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ABSTRACT Event-triggering (ET) is a highly promising technique for efficient operation of Internet of
Things (IoT) devices, where instead of continuous or even periodic triggering of events, communication
and control is only applied after some event interrupt. In this work, the proposed event-triggering technique
is examined and applied on public transportation services, having as an objective to provide good tracking
accuracy for a fleet of buses, while limiting communication between the system’s components. Specifically,
an ET technique is proposed, where a local and a remote host use behavior modeling to track the evolution
of the system and synchronization messages are only sent when deviations are detected between the
nominal model and the actual behavior of the system. This work focuses on a multi-model event triggering
and proposes and develops a multi-model ET (MMET) technique, where multiple models are derived to
accurately represent the system state. This is achieved by utilizing data-driven approaches that are used
to analyze recurrent patterns and predict the system’s behavior. In this way, both local and remote hosts
can adapt to system changes by switching to the most accurate model that best represents the underlying
system settings. The proposed MMET technique is subsequently compared to the single-model event
triggering (SMET) approach, as well as traditional periodic triggering techniques, demonstrating thatMMET
can provide better performance in terms of tracking accuracy at a lower number of communication events,
reducing in this way communication energy consumption as well.

INDEX TERMS Event triggering, behavior modeling, energy efficiency.

I. INTRODUCTION
The use of IoT devices increases rapidly across all aspects
of everyday life. Their ability to perform specific functions
without human intervention in order to improve the quality
of life, increases their appeal to the masses. However, most
IoT devices are resource constraint and this leads to a lim-
ited operating performance, which is greatly affected by the
various computation, communication, and sensing/actuation
tasks that need to be executed [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Razi Iqbal .

Various works exist in the literature on the development
of algorithms that preserve maximum performance of these
devices, as investigated in [2]–[4]. Importantly, by limiting
the communication between devices, while achieving target
performance levels, improves longevity, as well as avoids
contention over the wireless channel and queueing delays in
processing these messages [5]. Event-triggering (ET) algo-
rithms facilitate these features by enabling communication
only at particular event interrupts, while at every other time
the communication circuitry is put to sleep or even com-
pletely turned off [6].

In this work, a model-based event triggering technique is
investigated for the exchange of information between a local
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and a remote host. The local host resides in the system to
be monitored, while the remote host is off premise, and both
the local and remote hosts have a model of the system. The
remote host uses this model to estimate the system state when
there is no communication between the local and remote host,
and the local host compares this model with the true state
of the system, as observed by its sensors, to decide when
(re)synchronization events need to be sent out in order to
inform the remote host of changes in the system.

As demonstrated in this work, to accurately represent the
system state, and in order to minimize the number of synchro-
nization events, multi-model event triggering techniques can
be developed through simple data-driven approaches. These
approaches consist of three phases, namely behavior model-
ing, event detection, and event handling [7] (as elaborated in
Section III). To demonstrate the validity and the effectiveness
of the multi-model event triggering technique, it is applied to
a public transportation scenario, where a fleet of buses service
a particular route that needs to be monitored and managed.
In this case, the local host consists of an onboard mobility
tracker and a communication interface, while the remote host
is a fleet management center, where information is collected
to monitor the complete system state. The multi-model ET
technique is also compared to the single-model ET approach
(also implemented for the specific transportation scenario),
demonstrating the advantages of the multi-model approach
in terms of tracking accuracy using significantly lower num-
ber of events resulting to reduced communication energy
expenditure.

Specifically, the contributions of this work are as follows:
• It develops a novel multi-model event trigger-
ing (MMET) technique where multiple models are
derived to accurately represent the system state.
In particular, these multiple models are derived using
data-driven approaches that analyze recurrent patterns
and can predict the system’s behavior.

• It demonstrates how this multi-model approach
addresses shortcomings of the single-model technique
(in terms of number of events generated and response
times), allowing the remote host as well as the local (cen-
tral) host to quickly adapt to any changes that may
occur in the system, by switching to the most accurate
model that best represents the underlying system settings
whenever deemed necessary.

• It extensively analyzes this novel model-adaptive frame-
work (both the single- and multi-model) for different
target number of events, bounds, etc. This performance
evaluation is performed both analytically and utilizing
real data by considering a real-world practical scenario
(a bus route in the city of Nicosia, Cyprus), demonstrat-
ing the validity and feasibility of the proposed MMET
technique as compared to the SMET as well as tradi-
tional periodic triggering techniques.

• It investigates the network operating conditions/
parameters required for achieving a balance between
tracking accuracy and number of events generated,

based on the system operator’s specific performance
targets (i.e., deviation from true location, energy con-
sumption, bandwidth utilization, etc.).

The rest of the paper is structured as follows: Section II
includes the related work and the novelty of the proposed
work, while the proposed ET architecture is presented in
Section III. Details of the application scenario are included
in Section IV. The single-model event triggering approach
is discussed in Section V, while the multi-model case is
subsequently discussed in Section VI. Performance results
of the single-model approach (benchmark), together with the
performance evaluation of the MMET technique, based on
a real-world practical application scenario, are detailed in
Section VII. Finally, Section VIII offers some concluding
remarks and possible future directions.

