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ABSTRACT In this paper, the reconfiguration of swarms of unmanned aerial vehicles after simultaneous
failures of multiple nodes is considered. The objectives of the post-failure reconfiguration are to provide
collision avoidance and smooth energy-efficient movement. To incorporate such amechanism, three different
failure recovery algorithms are proposed namely thin plate spline, distance- and time-optimal algorithms.
These methods are tested on six swarms, with two variations on failing nodes for each swarm. Simulation
results of reconfiguration show that the execution of such algorithms maintains the desired formations
with respect to avoiding collisions at run-time. Also, the results show the effectiveness concerning the
distance travelled, kinetic energy, and energy efficiency. As expected, the distance-optimal algorithm gives
the shortest movements, and the time-optimal algorithm gives the most energy-efficient movements. The thin
plate spline is also found to be energy-efficient and has less computational cost than the other two proposed
methods. Despite the suggested heuristics, these are combinatorial in nature and might be hard to use in
practice. Furthermore, the use of the regularization parameter λ in thin plate spline is also investigated, and
it is found that too large values on λ can lead to incorrect locations, including multiple nodes on the same
location. In fact, it is found that using λ = 0 worked well in all cases.

INDEX TERMS Unmanned aerial vehicles, formation maintenance, collision avoidance, failure recovery
system, swarm intelligence, multi-drone systems.

I. INTRODUCTION
In swarm systems, reliability and safety are crucial properties
that can be improved by fault diagnosis technologies [1].
When focusing on navigation in a swarm of unmanned aerial
vehicles (UAVs), the main challenges revolve around forma-
tion control and collision avoidance [2]–[5]. In any system,
three main types of problems can occur at run-time, namely
faults, errors, and failures [6]. These problems are interrelated
in such a way that faults are the primary cause where a
problem originates, an error is the consequence of a fault or
multiple faults, and a failure is the ultimate manifestation of
a problem in operation. As a solution, a system needs to be
made resilient by design, providing a high degree of relia-
bility and availability at run-time. The construction of such
fail-safe mechanisms is application dependent. The opera-
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tional phases include fault detection and diagnosis, evidence
generation, assessment, and recovery [7]. Furthermore, in a
swarm formation, the faults can be classified into component
faults and topology faults depending upon their influence
on the overall integrated system [8]–[11]. In the case of
a topology fault, the system topology changes due to, for
example, a faulty sensor link, a faulty communication link
between nodes, and/or intrusions. Those faults in any module
of a node, such as a local controller, sensor, and/or actuator,
that do not alter the system topology, are called component
faults. In this paper, any type of failure, such as engine failure
or collision, that makes theUAVs disappear from the swarm is
considered, and the target is to restore the formation as good
as possible. During this type of partial failure within a swarm,
the proposed failure recovery methods enable the system to
continue functioning, preventing losses due to unexpected
service unavailability or operation failures. This sequential
process of deviation and recovery must be robust and reliable.
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One of the main problems in distributed formation con-
trol of UAVs is to enable dynamic management of creation,
maintenance, and termination of swarms. The control system
should be robust and energy-efficient, being constantly aware
of the formation of the swarm at mission time and able to per-
form reconfiguration in the case of failure of one or multiple
nodes. In the considered scenario, when some UAVs in the
swarm experience failures, the controller discards them from
the swarm, changing the formation. The newly created forma-
tion is not necessarily efficient for the mission at hand, and,
therefore, subsequent reconfiguration into a more efficient
formation may be needed, taking into account the mission
requirements. In this paper, a pre-specified initial formation
for a swarm determines the disturbed formation immediately
after a failure occurs on a number of UAVs. Three fail-safe
reconfiguration schemes are proposed to map the disturbed
formation due to the pre-specified formation that is inspired
by the thin plate spline (TPS), distance- and time-optimal
(DOA, TOA) algorithms, based on which UAVs have been
reconfigured. The movement to the positions is handled by
the setpoint tracking controller, implemented using a linear
quadratic regulator (LQR) with integral action. This architec-
ture is capable of managing transmission/actuation failures
in swarms of UAVs. Along with this reliable mechanism, the
minimization of energy consumption of the whole swarm is
considered in the sequential process of deviation and recon-
figuration. Furthermore, it is assumed that the swarm can
(if necessary) be moved away from the obstacles prior to
the reconfigurations therefore considering static and dynamic
obstacles are out of the scope of this work. The main contri-
butions of this paper are summarized as follows:

