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ABSTRACT As an important transmission component of industrial robots, the harmonic reducer determines
the positioning accuracy, bearing capacity and service life of the robot end-effector. Predicting the perfor-
mance can grasp the working status in advance and avoid major losses caused by uncertain factors such
as component damage. The current paper focuses on a harmonic reducer performance prediction algorithm
based on Multivariate State Estimation Technique (MSET) and LargeVis dimensionality reduction. Firstly,
an accelerated life test platform is designed to collect multi-dimensional parameters that can characterize the
operating state of the harmonic reducer throughout the life cycle. Afterwards, as far as the MSET method is
concerned, the fault warning threshold is set according to the residual between the constructed memory
matrix of the health state data and the actual observed value. Finally, utilizing LargeVis to reduce the
dimensionality of multi-dimensional features, combining with Mahalanobis distance to construct a health
index degradation model, and then selecting Long Short-Term Memory (LSTM) network to predict the
downward trend of the harmonic reducer. The analysis of the accelerated life test data of the harmonic
reducer demonstrates that the proposed method can send out the fault warning signal 18 minutes in advance
in the sample with a life of 5.7 hours, and has a strong ability to predict the degradation trend of the harmonic
reducer.

INDEX TERMS Harmonic reducer, performance prediction, multivariate state estimation technique,

LargeVis, features dimensionality reduction, long short-term memory network.

I. INTRODUCTION

Industrial robots are the most common type of robots, which
are widely used in intelligent manufacturing. In the era of
Industry 4.0, industrial robots also play an indispensable role
in it [1]. Industrial robots can replace people to do many
things, such as painting of cars and tightening of screws,
which require high stability, low failure rate and low vibration
of industrial robots [2]-[5].

Reducers are an important component of industrial
robots [6], and their life and stability are directly related to the
operating conditions of industrial robots. Precision reducers
are utilized in all joints of industrial robots to improve the
overall stiffness and output torque of the robot. There are two
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main types of precision reducers used in robots, RV reduc-
ers and harmonic reducers. RV reducers are large in size
compared to harmonic reducers and are mainly used in large
joints of industrial robots. Harmonic reducer is small in size,
large transmission ratio, small mass and high transmission
efficiency and transmission accuracy, which is widely used
in wrist and small arm hand joints of industrial robots. The
performance of harmonic reducer is directly related to the
safety and stability of industrial robots.

The model diagram of harmonic reducer is shown in
Figure 1. Harmonic reducer mainly consists of flexible
wheel, rigid wheel and wave generator. As the use time
increases, the harmonic reducer motion accuracy decreases
and fatigue damage occurs. Damage to the harmonic
reducer occurs in the robot will bring a large economic
loss. At present, the factory uses regular inspection and
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FIGURE 1. Harmonic reducer model diagram.

maintenance to troubleshoot the harmonic reducer. There is a
certain lag in this troubleshooting method, and it is important
to establish a harmonic reducer health assessment model to
predict its performance [7].