II. RELATED WORK
Recent studies show that the use of IoT devices is signifi-
cantly affected by the limitations in energy availability [8],
[9]. Thus, several works in the literature have given particular
emphasis on the deployment of solutions to minimize the
energy consumption of those devices [2], [3], [10]–[12].

For instance, mobility trackers are extensively used for
monitoring and logging fleets of vehicles to effectively man-
age their use, especially in the public transport context. Public
transport services are characterized by recurrent trips, which
can be utilized to extract information and predict behav-
ior. Under this condition, various techniques and algorithms
have been developed to minimize energy consumption, while
preserving tracking accuracy (defined as the average error
between the actual and the reported location) [13].

One popular approach is trace compression, as used in
several works reported in [12], [14]–[20]. Trace compression
algorithms aim to reduce the size of trajectory data, while
retaining the quality of the information. Clearly, the less data
exchanged, the less energy expended. However, despite of the
fact that this technique reduces the size of each transmission,
it is not capable of reducing the number of transmissions
without sacrificing tracking accuracy [13].

Complementary to trace compression, ET algorithms,
in contrast to traditional periodic triggering approaches,
trigger communication only when an abnormal event (that
can potentially change the state of the system) has taken
place [21]–[23]. Event triggering is particularly useful in
applications where recurrent mobility patterns exist and
can be obtained utilizing and analyzing collected data
via machine learning or other techniques (e.g., regression,
Kalman filtering) [24]–[29]. Thus, the number of communi-
cation events is minimized, resulting in extended running life
for the IoT devices. Various strategies to handle ET signals
have been proposed [30], and several ET architectures and
techniques have been presented in the literature. Specifically,
centralized supervisory architectures have been proposed and
applied due to their simplicity [31], while distributed archi-
tectures have also been extensively researched [32]–[37].
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Further, collaborative architectures have also been intro-
duced, which are capable of distributing computations across
a network of devices, resulting in a decreased computational
complexity [38].

This work extends our previous works in [7] and [39] by
investigating the development of a holistic model-adaptive
(single- and multi-model) framework for the ET technique.
Specifically, this work presents, develops, analyzes, and
experimentally evaluates a complete model-adaptive trigger-
ing framework, where a local and a remote host use behav-
ior modeling to track the evolution of a dynamical system
and trigger events (i.e., send communication messages) only
when the actual and modeled behaviors of the system deviate.
As detailed in Section I, the focus of this work is on the devel-
opment of a novel multi-model event triggering (MMET)
technique and its performance advantages as compared to the
SMET and periodic triggering approaches, as by representing
the system state with multiple models the system dynamics
are more accurately captured, and at the same time the num-
ber of resynchronization events is decreased. Additional work
on MMET was also presented in our previous work in [40],
where, contrary to this work, we considered the case where
vehicles exchange information in order to ascertain their next
operating models.

As previously mentioned, the proposed multi-model tech-
nique is evaluated for a public transport use case, where a
fleet of buses service a particular route. It is shown, that the
proposed MMET technique, that extends the single-model
ET framework, provides enhanced tracking accuracy as com-
pared to SMET, while at the same time limiting event trig-
gering between the local (i.e., onboard mobility tracker with
a communication interface) and remote host (i.e., fleet man-
agement center). Specifically, as demonstrated in this work,
MMET provides more that 3× improvement in model track-
ing accuracy for the same number of triggering events as com-
pared to SMET. Alternatively, for the same tracking accuracy,
the number of triggering events reduces by approximately
9× for the MMET as compared to SMET, which trans-
lates directly to less communication bandwidth utilized and
less communication energy consumed by the local devices,
an important consideration for the successful implementa-
tion of IoT in a number of application scenarios. Further,
compared to a periodic triggering technique, for the use case
examined, the MMET technique achieves a 5× improvement
in terms of the number of vehicle state updates, thus again
outperforming the periodic approach in terms of communi-
cation bandwidth and communication energy expended.

One can argue that even though energy savings are achiev-
able for the use case under examination, energy consumption
is not a critical consideration for this specific use case, as the
remote host is on a vehicle where there is a continuous supply
of power (even though it could be argued that for electric
vehicles this could be a consideration as any unnecessary
energy consumption will constrain the travel distance of the
electric vehicle). Nevertheless, the reader should note that the
multi-model event triggering approach proposed in this work

FIGURE 1. Coordinated data-driven event-triggering framework.

is completely general and it applies to any type of IoT net-
work utilizing any type of device, including battery-powered
mobile devices and smartphones, where energy constrains
are very much an issue (i.e., it is not confined to the public
transport use case). Thus, in general it can provide both
communication and energy savings, especially for networks
utilizing devices with battery constrains.