• Proposing a novel idea to reconfigure the formation of
swarms of UAVs when simultaneous failures of multiple
nodes have been diagnosed within a cluster, having the
aim of formation control with collision avoidance.

• Three different algorithms for reconfiguration of
swarms, TPS, DOA, and TOA are studied, which can
provide reliability and availability at run-time. All the
considered algorithms take into account the movement
of all UAVs at the same time. Standard tree search
algorithms such as A* do the path planning for one node
at a time [12].

• The proposed algorithms are tested on six different
swarms having two different failure cases each, in a total
of twelve cases.

• Lastly, the performance of reconfigurations is compared
on distance travelled, kinetic energy, and energy effi-
ciency.

The rest of the paper is organized as follows. Section II
covers the related work. In Section III, the development of the
proposed failure recovery system is described. In Section IV,
the techniques for energy-efficient post-failure reconfigura-
tion of a swarm of UAVs are presented. In Sections V and VI,
simulation set-up and results are elaborated respectively.
Lastly, concluding remarks are presented in Section VII.

II. RELATED WORK
The fault diagnosis and fault-tolerant controls are important
to ensure the reliability and safety of any swarm system.
Qin et al. in [8] present an extensive survey of the faults and
the fault diagnosis algorithms and also classifies them as per
their specifications. Similarly, Yang et al. in [13] build upon
the trends and methodologies of fault-tolerant cooperative
control of multi-drone systems which, despite being more
challenging, are more flexible than single-robot systems.
Complementing this, in their attempts to solve a constrained
optimization problem for fault-tolerant control of a quadrotor,
Chamseddine et al. have implemented the differential flatness
in [14]. A fault-tolerant algorithm using the A* pathfinding
method for multi-robot coverage path planning is proposed
by Sun et al. in [12]. Furthermore, Liu et al. in [15] consider
a linear multi-drone system comprising of multiple leaders,
which has the ability to tolerate actuator faults and deal with
input saturation. For this purpose, the control algorithms have
been designed, with a backstepping approach, using local
information of neighbouring nodes within a time-varying
formation. A method of fixed-wing UAV swarm formation
control using waypoints based on distributed ad hoc networks
is elaborated by Suo et al. in [16]. A hypothesis related to
a distributed fault-tolerant mechanism using a policy-based
election algorithm for an uncertain environment is addressed
by Wang et al. in [17]. Another approach to fault-tolerant
control has been discussed by Wang et al. in [18] in which a
cooperative fault-tolerant control has been illustrated for lin-
ear leader-follower networks with switching directed graph
as the interaction typology network applicable to all nodes.
This network structure functioned efficiently in the presence
of multiple heterogeneous actuator faults that included not
only the actuator bias fault but also the partial loss of effec-
tiveness fault. A fault-tolerant formation control approach
for UAVs of leader-follower type is discussed by Yu et al.
in [19] against the actuator faults of only followers based on
finite-time adaptive techniques. Raja et al. in [20] present
a fault-tolerance module for a leader-follower mechanism
to handle the actuator fault of a leader. In this algorithm,
a new leader is chosen by using the locations of the follower
and failed leader. The distance between the failed leader
and followers is calculated using Euclidean distance, and the
follower with minimum distance from the faulty leader is
selected as a new leader for a swarm. A similar failure recov-
ery strategy based on the shortest path planning/replanning
problem is proposed by Tahir et al. in [21] for rerouting
UAVs, which is the prequel work of this study.

