the proposed method is compared
with the Frontier-based method for travel distance reduction
against the varying number of agents.

1) FRONTIER BASED METHOD
The frontier based method has been widely used for multi-
agent exploration [5]. To perform the exploration, each agent
is assigned a target location selected from a list of all fron-
tier points. The selection is based on the distance (the cost)
between the agent and the frontier point. It is also based on
the utility of the target frontier point similar to the utility
of a segment in the proposed method which depends on the
number of the surrounding agents.

During the exploration, the selection criterion of how the
agent k chooses a proper target frontier s∗k can be described
as:

s∗k = argmax
v

(U ′v − γ · cv,k ) (7)

whereU ′v is the computed utility of target v, ck,v is the distance
from agent k to target v. γ is the relative importance of utility
and distance, which generally is set to 1.

V. RESULTS AND DISCUSSION
Our proposed method has been implemented and evaluated
in simulations and experiments. For generating the simulation
results, we used the PythonMatplotlib Animation Toolkit. All
the experiments assumed that the agents share the global grid
map that is produced by the sensor readings of all agents. The
experiments are designed to test if the proposed method can
significantly decrease the average travel distance compared
to baselines and the state-of-the-art methods in both unknown
and known environments.

A. MAP SEGMENTATION
Metrics. Maps or floor plans with human-labeled segments
from [12] are used as the ground truth tomeasure the accuracy
and relevance of the outputs of the different segmentation
methods. Precision, Recall and F-measures are used to quan-
titatively evaluate the methods.
Recall= tp

tp+fp , represents the containment of the generated

segments in all areas of the ground truth. tp is the total true
positive or the coinciding generated segments areas with the
ground truth. fp is the total false positive or the areas of the
generated segments not coinciding with the ground truth.

On the other hand, Precision= tp
tp+fn can be defined as the

containment of the human-labeled segments as the ground
truth in all areas of the generated segments. In this case, fn
is the total false negative or the areas of the human-labeled
segments (ground truth) not coinciding with the areas of
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TABLE 1. Average precision and recall (± standard deviation) of different segmentation methods over 30 maps.

FIGURE 5. Examples of segments generated by different segmentation methods compared with their corresponding ground truth are shown
from left to right: The ground truth; Morphological segmentation; Distance-based segmentation; Voronoi graph-based segmentation;
Feature-based room segmentation; and Hierarchical adaptive clustering segmentation.

the generated segments. F-measure = 2.Precision·Recall
Precision+Recall is the

harmonic mean of precision and recall.
The segmentation results are shown in Table 1. The quan-

titative comparison with respect to the ground truth shows
that the segmentation accuracy of the proposed hierarchi-
cal adaptive clustering method is higher than other state-
of-the-art methods. Through decomposing a map into small
areas and hierarchically organising them to form semantic
segments, the hierarchical adaptive clustering method can
maintain fast and accurate segmentation. The cutting-edge
techniques in the hierarchical adaptive clustering method can
maintain a certain level of precision, which means neither
under-segmentation nor over-segmentation happens.

Figure 5 shows some examples of the qualitative compari-
son of the hierarchical adaptive clustering method with other
state-of-the-art methods. From the examples we can interpret
that the morphological, distance transform and feature-based
segmentation methods tend to oversegment the map. Voronoi
graph-based segmentation, however, as a robust and accurate
method, may still fail to segment the corridors correctly.
The hierarchical adaptive clustering method can generally
maintain high accuracy and robustness.

B. RESULTS OF KNOWN ENVIRONMENT EXPLORATION
Figure 6 summarizes the average travel distance and
reduction rate by the proposed method in exploring the

environment with and without node weighting. The results
show that the proposed method can reduce the overall dis-
tance traveled to explore the environment compared to the
baseline Frontier-based method. Moreover, comparing to the
frontier-based method, more reduction can be observed as
the number of agents is increased. In particular, our proposed
model achieves more than 30% reduction (with around 20%
standard error) from the baseline frontier-based approach
for three agents on-wards. The hierarchical map segmenta-
tion provides a more effective task allocation strategy for a
team of agents compared to the frontier-based task allocation
methods.

We also compare the hierarchical clustering based explo-
ration with and without the nodes’ weights. Figure 6 includes
the results when different weights for segments are used.
In this case, a larger distance reduction can be obtained when
fewer agents are involved. However, no significant reduction
can be observed for larger numbers of agents. The reason is
because when many agents are involved in exploration, the
redundancy of the exploration secures all the regions to be
easily accessed by any agent, no matter the regions are at the
border or the center of themap. Although addingweightage to
the nodes does not improve the performancewhen the number
of agents is large, it still contributes to the task allocation
when the number of agents is less than or equal three.

Figure 7 shows that the proposed hierarchical clustering
based method consistently outperforms the other methods
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FIGURE 6. (a) Average travel distance reduction achieved by the
hierarchical adaptive clustering based multi-agent map exploration under
known maps with and without node weighting compared with the
frontier based method. (b) The corresponding average travel distance of
the segmentation-based multi-agent exploration (with and without
weights) and the frontier-based method.

FIGURE 7. Average travel distance for hierarchical adaptive clustering
based exploration compared with morphological, feature, voronoi, and
distance-transform based exploration method.

including morphological, voronoi, distance transform and
feature based exploration methods in terms of average travel
distance in exploring the environment.