Researchers have conducted some theoretical and exper-
imental studies on the performance evaluation of mechani-
cal structures such as reducers. Zhang [8] investigated the
reliability evaluation method of harmonic reducers using
transient finite elements and accelerated life tests. Qian [9]
proposed a multi-failure mode time-varying reliability anal-
ysis method based on a two-loop Kriging model to analyze
the time-varying reliability of reducers. Liu [10] proposed
a simple index indicating the failure severity based on the
ratio between the characteristic frequency component of
the failure and the currently sampled vibration signal. The
fault characteristic frequency components are identified by
applying wavelet packet decomposition and Hilbert trans-
form to the original signal. Shiau [11] proposed a non-
parametric regression-based accelerated life stress model for
describing the accelerated degradation curve. An estimate
of the mean time to failure under normal conditions of the
product was obtained by analyzing the relationship between
the stress level and the acceleration factor. Crk [12] pro-
posed a multivariate multiple regression function paramet-
ric analysis method for applied stresses using a degradation
trajectory-based approach. Doksum [13] proposed a variable
stress accelerated life test model based on the concept of
cumulative degradation with a Wiener process and inverse
Gaussian distribution, which has more flexibility for non-
parametric life models. Li [4] built a performance margin
model based on the hysteresis and transmission error of
harmonic reducer as key parameters, and analyzed and quan-
tified the multi-source uncertainty to construct a reliability
model. Jun [14] proposed a new n-ARIMA based equip-
ment performance degradation model method, and used a
non-smooth autoregressive integrated moving average model
to build an equipment performance degradation model to
verify the performance degradation of OTM650. Riascos-
Ochoa [15] proposed a Levy framework to simulate the effect
of degradation sources on the degraded system, and obtained
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the moments of reliability function, probability density and
lifetime. The performance of harmonic reducers is often
expressed through multiple state parameters, such as vibra-
tion, transmitted torque, temperature, etc. These performance
evaluation methods, designed using a single state parameter,
do not reflect the performance of harmonic reducers.

Some scholars have also developed performance evalua-
tion models through neural networks. Ma [16] proposed a
particle swarm optimization based reliability life prediction
analysis for harmonic reducers. Wang [17] proposed a hybrid
prediction method for remaining service life prediction of
rolling bearings using a correlated vector machine regression
with different kernel parameters to represent the bearing
test dataset and adaptively estimate the remaining service
life using an exponential degradation model combined with
Frechet distance. Prudhom et al. [18]. showed that a sim-
ple fault severity index using short-time fourier transform
(STFT) information can be proposed based on the notation
over definition of time-frequency transform instead of fault
indicators. Wang [19] proposed a bearing performance eval-
uation method based on topological representation and hid-
den Markov model, where a topological network of original
features is obtained by self-organizing mapping, and a hidden
Markov model is used as the evaluation model to assess the
bearing performance degradation trend. These performance
evaluation models established using neural networks are able
to predict the performance state of the mechanism, but a
large amount of experimental data is required to establish
convolutional neural networks and machine learning models,
harmonic reducers have a long service life, and it takes more
than ten years to collect hundreds of data sets to establish per-
formance evaluation datasets, and the model training process
is complex and prone to overfitting.

In brief, our significant technical contributions are the
following:

1) A test platform for the accelerated life of harmonic
reducer is built, and multiple sets of multi-dimensional
data parameters such as input speed, output speed,
input torque, output torque, temperature and acceler-
ation in X, Y and Z directions are collected during the
operation.

2) The designed MSET method can realize the compre-
hensive condition monitoring of the harmonic reducer,
and the fault warning signal can be sent out 18 minutes
in advance by setting the fault threshold.

3) The dimensionality reduction of the characteristic
parameters is realized by the LargeVis technology, and
the performance degradation trend information of the
harmonic reducer is predicted by combining with the
LSTM method.

Il. ACCELERATED LIFE TEST OF HARMONIC REDUCER

In this paper, a test platform is set up to conduct accelerated
life experiments and collect multidimensional parameters that
can characterize the operation state of the harmonic reducer
during its full life cycle. The test platform consists mainly of
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FIGURE 2. Accelerated life test device.

TABLE 1. Drive motor performance parameters.

Model Rated power Rated torque Rated speed =~ Maximum allowable Moment of inertia
ode kW N-m r/min torque N-m kg-m?
QABP 80M2B 1.1 35 2845 2.8 0.00107

drive frequency conversion motor, harmonic reducer, torque
sensor, magnetic powder brake, accelerometer, as shown in
Figure 2. Among them, the performance parameters of the
drive motor are shown in Table 1, with a rated power of
1.1kW and a rated torque of 3.5 N-m. It is connected with the
harmonic reducer through a coupling to drive the harmonic
reducer. The performance parameters of the measured har-
monic reducer are shown in Table 2. The torque sensor selects
a range of 5 N-m and 200 N-m respectively to measure the
torque of the input and output terminals. The TR-3 acquisition
instrument matching the sensor is selected, and the RS232
interface is adopted to communicate with the computer. The
model of the magnetic powder brake is FZ200J/Y, which can
provide a rated torque of 200 N-m, all of which meet the test
requirements.