III. FAILURE RECOVERY SYSTEM
In most cases, single or multiple failure occurrences in a
swarm introduce gaps, and it is desirable to reconfigure the
swarm and fill the gaps, as shown in Fig. 1. This process raises
a formation construction problem [22] that is widely covered
in the literature. The main novelty of this work is to propose
the architecture for reconfiguration of the swarms in case of
failure of multiple nodes simultaneously. Also, the objective
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is to keep a safe distance while manoeuvring. Furthermore,
all the UAVs are considered to be identical. Hence, it is not
required to re-establish initial neighbouring states among the
swarm. In the reconfiguration process, two main questions
need to be addressed:

1) What is the best shape of the reduced swarm? This
procedure is defined as the mapping problem.

2) What is the optimal movement of each node from the
initial to final formation?

FIGURE 1. 2D representation of proposed failure recovery procedure.

Consider the reconfiguration of a swarm of UAVs from
the initial to the final formation, as presented in Fig. 1. This
process is divided into four stages. The predefined formation
is given in the first stage. Failures occur by breaking the
initial formation in the second stage, which is followed by the
vacant positions in the third stage. Eventually, the remaining
nodes reconfigure themselves in the original formation while
minimizing the overall nodes’ deviations.

In order to solve the proposed problem, the whole system
is divided into two subsystems dealing with (a) reconfigu-
ration of UAVs, and (b) tracking control, as shown in Fig. 2.
In a multi-drone swarm, each active (non-failed) node n ∈
{1, ..,N } receives a reference command rn = r + 1n where
r is the reference for the whole swarm and 1n is the offset
for node n, which is needed to keep all the nodes apart. When
failures occur, the reconfiguration algorithms update the con-
stant offsets1 =

[
11 12 . . . 1N

]T. Hence, the formation is
re-established as good as possible with the current number of
active nodes.

FIGURE 2. Proposed architecture of post-failure swarm reconfiguration.

The post-failure reconfiguration for the UAVs is designed
using three different algorithms TPS, DOA and TOA. In all
cases, the reference commands rn are updated by updating
the 1ns. Besides, the trajectory of each node is controlled
by the LQR technique with integral action. Each method is
described in the following sections.

IV. RECONFIGURATION OF UAVs
A. THIN PLATE SPLINE
Consider a point set registration [23]–[25] for robust non-
rigid 2D transformation using TPS, which is commonly used
to solve data interpolation and smoothing problems [26].
In [27], TPS is applied for reshaping the trajectories of the
UAVs in a swarm formation due to obstacles. In this paper,
TPS is used for reconfiguration of the UAVs in a swarm
formation after simultaneous failures of multiple nodes.

A spline is a function defined by polynomials in a piece-
wise manner. Spline curves are used for the approximation
of complicated shapes via curve fitting due to their ease of
use and non-complicated construction [26]. The algorithm is
analyzed in 2D to make it simpler; consequently, two sets
of correspondence data points, X = xi and V = vi where
i = 1, 2, 3, . . . , n are considered. Here, the locations of a
point in the scene (desired formation) and the model (initial
formation) are given by xi and vi respectively. A mapping
function f (vi) can be acquired while keeping the shape of the
disturbed formation/function under consideration, by min-
imising the energy function

ETPS (f ) =
n∑
i=1

||xi − f (vi)||2+

λ

∫∫
[(
∂2f
∂x2

)2 + 2(
∂2f
∂x∂y

)2 + (
∂2f
∂y2

)]dxdy.

(1)

The amount of formation disturbance is evaluated by the
energy function ETPS . By minimizing the first error mea-
surement term, data points of V are mapped as closely as
possible to the data points of X . The second regularization
term is a penalty on the smoothness of f , and it is in a general
case needed to make the mapping unique. In this case, one
can put λ = 0, and still gets unique solutions, which also
reduces the likelihood of a biased mapping f , see Fig. 8. Once
the desired mapping is obtained, the constant offsets 1 are
updated accordingly. For example, if node n is mapped to the
location of node m then 1n = 1m. Each UAV in the model
starts following the shortest path to reach its next position in
the scene.