C. RESULTS OF UNKNOWN ENVIRONMENT EXPLORATION
Figure 8 shows the average travel distance and reduction rate
when the environment is initially unknown. The results show
when no map information is provided, the proposed explo-
ration method achieves more than 10% reduction in travel
distance compared to the baseline frontier-based method.

FIGURE 8. (a) Average travel distance reduction achieved by the
hierarchical adaptive clustering based exploration with unknown maps
from the frontier-based method. (b) The corresponding average travel
distances.

Furthermore, to test the performance of the method under
different environments, we categorize the experiment maps
into two types:
• maps with simple environment,
• maps with complex environment.
As the number of rooms grows, the map becomes more

complex, and a better coordination strategy is needed to over-
come the increase of complexity. We categorize maps with
more than 30 rooms as the complex environment, whereas
maps with 30 rooms or less belong to the simple environ-
ment. For example, in Figure 5, the map in the fourth row
is a complex environment, while others are categorized as
simple environments. We show the performance compari-
son between the proposed multi-agent exploration and the
frontier-based method under both types of the map. The
results are shown in Figure 9. The results show that with
more complex maps, the proposed method can still allocate
the exploration tasks better than the Frontier-based method.

We also test the robustness of the approach inmore realistic
settings by introducing 5% random noises to the environment
as false detections of empty space, such that the sensor or
the point sampling may get false detection of either empty
spaces or due to the noises. Obstacles in the environment
or those perceived by false detection may indeed affect the
map segmentation and path planning procedure. For example,
a single room may be wrongly segmented into two parts, and
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FIGURE 9. (a) Average travel distance reduction achieved by the
hierarchical adaptive clustering based exploration compared with frontier
based exploration method on maps with different complexities.
(b) Average travel distances in the simple environment; (c) Average travel
distance in the complex environment.

the agents will have to bypass the obstacles. Therefore, obsta-
cles or noises in the environment reduces the efficiency of
the exploration task. Figure 10 shows the samples of original
maps and their noisy settings. The exploration results under
unknown environment are shown in Figure 11. Neverthe-
less, even under the noisy environment, the experiment still
shows a high level of robustness in our proposed exploration
method. Specifically, despite the error in identifying some
empty areas, our proposed method can still conduct more
efficient exploration than the baseline frontier-based method.
Overall, obstacles have a mild effect on our incremental
segmentation and exploration procedure. Even if redundant

FIGURE 10. (a) Original maps. (b) Maps with 5% random noise as
obstacles.

FIGURE 11. (a) Average travel distance reduction achieved by the
hierarchical adaptive clustering based exploration from the frontier based
exploration method in noisy settings. (The error bars indicate the
standard error.) (b) The corresponding average travel distances.

segmentation occurs due to noisy detection by the sensors,
resulting in a whole room being segmented into parts, the
task allocation method provided in Algorithm 2 can still
rectify this mistake, as based on the cost-utility function, the
nearest agent is highly likely to be assigned to explore both
segments of the same room. Therefore, our proposed real-
time segmentation and task allocation method can mitigate
the dependency on the accuracy in the map segmentation.
Similar to the noisy environment, in the case when the door-
way is not accurately detected and the segmentation is not
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well performed, our proposed method is still able to allocate
agents to suitable positions based on our allocation algorithm
and conduct incremental segmentation to further rectify the
allocations.

In addition, the collaborative exploration is also scalable
in terms of the number of agents. The results under noisy
environment also indicate that despite the inaccuracy affect-
ing individual costs and utilities, the overall outcomes of the
allocation efficiency are not so much different from those in
perfectly accurate configurations since they are based on local
collective measures of crowd density obtained continuously
while the agents move and new segments are identified.

VI. CONCLUSION
We have presented a novel method combining hierarchical
map segmentation and cost-utility based task allocation for
multi-agent exploration. The method allows the segmentation
process and the task allocation to be conducted iteratively and
incrementally in real-time, making it suitable for exploration
in either known or unknown environment.

Compared with other state-of-the-art segmentation-based
exploration methods, our approach performed better in terms
of the average distance traveled by the agents. We also
showed that the approach can reduce the overall travel dis-
tance compared with the standard frontier-based method to
deal with unknown environment. In addition, it is demon-
strated that the segmentation method together with the
cost-utility-based task allocation criteria robustly supports
the exploration process in reducing the overall travel dis-
tance even in the noisy or cluttered environment. Thus, our
approach offers a solution towards addressing one of the hard
problems inmulti-agent exploration wherein the environment
is unknown and/or noisy.

Going forward, we will scale up the investigation to look
at how the segmentation and allocation methods can be
extended to deal with more practical and realistic tasks or
operations beyond exploration, such as search and rescue,
wherein prior knowledge or information about the situation
is lacking. Some physical aspects of behavior and constraints
can be included like collision handling and diversity of phys-
ical properties to study their influences on the cost and utility
of exploration. Similarly, additional factors in relation to
heuristics or strategies of exploration like energy sources or
number of potential people to find in a region as theweightage
to speed up the search and rescue tasks. Furthermore, to deal
with the variations in different domains and environments
beyond floor plans, an integration with reinforcement learn-
ing techniques is necessary to enable continual adaptation and
improvement of the task performance over a long period of
time.
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