In order to obtain the full life cycle data of the harmonic
reducer, several groups of accelerated life tests are designed
and carried out in this paper, and the results are shown
in Table 3.

According to 14 groups of accelerated life tests, most of the
failure forms of harmonic reducer are flexible wheel fracture,
and a few are flexible bearing damage. The operating time
ranges from several hours to dozens of hours, with strong
uncertainty. If the traditional method based on physical model
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TABLE 2. Harmonic reducer performance parameters.

Performance Value
Reduction ratio 51
Rated torque (N-m) 32
Maximum load torque (N-m) 69
Maximum average load torque (N-m) 42
Maximum torque (N-m) 121
Maximum input speed (r/min) 6000
Average input speed (1/min) 3500
Backlash (Arcsec) 20
Design life (h) 10000

is used, there will be a large error. The MSET method based
on data drive proposed in this paper is used for condition
monitoring and fault warning to inform the appropriate time
for preventive maintenance of equipment.

In addition, the lifespans of samples No. 6 and No. 9
are 3.1 hours and 1.1 hours, respectively, which is rela-
tively short. Combine with the analysis of the test site and
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TABLE 3. Accelerated life test of harmonic reducer.

Serial number Load Sampling time (s) Running time (h) Failure form
1 3 times 30 213 flexible wheel fracture
2 3 times 30 89 flexible wheel fracture
3 3 times 30 9.9 flexible bearing failure
4 3 times 30 69.3 flexible wheel fracture
5 3 times 30 54.4 flexible wheel fracture
6 4 times 1 3.1 flexible bearing failure
7 4 times 1 9.8 flexible wheel fracture
8 4 times 1 5.7 flexible wheel fracture
9 4 times 1 1.1 flexible wheel fracture
10 4 times 1 7.7 flexible wheel fracture
11 4 times 1 18.6 flexible wheel fracture
12 4 times 1 7.0 flexible wheel fracture
13 4 times 1 8.5 flexible wheel fracture
14 4 times 0.05 17.3 flexible wheel fracture

consultation with the manufacturer of the harmonic reducer,
the two groups of samples are found to be short in running
time due to manufacturing defects. Therefore, there is no
reference value. At the beginning of the test process, the
harmonic reducer is in an accelerating state, and the data
after the harmonic reducer runs smoothly is intercepted for
analysis. In addition, sensor errors during the test may cause
a large difference between individual data and the overall
sample, which should be discarded in the subsequent model
calculation.

When the harmonic reducer is running, the temperature
in the body rises due to friction heating. Especially in the
later period of use, the vibration intensifies and the input
and output torque cannot be maintained. Therefore, input
speed, output speed, input torque, output torque, temper-
ature and acceleration in X, Y, and Z directions are col-
lected in the test to analyze the performance of the harmonic
reducer.

Ill. HARMONIC REDUCER PERFORMANCE

PREDICTION ALGORITHM

Harmonic reducer performance prediction algorithm mainly
includes condition monitoring and degradation trend predic-
tion. The realization principle diagram is shown in Figure 3.
The condition monitoring adopts the MSET method, and
compares the residual error between the memory matrix con-
structed by the health state and the actual observation value,
thereby realizing the failure warning of the harmonic reducer.
Degradation trend prediction is to employ LargeVis feature

Test data

Feature
extraction

Memory
matrix
Early failure recession
warning forecast

FIGURE 3. Process of condition monitoring and degradation trend
prediction.
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dimensionality reduction and LSTM network to predict the
degradation trend of harmonic reducer.