III. PROPOSED DATA-DRIVEN ET ARCHITECTURE
In the proposed ET architecture, a local and remote host are
assumed, where the local host is regarded as the on-board
entity, while the remote host is the off-board one, usually
residing in a computing infrastructure. Both hosts assume
that the system follows a mutually agreed behavior model
under normal conditions. As long as the actual behavior of
the system matches the model behavior, no communication
between the two hosts is required. The local host uses the
predefined behavior model in order to detect abnormalities
of the system, based on some bounds that force the triggering
of an event interrupt. The local host then decides whether to
handle the event interrupt by itself or/and inform the remote
host about the occurrence of the event interrupt. Similarly, the
remote host can decide whether to handle the event interrupt
by itself or/and inform other services about the occurrence
of the event interrupt. The actions taken by the local/remote
host can include updates or changes to the behavior model.
Figure 1 shows a diagram of the proposed technique to aid
understanding.

Specifically, as previously mentioned, ET has three phases,
namely: behavior modeling, event detection, and event han-
dling, which are described as follows:

1) Behavior Modeling: A model of the normal behavior
of the system is developed from collected data. This
model will be compared with the actual behavior of the
system and if there is a deviation between the model
and the actual behavior, an event is triggered.

2) Event Detection: Different event detection algorithms
can be deployed to classify the deviation between the
actual and model behavior. For this work, a simple
threshold-checking approach is followed.

3) Event Handling: Event handling is a characteristic
of the ET architecture. The event can be handled
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FIGURE 2. Logical diagram of proposed event triggering technique.

locally, remotely, or collaboratively. In this work events
are handled collaboratively, as it will be explained in
Section IV below.

In the proposed system, a predetermined model (for the
SMET approach) or a set ofmodels (for theMMET approach)
of the application scenario considered is generated and used
to monitor/track the system’s elements. As long as the sys-
tem’s operation matches the operating model, no commu-
nication between the two hosts is required. However, when
a deviation is observed between the model and the true
system operation/state that exceeds a predefined threshold,
an event interrupt is generated. The local host can then decide
whether to simply send a resynchronization event or inform
the remote host about the event and switch to a different
prediction model as well (in the case of a multi-model system
approach). Figure 2 shows a logical diagram of the proposed
ET technique.

IV. PROBLEM DEFINITION AND OBJECTIVES
Without loss of generality, the proposed ET technique is
utilized in order to monitor a fleet of public transport vehi-
cles (buses) serving a particular route of the system as detailed
in [7]. This is an important practical scenario, as monitoring
public transport systems reduces unpredictability (that can
potentially arise due to accidents, traffic congestion, etc.) and
enhances the utilization of public transport [41], [42]. Simple
solutions to the tracking problem of public transport vehicles
includes the utilization of GPS sensors to collect location
and timing data, that can be subsequently sent to controllers
that are dedicated for traffic monitoring, providing the public
transport users with arrival-time predictions, as well as the
overall optimization of the transportation network [43]- [45].
As mentioned in Section II, data collection can be achieved
either via periodic signaling (traditional approach) or event

triggering in applications where recurrent mobility patterns
exist and can be obtained utilizing and analyzing collected
data. This is indeed the case for the scenario considered in this
work, with buses serving a particular route. Thus, events can
be generated only when unanticipated patterns are detected
i.e., no communication is required when the movement of a
bus matches its operating model.

In the scenario considered, and based on the system archi-
tecture description of Section III above, the local host can
be an IoT device onboard a bus and the remote host a server
collecting and processing the messages generated by the local
host. Thus, in this work, a predetermined model (or set of
models) of the bus mobility is generated and used to track the
movement of the bus along its route. If the actual mobility
(GPS readings) does not follow the model, then an event is
triggered, the local host switches models and the information
is relayed to the server (remote host) for resynchronization
purposes. The (predicted) bus arrival time is also readjusted
and relayed to the corresponding bus terminal for passenger
notification.

The objective is to accurately track the movement of the
buses, while effectively minimizing communication events
and the related energy consumption at the local hosts, as well
as processing at the local and remote hosts. Noticeably, the
deviation threshold between the actual and predicted mobility
can affect both the tracking accuracy and the volume of trig-
gered events; clearly, the larger the threshold, the larger the
deviation between actual and modeled behavior. Therefore,
the deviation should be kept to a minimum by controlling the
magnitude of the threshold.

A. BEHAVIOR MODELING
The following transportation scenario considered is described
hereafter. There exist a bus route which consists of bus stops
that belong to the set b ∈ [1, 2, 3, . . . ,B]. The travel time
between bus stops i and j, is defined as di,j, where [i, j] ≤ B
and j > i. Thus, a data matrixDn ∈ RB×B can be constructed
having the following form.

Dn =


0 d1,2 d1,3 . . . d1,B
0 0 d2,3 . . . d2,B
...

...
...

. . .
...

0 0 0 . . . dB−1,B
0 0 0 . . . 0


Each bus trip has a unique data matrix Dn. As a result, for

N bus trips there exists N different data matrices, Dn, that
belong to set D = DN

n=1. As demonstrated experimentally in
the sequel, the distribution of travel times di,j has a Gaussian
shape envelop and hence a Gaussian distribution is assumed
for generating moments of the random variables di,j.

B. EVENT DETECTION
An event is defined as a diversion from the range τi,j ± α,
where τi,j is the mean of the distribution of the random
variable di,j (i.e., the 1st moment), and α is the time bound.
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FIGURE 3. Random variable di,j and violation bounds. Event is generated
when actual movement is not within τi,j ± α (red lines).