B. DISTANCE- AND TIME-OPTIMAL ALGORITHMS
The full failure of an engine of a node in the swarm of
UAVs using leader-follower tightly coupled formation is con-
sidered in [21]. As a solution, a bottom-up reconfiguration
is imposed to bypass the failed node in order to keep the
formation intact. For this study, the proposed method in [21]
is extended for the reconfiguration of a multi-drone system
after simultaneous failures of multiple nodes. The following
two alternative algorithms are used for reconfiguration of the
swarms, which are based on a combinatorial searchwith some
application-dependent pruning heuristics.

The first algorithm minimises the total travelling distance

DT =
∑
q

√
(xq,r − xq,i)2 + (yq,r − yq,i)2 (2)
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Algorithm 1 Pseudocode for Distance-Optimal Algorithm
1: Replace all the missing nodes m, starting with the node

that has the lowest index, with an active node n, by testing
all alternative nodes with index n > m, which has a direct
line of sight to node m.

2: For each reconfiguration obtained in step 1, calculate the
costs according to DT (Eq. 2).

3: Select the reconfiguration with the minimum cost.
4: If multiple minimum costs are obtained, then among

these, choose the one smallest cost according to DM (Eq.
3). If this does not resolve it, then arbitrarily choose
among the optimal ones the movement involving the
node with the smallest index.

5: Update the constant offsets 1 accordingly.

Algorithm 2 Pseudocode for Time-Optimal Algorithm
1: Replace all the missing nodes m, starting with the node

that has the lowest index, with an active node n, by testing
all alternative nodes with index n > m, which has a direct
line of sight to node m.

2: For each reconfiguration obtained in step 1, calculate the
costs according to DM (Eq. 3).

3: Select the reconfiguration with the minimum cost.
4: If multiple minimum costs are obtained, then among

these, choose the one smallest cost according to DT (Eq.
2). If this does not resolve it, then arbitrarily choose
among the optimal ones the movement involving the
node with the smallest index.

5: Update the constant offsets 1 accordingly.

from initial (xq,i, yq,i) to reconfigured (xq,r , yq,r ) positions
where q is the index of a reconfigured node. The sec-
ond algorithm minimises the maximal individual travelling
distance

DM = max
q

√
(xq,r − xq,i)2 + (yq,r − yq,i)2. (3)

Algorithm 1 is distance-optimal, as it directly chooses the
movement with the least sum of the distances. Algorithm
2 is time-optimal under the assumptions that all the travelling
take place in parallel, and a longer distance takes a longer
time to travel than a shorter one. This means that the longest
distance travelled is the limiting factor. Thus, choosing the
movement with the smallest maximal individual distance
is time-optimal. Both algorithms fill all the vacant places,
starting with the lowest index, by moving UAVs with higher
to lower indices. The algorithms fill the missing nodes one at
a time, and never reconsider prior movements, therefore they
will eventually converge, filling the first N vacant places of
the swarm formation.

Collisions are avoided due to the following two features of
the algorithms:

a) All the movements of nodes are done with a direct
line of sight, meaning that the moving nodes are not
colliding with the non-moving ones.

b) If two separate movements would have crossing paths,
they would neither be distance- nor time-optimal. Thus,
distance- or time-optimallymoved nodes are not collid-
ing with each other.

V. SIMULATION SET-UP
The dynamics of each node in the swarm formation are
based on the model of a quadcopter, i.e. a UAV that has four
propellers with fixed pitch mechanically movable blades, as
shown in Fig. 3, where θ , φ, and ψ are defined as pitch, roll,
and yaw respectively.

FIGURE 3. Kinemetics of the quadcopter.