A. HARMONIC REDUCER CONDITION

MONITORING METHOD

1) MSET METHOD

MSET [20] is a non-parametric statistical modeling method
based on the weighted average of historical data, which is
suitable for failure warning of mechanical equipment with
higher test cost and greater risk factor. For industrial robot
equipment, there is a certain risk in its fault test, and it
is difficult to obtain the fault feature database. Hence, the
MSET technology is utilized to estimate the true state of
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the observation vector by learning the mechanical knowledge
contained in the historical monitoring data, and then a fault
warning model is established.

Firstly, the historical memory matrix D is constructed
by utilizing the monitoring data under in normal operation
state, and then the MSET model is established. Assuming
thatnvariables are collected by the sensor, the observation
vector at a certain sampling time #,, can be expressed as:

X(tw) = 1), x2(t), x3(tm), -+ -, xn(tm)]T ()

where x;,(t,,) is the observed value of variable x;,, at sampling
time #,,. Then the historical memory matrix D can be con-
structed as:

D = [X(11), X(2), - - - X (tm)]
x1(t1)  x1(r2) x1(tm)
x0()  x@@) - x2(twm)
= : : : @
xa(t1)  x4(22) Xu(tm)

nxm

The memory matrix D is the basis of the MSET model,
and the construction of the memory matrix is the process of
learning and remembering the normal operating characteris-
tics of the harmonic reducer. Its columns represent the values
of all observed variables at a certain sampling moment, and its
rows represent the values of an observed variable at different
sampling moments.

For a new observation vector X, it can be compared with
the historical observation vector stored in the memory matrix
D, and then the prediction vector X, can be estimated. X,
can be expressed as the product of D and the weight vector
w:

Xest =D -w=wiX(1) +woX(®2) + - +wnX (1) (3)

where X, is the linear combination of the m historical obser-
vation vectors in D. The weight w represents the similarity
measure between the vectors in X, and D, and the weight w
can be calculated by minimizing the residuals. The residual
formula is as follows:

&= Xops — Xost 4

The optimal weight vector w is selected to minimize the
residual sum of squares between the newly measured vector
Xops and the predicted value X, . Then the residual sum of
squares can be given by:

n
Swy= . & =e'e=Xob—Xes) - Kobs
= Xobs = DW)" - (Xops — DW)
n . m 2
=2 Xon® =3 wiDy) )

Take the partial derivatives of S(w) with respect to wy,
wa,..., w, and make them equal to 0. Then the weight w can
be written as follows:

— Xest)

w=D" D) (D" @ Xup) (©6)
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where the nonlinear operator®chooses to use Euclidean dis-
tance operation.

®X.Y)= | > (x—y)? @)
i=1

When the harmonic reducer works under normal condi-
tions, the model input value X, is located in the normal
working space of the memory matrix D, and is close to the
historical observation vector in D. Once a failure occurs, X,ps
deviates from the observation vector in the memory matrix,
the accuracy of the output value decreases, and the residual
will increase accordingly. Hence, the residual between X,
and X,ps can reflect the abnormal state and fault information.
By means of monitoring changes in residuals and setting
reasonable thresholds, fault alarm can be achieved.

2) FEATURE SELECTION
In view of the construction of the memory matrix D, different
strategies are employed to construct the rows and columns.

The purpose of feature selection is to transform the raw
data into a more meaningful form, thereby simplifying the
model and improving performance. The feature selection of
the Pearson correlation coefficient method is employed to
screen the rows of the memory matrix. Because it has a simple
process, high computational efficiency, and it is suitable for
large-scale data. The degree of linear correlation between two
variables is calculated by the Pearson correlation coefficient,
and the value range is generally [-1, 1]. The larger the absolute
value, the higher the degree of linear correlation. Then the
overall Pearson correlation coefficient formula between the
two variables is as follows:

Py = covx,y) _ Elx — txy — iyl @)