Different values of α produce different number of events.
Thus, the objective is to choose the appropriate value for
α in order to produce the desirable number of events for a
particular bus route. Figure 3 shows the distribution of time,
di,j, for a segment of the route and the bounds beyond which
a violation in the model is considered.

Clearly, the number of events, E , belongs to the set E ∈
[0, 1, . . .B − 1]. For example, for α = 0, B − 1 events
are generated, since a violation will occur in each segment
of the bus route. On the other hand, for an adequately large
value of α, such that the bounds include approximately the
entire distribution, no events will occur. Consequently, the
right value of α should be computed that produces the desired
number of out-of-bound events (i.e., balancing the number of
communication events with tracking accuracy).

C. EVENT HANDLING
In general, the local host can choose whether or not to inform
a remote host of an event interrupt (since such an event might
be an outlier). For the application scenario considered, the
local host re-synchronizes with the remote host whenever an
event interrupt is triggered. The local host informs the remote
host of the deviation from the actual movement and indicates
whether or not to switch to another operating model as well
(for the MMET case). This procedure is illustrated in Fig. 2.

In this work, two different sets of information passed by
the local host to the remote host are examined. Initially,
in Section V the only information passed to the remote host
is the deviation between the actual and modeled behavior
(single-model case), while in Section VI the remote host is
additionally informed whether and to which other model to
switch (multi-model case).

V. SINGLE-MODEL ET
The performance of the ET technique using a single prede-
termined model is initially examined. The mobility model is
first computed and then an algorithm is derived to compute
the bounds α that lead to a particular number of events. The
information provided to the remote host whenever there is an
event interrupt is limited to the deviation (magnitude of α),
since a single model is used.

Set D is sampled with independent and identically dis-
tributed (IID) normal random variables (RVs) with constant
variance. Thereafter, D is split into a training subset, Dtrain,

and test subset, Dtest . Dtrain consist of 80% of the data of D
while Dtest consists of 20%. A behavior model is generated
using set Dtrain. Thereafter, and to further investigate the
performance of the proposed ET algorithms under a broader
set of parameters, a simulated set of traces is generated with
these samples defined in set S and split into Strain and Stest ,
where Strain is used for the training of the algorithms, while
set Stest is used for their evaluation, similar to set D.
For the analysis that follows, a bus route of 8 bus stops

(B = 8) is considered. The probability of a particular number
of events PT (E, α), as described in [7], depends on the total
number of event interrupts, E , and the violation bound, α.
For a particular target number of events, E , all possible com-
binations of E events can be calculated using the binomial
coefficients. Hence, for a route with B bus stops, the number
of combinations of E events is described as c =

(B−1
E

)
. These

combinations are stored in a data matrixC ∈ Rc×E which has
the following form:

C =


1 2 · · · E

1 Combination 1
2 Combination 2
...

...

c Combination c


Let P̄(i, j) represent the probability of no event occurring

within segment i→ j (from bus stop i to bus stop j):

hP̄(i, j) = P(τi,j − α ≤ di,j ≤ τi,j + α) (1)

Consequently, the probability of no events occurring from
i to j− 1 until an event occurs at j can be defined as:

P(i, j) = P̄(i, i+ 1)× . . . P̄(i, j− 1)× (1− P̄(i, j)) (2)

The first and last events should also be taken into account.
The first event represents the probability of no event to be
generated until the ith segment, and it is derived in Eq. (3). The
last case represents the probability of no event to be generated
between the jth segment (where the last event occurred) and
the end of the route, as detailed in Eq. (4).

P(1, i) = P̄(1, 2)× P̄(1, 3)× . . . P̄(1, i− 1)

× (1− P̄(1, i)) (3)

P(j, |B|) = P̄(j, j+ 1)× P̄(j, j+ 2)× . . . P̄(j, |B|) (4)

Summarizing, the probability of a particular number of
events to occur is then:

PT (E, α) =
c∑
i=1

E−1∏
e=1

[
P(Cie,Cie+1)× P(1,Ci1)

×P(Cie, |B|)
]

(5)

where P(Cie,Cie+1), P(1,Ci1), and P(Cie, |B|) can be
obtained by Eqs. (2), (3), and (4), respectively.

To aid understanding, Fig. 4 evaluates Eq. (5) by varying
α in the range between [0, 250] and demonstrating the shape
of PT (E, α) for all values of E ∈ [0, 1, . . .B − 1].
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FIGURE 4. PT (E) versus α, for B=8 (for different number of events E).