The major forces acting on the quadcopter are the grav-
ity g and the thrust Ti, i ∈ {1, 2, 3, 4}, of the propellers.
In this model, the inertial reference is the earth shown as
(x, y, z) that is the origin of the reference frame. The UAV
is assumed to be a rigid body that has the constant mass
symmetrically distributed with respect to the planes (x, y),
(y, z), and (x, z). The orientation of a quadcopter reference
frame (x, y, z) with respect to an inertial frame (x, y, z)0 can
be expressed mathematically in a state variable form [28]–
[30], where translational and angular accelerations are given
by

v̇x = −vzwy + vywz − g sin θ

v̇y = −vxwz + vzwx + g cos θ sinφ

v̇z = −vywx + vxwy + g cos θ cosφ −
T
m

(4)

and

ẇx =
1
Jx

(−wywz(Jz − Jy)+Mx −
kwT
kMT

JmpMzwy)

ẇy =
1
Jy
(−wxwz(Jx − Jz)+My −

kwT
kMT

JmpMzwx)

ẇz =
Mz

Jz

(5)

respectively. The thrust produced by each propeller Ti is
translated into a total thrust T and the reactive torques Mi,
i ∈ {x, y, z}, which are affecting the rotations about the
corresponding axis. The Ji, i ∈ {x, y, z}, is known as the
moment of inertia along the corresponding axis, and Jmp is
the moment of inertia of a motor with propeller. The angular
velocities of propellers are assumed to be proportional to
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thrusts of propellers, i.e. wi = kwTTi, i ∈ {x, y, z}. Similarly,
the reactive moments of propellers are assumed to be propor-
tional to the thrust of propellers, i.e.Mi = kMTTi, i ∈ {x, y, z}.
The velocities corresponding to Equations (4)-(5) are

ẋ = vx cosψ cos θ + vy(− sinψ cosφ + cosψ sin θ

sinφ)+ vz(sinψ sinφ + cosψ sin θ cosφ)

ẏ = vx sinψ cos θ + vy(cosψ cosφ + sinψ sin θ sinφ)

+ vz(− cosψ sinφ + sinψ sin θ cosφ)

ż = vx sin θ − vy cos θ sinφ − vz cos θ cosφ

(6)

and
θ̇ = wy cosφ − wz sinφ

φ̇ = wx + wy sinφ tan θ + wz cosφ tan θ

ψ̇ = wy
sinφ
cos θ

+ wz
cosφ
cos θ

(7)

respectively. The Equations (4)-(7) represent the complete
nonlinear model of a quadcopter, composed of twelve states,
four inputs, and twelve outputs. These equations are further-
more linearized, resulting in

ẋ =
[
−gθ gφ − T

m
Mx
Jx

My
Jy

Mz
Jz
wy wx wz vx vy −vz

]T
y = x

(8)

which are used for controller designing. The system parame-
ters are taken from [30] and illustrated in Table 1.

TABLE 1. System parameters [30].

A. TRACKING CONTROL OF UAVs
The motion of each drone is controlled using a standard LQR
with integral action [21], [31]–[34]. LQR is a method for the
design of an optimal state feedback law based on a linear
model, in this case Equation (8). Fig. 4 shows the control
system of each node, which is based on the feedback law
that consists of a sum of a proportional and integral terms.
Both contribute to generating the thrusts T and torques Mi,
i ∈ {x, y, z}.

FIGURE 4. Block diagram of LQR with integral action.

The states that are relevant to control without offset from
setpoints are collected in a vector yp = [x, y, z]T , and the
final feedback law is

u =
Ki
s
(r− yp)+ Kp(xs − x) (9)

where Ki is the integral gain, r is the setpoints for yp, Kp is
the state feedback gain, and xs is the setpoints of the states
x. The weight matrices Q and R are given in the Appendix.
More details are provided in our earlier work [21], [31], [32].