0xOy 00y

The formula for calculating the correlation coefficient
between two samples can be expressed as:

n

Z:l (i =X)i =)

rx’y - n n (9)
X (= 02 |3 0= 37

Due to the long sampling time and the huge amount of
data, the memory matrix will be redundant, thereby reduc-
ing the computational efficiency. The commonly used equal
interval sampling method is a typical one-time offline sample
selection method, which can effectively control the size of
the memory matrix. However, considering the changes of
actual machining parameters and operating conditions, the
estimation accuracy of the MSET with a fixed memory matrix
will gradually decrease and frequent maintenance is required.
Accordingly, it is necessary to improve the flexibility of
the fixed memory matrix. In this paper, a dynamic mem-
ory matrix construction method based on K-Nearest Neigh-
bor (KNN) algorithm is adopted to construct the columns of
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]

Add X(k) to D

FIGURE 4. Flowchart of memory matrix construction.

the matrix, realize online calculation of MSET, and observe
the distance between the vector and each sample in the train-
ing set in real time. Taking variable x; as an example, the
method flow of adding observation vectors to the memory
matrix is shown in Figure 4. Here, § is a small positive
number.

3) SLIDING WINDOW METHOD
Within the context of the current paper, the sliding window
method is adopted to eliminate the uncertain factors and
random interference of the harmonic reducer in operation,
thereby improving the reliability of fault warning. By finding
an appropriate sliding window width, the statistical charac-
teristics of continuously changing residuals can be quickly
captured.

Assuming that in a certain period of time, the sequence
number of residuals estimated by the MSET method can be
given by:

eXops, Xest) = [€1, 82, -+, en] (10)

Setting the width of the sliding window to N, then the
moving average of N consecutive residual values within the
window can be calculated as:

F=— & (11)

The threshold of fault warning ¢, is determined by the max-
imum average residual value in the sliding window. Under
the condition of normal operation of the equipment, the max-
imum residual average value between the normal observation
vector and the estimated vector of the MSET model is ey. The
fault warning threshold can be designed as:

Er = kSN (12)

where k is the alarm threshold coefficient, which is deter-
mined by the operator according to actual experience, and the
value is generally greater than 1. When the residual value is
greater than the residual threshold e7, the system sends out
an alarm signal.
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FIGURE 5. Pearson feature correlation diagram.

TABLE 4. Correlation of each state variable.

State variables Correlation State variables Correlation

input speed 0.73 temperature 0.67

input torque 0.71  X-acceleration  0.76
output speed 0.56 Y- acceleration  0.77

output torque 0.60 Z- acceleration 0.75

4) EXPERIMENTAL VERIFICATION

Taking the sample with a lifespan of 5.7 hours in the 8th test
as an example, the total number of samples is 20000 after
deleting the data of abnormal and initial acceleration stage.
The magnitude of the correlation between variables is calcu-
lated, and the Pearson feature correlation diagram is shown
in Figure 5. After calculation, it can be known that the output
speed and torque have little correlation with other variables,
as shown in Table 4.

It can be seen that the speed and torque at the output termi-
nal have little correlation with performance decline, so other
state variables such as input speed, input torque, temperature
and acceleration in the X,Y and Z direction are selected as
the row vectors of the memory matrix. The curve diagrams
of each variable are shown in Figure 6.

The column vector of memory matrix is constructed by
dynamic method based on KNN. For 20000 data samples, the
first 2000 samples are taken as the training set, the middle
3000 samples are used as the validation set, and the last
5000 samples are regarded as the test set. A memory matrix
with 6 rows and 100 columns is constructed from the training
set, and the standardized matrix is shown in Figure 7.