As expected, the probability of no events occurring for
very large bounds is equal to 1, PT (0, α > 200) = 1.
As the bound gets smaller, the probability of a greater num-
ber of events to occur increases and for a specific target
number of events decreases. Additionally, for α = 0 the
probability of B − 1 events to occur is 1, PT (B − 1, 0) = 1.
Noticeably, for any bound α = α0, the sum of PT (E, α0) is
equal to 1, i.e.,

B−1∑
E=0

PT (E, α) = 1, α ∈ R, α ≥ 0 (6)

For example, for the case of α = 50 the following
probabilities are observed in Fig. 4: PT (0, 50) = 0.087,
PT (1, 50) = 0.5391, PT (2, 50) = 0.3288, PT (3, 50) =
0.0433, PT (4, 50) = 0.0018, PT (5, 50) = 0, PT (6, 50) = 0,
PT (7, 50) = 0.
The objective is to find the value of α such that the number

of events to be generated is no larger than the desired number
of events, K . For this purpose, the cumulative distribution
function (cdf) of PT (E, a) is calculated, as expressed below:

PCDF (K , α) =
K∑
E=0

PT (E, α), α ∈ R, α ≥ 0 (7)

The distributions for PCDF (K , a) versus α are plotted
in Fig. 5 for different target events K . The calculation of
PCDF (K , a) enables the calculation of α for any target K ∈
[0, 1, . . .B − 1] and also for any percentage of the target K ,
ptarget ∈ [0, 1]. For example, a test set of 100 samples tuned
with parameters ptarget = 0.8 and K = 4, should produce
80 bus trips of less or equal to 4 events and 20 bus trips
greater than 4 events. Consequently, the desired αd is defined
as the minimum value of α that drives PCDF (K , α) to become
ptarget , i.e., PCDF

(
K , ad ) = ptarget .

In the aformentioned expression, the only unknown param-
eter is the bound αd . Numerical methods such as the bisection
method [46] can be implemented to calculate the value of
αd (as shown in Alg. 1 below). Using the bisection method,
initially αd is assumed to lie within the interval (αl, αu).

FIGURE 5. PCDF (K ) versus α, for B=8 (for different number of target
events K ).

PCDF (K , α) of α =
αl+αu

2 is compared with ptarget and the
interval is updated accordingly. The process repeats until a
predetermined precision value ε is reached (αu − αl > ε).

Algorithm 1 Calculating Bounds (αd ) for Desired K , ptarget
Input: αl , αu, ε, K , ptarget
1: while αu − αl > ε do
2: Calculate α = αl+αu

2 & PCDF (K , α) using Eq. (7)
3: if (PCDF (K , α) > ptarget ) then
4: αu = α

5: else
6: αl = α

7: end if
8: end while
9: return αd = α

VI. MULTI-MODEL ET
In this section, the single-model ET technique presented in
Section V is extended to consider a set of behavior models
that can be used to estimate the evolution of the system.
At each time instance, both the local and remote host operate
on a single model, ξ , but switch between different behavior
models when deemed necessary. This potential is examined
hereafter to address situations where trace samples are cor-
related and that knowledge can be used to enhanced tracking
accuracy.

A. MODEL BEHAVIOR
Unlike the single-model case described in Section V, here-
after we consider a set 4 that comprises of a number of
operational models, ξi, for each segment of the bus route,
i ∈ [2,B]. To select a specific operating model, the distri-
butions of the travel times in each road segment are split into
areas of distribution (AoD) of equal size. Then, both local
and remote hosts operate on a specific predetermined model,
ξbi ∈ 4, at any one time. To aid understanding, initially a set
of 3 models are considered and an arbitrary number of models
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FIGURE 6. Three-model schematic.

is assumed thereafter. Figure 6 illustrates the case of a set that
comprises of 3 pre-determined models.

B. EVENT DETECTION AND EVENT HANDLING
The event detection for the single-model case sets the bounds
of violation, α, around the mean, τi,j, of the distribution di,j.
In the 3-model case, this corresponds to setting the bounds of
violation around the mean of the model with index number 2
(mean of normal distribution, i.e., area 2 of Fig. 6).

Therefore, it is reasonable for the case of set S (i.e., set
of simulated samples) to set bounds of violation around the
mean of the operating model, ξ . The following procedure is
followed for choosing the new operatingmodel, ξ ′: if an event
occurs, change operatingmodel, ξ , to the one which is nearest
to the violation and set bounds around its mean, τi,j(ξ ′). The
local host will additionally inform the remote host about the
event and the new operating model, ξ ′ (see Fig. 2).
To compute bounds for the case of correlated data,

an updated method is followed to calculate PCDF (K , α). This
method is described in Algs. 2 and 3 below.

Algorithm 2 Calculation of PCDF (K , α)
Input: models, Strain, α, K
Output: PCDF (K , α)
1: Compute τm
2: for i = 1 to |Strain| do
3: Initialization: ξ = 1
4: for j = 2 to B do
5: if τm(ξ )− α ≤ Strain(1, j, i) ≤ τm(ξ )+ α then
6: ρ(i) = ρ(i)+ 1
7: Compute nearest model
8: Update ξ to nearest model ξ ′

9: end if
10: end for
11: end for
12: Compute PCDF (K , α) using matrix ρ
13: return PCDF (K , α)

Initially, the mean of each model is computed and stored in
τm. The operating model is defined by ξ and it is initialized
to one (1). For each trace i of Strain (i.e., for each trace in set
of simulated samples used for training), the number of events
that are generated for the particular bound, α, are calculated.
Each time an event is generated, ξ is changed to the model
nearest to the violation, ξ ′. The number of events generated
for each trace is stored in matrix ρ. The cumulative sum of

matrix ρ can then be computed and subsequently PCDF (K , α)
is calculated for the desired α andK . Thereafter, the bisection
method is used to find ad that produces the desired K and
ptarget . To compute these values, Alg. 3 is used.