VI. RESULTS
Autonomous UAVs act in pursuit of their agenda. The local
assignments are evaluated even when serving the requests of
other nodes. The requests can be refused in case of a weaker
notion of autonomy [35]. In this paper, such type of system
is protected against performance degradation beyond a point
where a node effectively becomes useless. The proposed
architecture in Fig. 2 consists of a base case in which recon-
figuration requests are forwarded to the nodes of a swarm
in order to restore the formation shape. Secondly, the nodes
acknowledge the requests using local control units for smooth
navigation. Hence, in this approach, each post-failure recon-
figuration algorithm, i.e. TPS with λ = 0, DOA, and TOA as
discussed in Sections III and IV, decide the reconfiguration
of the UAVs for each vacant pose within a swarm, and an
associated LQR with integral action is subjected to track it.
Each node is simulated using the nonlinear model equations
of a quadcopter, described in Section V.

Six different swarms of UAVs are considered. The number
of UAVs in each swarm and the two different failure cases
are listed in Table 2. The system is simulated in Simulinkr

with default parameters under MATLAB 2018b, and the
results are shown in Figs. 5 and 6. The red, blue, and green
markers represent the fully failed, active, and reconfigured
nodes respectively. To restore the initial formation as good as
possible, exact coordinates of the active nodes are obtained
and all the possible combinations for reconfiguration are
examined, and the decision is made accordingly.

TABLE 2. Swarm sizes and failure cases.

For all the reformed movements, the Euclidean distance

DC (p, q) = min
t

√
(xp(t)−xq(t))2 + (yp(t)−yq(t))2 (10)

is calculated and presented in Tables 3–5 where t is time, and
DC (p, q) is the minimum distance that should be greater than
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FIGURE 5. Failure case 1 — Reconfiguration of the swarms in 2D where • is a failed node, • is an active node, and • is the position after
reconfiguration. The omitted axis labels are x (m) horizontally, and y (m) vertically.
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FIGURE 6. Failure case 2 — Reconfiguration of the swarms in 2D where • is a failed node, • is an active node, and • is the position
after reconfiguration. The omitted axis labels are x (m) horizontally, and y (m) vertically.
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2rd between nodes p and q to avoid collisions, as rd is the
radius of a UAV. Moreover, the total kinetic energy

KE = max(0.5m(
n∑

q=1

v2)) (11)

describes how much work is conserved in the process of the
swarm movement. The performance of the swarm to redirect

TABLE 3. DC (p,q) in (m) of the UAVs in the swarm after reconfiguration.
To avoid collisions, DC (p,q) > 2rd .

its manoeuvres in terms of total energy consumption

E =
n∑

q=1

∫ tf

ti
(Ptotal − Phover )dt (12)

is calculatedwhere ti is the initial time and tf is the timewhere
reconfiguration ends. This power is needed to generate thrust
and the force of the thrust can be related in a nonlinear way.
Generally, P2 ∝ T 3 where P and T are defined as power
and thrust respectively. Furthermore, all the obtained perfor-
mance results are elaborated in Table 6.

TABLE 4. DC (p,q) in (m) of the UAVs in the swarm after reconfiguration.
To avoid collisions, DC (p,q) > 2rd .

VOLUME 11, 2023 24775



A. Tahir et al.: Energy-Efficient Post-Failure Reconfiguration of Swarms of Unmanned Aerial Vehicles

TABLE 5. DC (p,q) in (m) of the UAVs in the swarm after reconfiguration.
To avoid collisions, DC (p,q) > 2rd .