The failure threshold is determined through the validation
set and the application of fault warning is carried out on the
test set. When the residual exceeds the threshold, it directly
indicates that the current state is abnormal, and then a fault
alarm is issued. The residual distribution on the validation set
is shown in Figure 8.
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FIGURE 6. Curve diagrams of each variable.
Using the sliding window method to calculate the maxi- threshold is as follows:

mum residual average value ey, the sliding window width
is set to 200. Through calculation, the maximum residual
average value is 0.4. Setting the alarm threshold coefficient The 5000 sets of operating data before the failure occurred
k to 2.5, then the calculation method of the fault warning as the test set, and the residuals are compared with the

er =key =25x04=1 (13)
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FIGURE 7. Memory matrix.
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FIGURE 9. Fault warning based on residual distribution of test set.

estimated vector calculated by MSET. The residual results are
shown in Figure 9. According to the fault warning threshold,
calculate the average residual value in a sliding window with a
width of 200. The first alarm is issued at the 3890th sampling
point, that is, about 18 minutes before the fault occurs, and
the residual value at the subsequent sampling points increases
sharply. The MSET algorithm can be used to evaluate the
residuals between prediction vector and observation vector,
and an alarm can be issued in time, thereby winning precious
time for troubleshooting. In the meanwhile, the proposed
MSET method can uniformly describe the states of multiple

8

variables without modeling each variable separately, which
can quickly realize the fault warning and has higher applica-
tion value.

B. HARMONIC REDUCER DEGRADATION

TREND PREDICTION

1) LARGEVIS DIMENSIONALITY REDUCTION METHOD

The LargeVis technique is a data dimensionality reduc-
tion method for high-dimensional space. The state data of
the harmonic reducer during the operation process contains
abundant state information. The high-dimensional vector is

VOLUME 11, 2023
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FIGURE 10. LargeVis dimensionality reduction process.

TABLE 5. Parameter settings of LSTM.

Parameters Value
numFeatures 1
numResponses 1
numHiddenUnits 40
Optimizer adam
MaxEpochs 1000
GradientThreshold 1
InitialLearnRate 0.01
LearnRateDropFactor 0.2

mapped to the low-dimensional space through the dimension-
ality reduction method, and the overall distribution law of
the observation data is visualized [21]. The basic process is
shown in Figure 10.

The conditional probability distribution of x; to x; in the
higher dimensional space can be written as:

oI 1* /207

pjli = (14)
ki eIl [1% /207
where pj|; denotes the probability that the sample point x; is a
neighbor of x;, and o; represents the variance of the Gaussian
distribution with x; as the center point.

The joint probability in high-dimensional space can be

given by:
Pjli + pijj
Py = 2n
The conditional probability distribution of the low-
dimensional space can be expressed as:

plei =1 =1y — | (16)

where y; and y; represent two points in low-dimensional
space, which have a binary edge with weight ¢;; = 1 in KNN
graph, where f (x) is:

(15)

a7

VOLUME 11, 2023

LSTM r—, by

0 o@ e X,
Crp =1 + G
(]
h 13 a f
-1 o €
Rl i P
' ' @ ¥ hM
N
x,
tanh

am

ey X

FIGURE 11. Internal structure of LSTM neuron.

The objective function of the LargeVis algorithm can be
written as:

0= " pylogplez =1+ Y ylogl —plej = 1)
(i,)eE (i,j)eE
(18)

where E is the set of positive samples,E is the weight uni-
formly set for the negative sample edge.

2) DISTANCE EVALUATION METHOD

The Mahalanobis distance is adopted to measure the covari-
ance distance of the data, which is an effective method to
calculate the similarity between two location sample sets.
The dimension reduction feature of the harmonic reducer
in the healthy state is selected as the baseline data, and
the Mahalanobis distance between the sample data and the
baseline data under different working conditions is compared.
The health index is utilized to measure the health degree of
the component. The smaller the distance between the sample
point to be tested and the baseline, the better the health degree.
In this case, the health index is defined as 1. Conversely,
it represents the decline of health to a very poor state, and
the health index is defined as 0.

H) = e—kgxd(x,y) (19)

where the parameter kg is adopted to adjust the density of the
health value distribution corresponding to each state, so that
the health value is evenly distributed in the interval (0,1).
d(x, y) represents the Mahalanobis distance, which can be
described as:

dx,y) = \/ (=Y =) (20)

3) LSTM PREDICTION METHOD

LSTM [22] is a special type of RNN network that can
solve the problems of vanishing and exploding gradients
of traditional RNN networks. LSTM adds a memory unit

9
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FIGURE 12. Health performance curve.

to the neural nodes of the hidden layer of RNN to record
the historical information. And three gates of input, for-
get and output are added to control the use of historical
information. For LSTM, its parameter settings are shown
in Table 5, and the internal structure of neurons is shown
in Figure 11.