Algorithm 3 Calculation of Bounds for Desired K , ptarget
Input: αl , αu, ε, K , ptarget
Output: αd

LOOP Process
1: while αu − αl > ε do
2: Compute α = αl+αu

2
3: Compute PCDF (K , α) using Algorithm 2
4: if (PCDF (K , α) > ptarget ) then
5: αu = α

6: else
7: αl = α

8: end if
9: end while
10: return αd

VII. PERFORMANCE RESULTS
A. PERFORMANCE METRICS
To evaluate the performance of the prediction model com-
pared to the actual system state, a loss function is considered.
For this purpose, a suitable error measure is chosen based
on the absolute difference between ptarget and the achieved
PCDF (K , αd ). Then, the loss function is defined as the mean
value of the error measured over all K ∈ [0, 1, 2, . . . ,B−1],
mathematically defined as follows:

Loss Function = mean
{∣∣PCDF (K , αd )− ptarget ∣∣}B−1

K=0
(8)

For example, for the evaluation of the proposed SMET
algorithm for the analytical scenario considered, N =

5000 samples are utilized with ptarget = 0.98, in order to
compute bound αd . As shown in Fig. 7, αd drops non-linearly
with increasing values of triggering events, K .

The performance of the algorithm is evaluated by applying
the calculated bounds, αd , onDtest . Figure 8 shows the cumu-
lative percentage of events generated using the calculated αd
forK = 4. The proposed algorithm achieves aPCDF (4, αd ) =
0.981 which corresponds to an error of 0.001. Repeating
this procedure and averaging for all values of N , allows the
calculation of the mean test error.

TABLE 1. Test error for different values of N .

Table 1 shows the mean test error for different values
for the number of samples used (i.e., N ). Undoubtedly, the
greater the number of samples used for training, the better
the estimation of αd and the smaller the mean test error. It is
observed that for the case of N = 10000 the model produces
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FIGURE 7. Values of the bound, αd , for different K values and
ptarget = 0.98.

FIGURE 8. Cumulative distribution of events for αd calculated for various
values of K (for the case of K = 4, test error=0.1% and bound=108 sec).

almost perfect results as the difference between prediction
and the real values (i.e., the error) is approximately zero.

B. EXPERIMENTAL EVALUATION
1) DATA PROCESSING
To evaluate the proposed technique, the algorithm was
applied on a real-world public transport scenario, with
data provided by the Transportation Organization of
Nicosia (OSEL) in Cyprus. The data consists of locations
(longitude, latitude) and timestamps of 4 buses operating on
a particular service (Route 259), with B = 58 bus stops.
Initially a pre-processing step is introduced in order to

provide a useful input set of data. Thereafter, the application
of the SMET and MMET techniques is assessed. Specifi-
cally, the pre-processing step involves removing invalid traces
(i.e., movements when out-of-service) in order to generate
set Dreal .

This is clearly illustrated in Fig. 9 that shows the data
collected for Route 259 and Fig. 10 that shows a plot of the
locations of the bus trips generated after the pre-processing
procedure is applied. Evidently, this pre-procedure success-
fully filters out almost all unwanted traces, clearly distin-

FIGURE 9. Bus trace data for Route 259 before pre-processing. Blue dots
correspond to bus traces; Red dots correspond to bus stops.

FIGURE 10. Bus trace data for Route 259 after pre-processing. Blue dots
correspond to bus traces; Red dots correspond to bus stops.

guishing Route 259. In particular, from this pre-processing
phase, Dreal results in N = 311 bus trips, with the envelope
of the empirical distribution of di,j resembling the Poisson
distribution as demonstrated in Fig. 11.

Further, as discussed in Section VII-A, the greater the
number of bus trips N , the greater the accuracy of the algo-
rithm. Hence, and in order to minimize the test error, artificial
samples are generated that follow the observed bus behavior.

To examine the behavior of the bus trips, distributions
d1,j, for j : 2 → B, are divided into equal-size areas,
previously denoted as Areas of Distribution (AoD). Then,
the Markov chain transition matrix (MCTM), P, is calculated
with a number of states equal to the number of AoDs. MCTM
contains the probabilities of transition from area k of d1,j to
area t of d1,j+1, where t, k are the indices of the specific
AoDs. Figures 12 and 13 shows the transition matrix, P, and
the state diagram for the case of 5 states. The element Pi,j of
datamatrixP in Fig. 12 represents the probability of transition
from state t to state k , which corresponds to the probabilities
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FIGURE 11. Histogram of traveled time between bus stops 1 and 8 (d1,8).

FIGURE 12. Transition matrix for the case of 5 states.

FIGURE 13. State diagram for P5.

of transition from area k of d1,j to area t of d1,j+1 as explained
above.