For comparison of the methods M = {TPS,DOA,
TOA},

DC% =
minM(min(p,q)DC (p, q))
maxM(min(p,q)DC (p, q))

× 100%, (13)

DT% =
minM DT

DT
× 100%, (14)

TABLE 6. Overall performance of the UAVs in the swarms after
reconfigurations.

and

E% =
minM E

E
× 100% (15)

are defined as performance indices for collision avoidance,
distance travelled, and energy efficiency respectively. The
obtained results are depicted in Fig. 7. For both failure cases
1 and 2, it is evident from the results that all the algorithms
work well for the post-failure reconfiguration of UAVs. Both
TPS and TOA techniques fulfil the collision avoidance con-
straint by maintaining better separations from the respective
nodes in comparison to DOA. Secondly, the amount of total
distance travelled is minimum using DOA as opposed to TPS
and TOA. On the other hand, using TPS and TOA, systems
are more efficient in terms of the consumption of less energy
while reconfiguring, and their results are quite close to each
other. However, for the failure case 2, TOA wins over TPS
with respect to energy efficiency.

The TPS algorithm, as discussed in Section IV-A, is tested
with different weights of λ on both failure cases 1 and 2.
For example, in the failure case 2, possible collision is seen
for the reconfiguration of the swarm 1 with λ > 0.4062,
see Fig. 8. In all cases, there is an upper limit on λ, after
which the TPS gives incorrect reconfiguration coordinates or
results in collisions. The borderline values of λ are reported
in Table 7. As can be seen, smaller values on λ are required
in the second failure cases that are more challenging for TPS
to handle. It seems that the behaviour of TPS reconfiguration
is sometimes unpredictable as mentioned in [36].
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FIGURE 7. Performance indices for the swarm reconfigurations where � is TPS, � is DOA, and � is TOA. The omitted axis labels are swarm #
horizontally, and y (%) vertically.

FIGURE 8. With TPS λ > 0.4062: Failure case 2 — Reconfiguration of the
swarm 1 in 2D where • is a failed node, • is an active node, and • is
position after reconfiguration. The omitted axis labels are x
(m) horizontally, and y (m) vertically.

TABLE 7. The upper limit of the TPS regularization parameter λ in
different cases.

VII. CONCLUSION
In this paper, the failure recovery architecture that consid-
ers the simultaneous failures of multiple nodes is proposed.
This architecture is divided into two subsystems; post-failure
reconfiguration of UAVs and their control, having the overall
purpose of formation maintenance with collision avoidance.
For the evaluation of the reconfiguration mechanism, three
different algorithms comprising of TPS, DOA, and TOA are
presented. These methods are tested on six different swarms
having two different failure cases each, in a total of twelve
cases, which have a different number of failing nodes. For the
tracking control of each node, LQR with an integral action
technique is used. The different reconfiguration algorithms
are compared on collision avoidance, total distance travelled,
kinetic energy, and energy efficiency. It is evident from the
results that for both failure cases 1 and 2, all three algo-
rithms i.e. TPS with λ = 0, DOA, and TOA are effective
and work well for the post-failure reconfiguration of UAVs.
The UAVs are dynamically and reliably reconfigured as fast
as possible without collisions and maintaining the desired
formation. Furthermore, another important contribution is the
trade-off between the total distance travelled by the swarms
and their corresponding energy efficiency. From the per-
formance indices for the swarm reconfiguration, as can be
expected, it is clear that the DOA is most efficient when it
comes to travelled distance. On the other hand, TPS and TOA
perform clearly better than DOA when it comes to collision
margins and energy efficiency. There is a minor difference
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between the results of TPS and TOA, but one can say that
TOA is slightly more energy efficient than TPS. Despite the
suggested heuristics, DOA and TOA are combinatorial in
nature and might be hard to use in practice. The performance
of the TPS is quite well and can be considered for the recon-
figuration of swarms. Furthermore, it is also found that the
use of too large regularization parameter λ will result in the
mapping of nodes to incorrect locations, including multiple
nodes on the same location (i.e. collisions), which is of course
not desired. In fact, it is found that the use of λ = 0 worked
in all tests, so this can be recommended.

APPENDIX

Q = diag
([

0.5, 0.8, 1000, 0.5, 0.5, 0.5, 1, 1,
1, 1, 1.5, 2000, 0.5, 0.8, 1000

])
R = I4
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