From Figs. 12 and 13, it is evident that there exists a
strong dependency between the previous and the next state.
Evidently, when in a particular state, it is very probable to
continue operating in the same state, as the probabilities of
the diagonal of matrix P are significantly higher than the rest
of the values in the matrix.

Another key insight is that a large number of states is
required to produce artificial bus trips that resemble the real-
world scenario. Hence, the performance of this technique
is evaluated by its accuracy, defined as the mean absolute
difference between the states produced by the real data and

FIGURE 14. Simulation accuracy vs number of states.

FIGURE 15. Simulation acceptance percentage vs number of states.

the one produced by model-based simulations, over all states
and all segments of the bus route.

Furthermore, due to the location uncertainty there are sev-
eral mobility traces where some vehicle positions appear at
an arbitrary time instance before locations of vehicles in
previous time steps. Therefore an acceptance percentage of
valid simulated bus trips over all trips generated is defined
(e.g., an acceptance percentage of 10% on a 1000-sample
simulation, corresponds to 100 valid samples) and those
traces with non-monotonically progressing trips are filtered
out of the evaluation. To illustrate this, Figs. 14 and 15 show
the accuracy and the acceptance percentage of simulated data
over an increasing number of states. It is observed that a
simulation accuracy of at least 99.5% is achieved. However,
the acceptance percentage is low. This will influence the
simulation time as a large number of the generated samples
would be rejected (it should be noted though that this will not
have a significant impact, as the process is performed offline).

To summarize, artificial samples produced using the
MCTM method provide a reliable framework to simulate
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FIGURE 16. Transition matrix for the 3-state model, set D.

FIGURE 17. Transition matrix for the 3-state model, set S.

bus trips and can further be used to evaluate this stochas-
tic processes accurately (as also discussed in [47]). For the
performance evaluation that follows, simulations are carried
out with 200000 samples and 1000 states. This leads to
11622 valid bus trip samples.

a: SSMET - EXPERIMENTAL RESULTS
Initially, the algorithm described in Section V is used with
Strain to compute the operating bounds for the single-model
case. In Fig. 18 below, the bound αd computed for several
values ofK and ptarget = 0.98 is shown (in blue for the SMET
case). As it can be observed, the bounds calculated are rela-
tively large, resulting to a low tracking accuracy. For example,
the bound forK = 45 is calculated to be 533 seconds (around
9 minutes). The main reason behind this is the inconsistent
variance of the distributions of di,j. In addition, in this case
the samples in the simulation are correlated (samples are
not IID). This results in an increasing number of events,
since a violation that occurs in a particular segment di,j will
likely lead to violation of bounds at the next segment, di,j+1,
and so on. As previously discussed, this shortcoming can be
addressed by the MMET technique, where multiple models
are considered (MMET) and switching between these models
takes place whenever deemed necessary. This is shown below,
where the experimental results of the MMET approach are
presented, clearly demonstrating the advantages of MMET
over the single-model approach.

b: MMET - EXPERIMENTAL RESULTS
For multi-model event triggering, the same real-world sce-
nario concerning bus Route 259 as the one described in the
previous section is considered. Again, the behavior of the bus
trip should be examined in order to adapt the new algorithm
and generate the set of predetermined models accordingly
(i.e., define the AoDs and calculate theMCTMs). In this case,
we first investigate a simple scenario of two 3-state MCTMs
produced using the IID setD and the real-world values set S.
The MCTMs are shown in Figs. 16 and 17, respectively.
Clearly, there is a difference between the two MCTMs of

the two sets, as samples generated in set D are IID. This
results in the rows of the PD3 having the same behavior and
the same distribution (i.e., a Gaussian shape envelope with
the mean positioned in area 2 of Fig. 3). In other words, the

TABLE 2. Mean test error and accuracy of sets.

probabilities of transition do not depend on the AoD where
the current observed sample is obtained from.

However, this is not the case for PS3. The probabilities of
transition now do depend on the current AoD. It is observed
that each row of PS3 forms a Gaussian shape envelope with
the mean positioned in the current AoD. Therefore, each area
of PS3 can be considered as a different pre-determinedmodel.

To evaluate the proposed MMET technique, Alg. 3 is
applied on set Strain to calculate αd . Figure 18 shows the
bounds generated using this algorithm for several values
of K and ptarget = 0.98. It is observed that the violation
bounds using the new algorithm are much smaller compared
to the single-model approach. Particularly, for the case of
K = 45, bounds are calculated at ad = 154, which is more
than 3× smaller than the bounds calculated by the single-
model case. The performance of the algorithm is tested using
simulation-based synthetic set Stest and real world-based data,
Dreal . The mean of test errors is shown in Table 2.
Unsurprisingly, the error of Dreal is higher than the one of

Stest , since the algorithm is trained on Strain. However, both
results provide high accuracy (greater than 98.8%), illustrat-
ing that the new algorithm provides a better trade-off between
the magnitude of the bounds (which directly translates to
the number of events generated) and the tracking accuracy,
while keeping the test error negligible. Note that the approach
just described can effortlessly be extended to larger number
of behavior models. For instance, Fig. 18 shows the bounds
generated for several values of K and ptarget = 0.98 for
an increasing number of models. As shown in the figure,
the greater the number of models, the smaller the viola-
tion bounds. Importantly, by observing the difference of the
single-model bounds with those of the 18-model case, for
K = 45, in the first case ad = 533 seconds and in the
second case ad = 27 seconds, resulting in 20× reduction
in the magnitude of the bound.

Smaller bounds are in general preferable, as a higher
precision of the violation leads to better tracking accuracy.
Expectedly though, an increasing number of models provides
diminishing returns. For instance, the bounds for the cases
of 12, 15, and 18 models are very similar. This is more
clearly demonstrated in Fig. 19, which shows the bounds
produced for K = 40 and ptarget = 0.98 for an increasing
number of models. Tables 3 and 4 present the mean test error
and the accuracy for the test- and real-world data sets for
different numbers of models. Clearly, the mean test error
for both sets is kept constant despite the reduction in the
bounds’ magnitude, demonstrating the efficient performance
of the proposed multi-model ET technique in achieving lower
tracking accuracy while retaining a small mean test error.

Another measure of the efficiency of the proposed
approach is its predictability, i.e., the ability of the approach
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FIGURE 18. Bounds (αd ) vs event interrupts for different numbers of
models.

TABLE 3. Mean test error and accuracy of set Stest .

to predict future times of bus schedules. For this concept,
the operating model from current segment K of the route is
used to calculate the predicted time of the next segment of the
route, K + 1. The prediction error is defined as the average
deviation between the predicted and actual bus travel times.
Figure 20 illustrates the average prediction error (in seconds)
for different number ofmodels. From the figure, a highly non-
linear decreasing behavior is observed between the average
prediction error and the number of models. For instance,
for a small number of models the average prediction error
is high. This is reasonable, as the number of models is too
small to describe the behavior of the transportation scenario
considered. However, as the number of models increases,
the average prediction error exponentially reduces, finally
converging to a value of approximately 30 seconds.

In summary, the proposed multi-model technique manages
to provide a very low tracking error for a significantly lower
number of event interrupts k as compared to the single-model
baseline; for a mere 25 events the prediction error reduces
to approximately 30sec. At any other time there is no need
for information exchange between the local and the remote
host and there is no need for any additional computation
to be performed for the monitoring process. In this way,
the proposed MMET approach achieves ∼ 9× reduction in
triggering events compared to SMET (as shown in Fig. 18);
in turn, this reduction directly translated to a nine-fold reduc-
tion in communication circuitry energy consumption in addi-
tion to the additional savings in energy from the reduced
tracking and updating computations both at the local and
remote hosts. Further, the proposed multi-model technique

FIGURE 19. Bounds for K = 40 and ptarget = 0.98 for an increasing
number of models.

TABLE 4. Mean test error and accuracy of set Dreal .

FIGURE 20. Average prediction error for different number of models.

achieves a 5× performance gain as compared to a periodic
scheme that updates the vehicle state every 30 seconds over
an 1-hour journey (since 120 interrupts will be required by
the periodic scheme, as compared to only 25 for the proposed
approach), again resulting in a five-fold reduction in energy
consumption.

Finally, the reader should note that, as expected, for all
three schemes there is clearly a trade-off between energy
consumption (that directly relates to the number of events
triggered) and tracking accuracy. Nevertheless, considering
the performance comparison of MMET, SMET, and peri-
odic (baseline) approaches, it is evident from Fig. 18 that
MMET can provide better performance in terms of tracking
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accuracy at a lower triggering of communication events and
thus reduced communication energy consumption.

VIII. CONCLUSION
In this work, single- and multi-model ET techniques are
utilized for the prediction and tracking of recurrent patterns
in public transportation systems. The single-model technique
(benchmark), is able to provide good tracking accuracy for
the application scenario under consideration, while limiting
communication between the system’s components by trigger-
ing events only when the actual and modeled behaviors of the
system deviate. Nevertheless, it does present shortcomings in
terms of the number of events generated and system response
times. This has motivated the development of a multi-model
approach, that through analytical, simulation, and experimen-
tal results was shown that it is capable of computing the
smallest bounds that lead to a particular number of events
with high precision as well as increasing the predictability
of the ET technique. This is mainly achieved by deriving
multiple models to accurately represent the system state and
adapting to system changes by switching to the most accurate
model that best represents the underlying system settings.
Performance results, utilizing a real dataset for a fleet of buses
operating in the city of Nicosia, Cyprus, have shown that
for MMET the improvement in both tracking accuracy and
energy efficiency is significantly higher as compared to the
SMET and periodic triggering approaches, demonstrating the
validity and feasibility of the proposed technique.

Future research directions initially include integrating the
event triggering architecture into safety applications for
CAVs in order tominimizemessages exchangedwith the road
side units (RSUs) and enable faster processing of location
information. Moreover, the aim is to introduce event trigger-
ing within the general age of information paradigm, in terms
of queueing/processing delays incurred at the RSUs, in order
to better optimize the CAVs’ tracking accuracies.
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