Observing the picture in Figure 11, where i, f, ¢, and o rep-
resent the input gate, forget gate, unit state, and output gate,
respectively. o and tanh represent the sigmoid and hyperbolic
tangent activation functions, respectively. Then, at moment
t, the calculation method of the input and output values
of the LSTM network can be expressed by the following
formula:

i; = sigmoid(Wyix; + Wpihe 1 + Weic;—1 + by)
fi = sigmoid(Wyrx; + Wyghy 1 + Weper—1 + by)
cr = frer—1iy tanh(Wyexy + Wiche—1 + be)
0y = sigmoid(Wyox; + Wiohi—1 + Weoci—1 + by)
h; = o, tanh(c;) (21)
The Root Mean Square Error (RMSE) is the square root
of the ratio of the deviation between the predicted value and

the true value to the number of observations. Here, RMSE is
used as the performance measurement index of the predicted
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FIGURE 13. LSTM-based performance degradation prediction graph.

results, and the formula is as follows:

1
RMsE = /257 (2 22)

where y,; is the predicted value and y;; is the actual value.

4) EXPERIMENTAL VERIFICATION

In order to verify the effectiveness of LSTM method, the
8th and 14th groups of harmonic reducer samples with lifes-
pans of 5.7 hours and 17.3 hours are used as examples for
analysis. According to the correlation degree calculation of
state variables in the previous section, acceleration signals
in the X, Y and Z directions with the strongest correlation
are selected for research. Similarly, the total sample size is
20,000 and 1.2 million after deleting the data of abnormal
and initial acceleration phases, respectively. The mean, peak-
to-peak value (ppv), standard deviation (std), and kurtosis
value (kv) of time domain features are extracted to form the
feature vector X, then:

X = [Xl,XZ,X3]

_ 1 1 1 1 3 3
- [Xmean’prv’Xstd’Xkuw e ’Xmean’prV’
3 3
Xstd’ Xkuv] (23)
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For the two sets of experiments, features are extracted
every minute, and high-dimensional vectors V| and V; are
constructed respectively, as follows:

My 1] 1! 1re
X En«]:an X %)p]v U X kuv
21! 21! [21°
V) = Xmean prv T Xkuv (24)
(333]! [333]! (3333
_Xmean prv XkllV 333x12
L 1! 3
Xgm]ean X}Jp]v e Xkuv
21! 21! [2r°
V, = X hean prv T Xkuv
[1000]! [ooo;! [1000]?
L X mean X ppv X kuv 1000% 12

(25)

Utilizing LargeVis to reduce the dimension of the extracted
features, and effectively calculate the similarity between dif-
ferent data sets by means of Mahalanobis distance. Since
the data of the harmonic reducer is relatively stable in the
first 10 minutes of operation, it is regarded as healthy data.
The Mahalanobis distance is based on the data of the first
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10 minutes, and the dimensionality reduction features in the
health state are taken as the baseline data to calculate the
distance between the sample data to be tested and the baseline
data. Afterwards, the Mahalanobis distance is nonlinearly
mapped, and the health index of each sample point is cal-
culated according to the health index expression. Then the
change graph of the health values is shown in Figure 12. For
the sake of a simple notation, (a) represents the 8th group of
experiment, (b) displays the 14th group of experiment, the
following experiments are consistent with the characteriza-
tion method of this experiment, and will not be repeated one
by one. Here, the value of ky is 1. It can be clearly seen
from the figure that the overall trend of the health value is
on a downward trend, and the results of the health assess-
ment are consistent with the actual situation. It is directly
proved that the combination of the LargeVis dimensionality
reduction and the Mahalanobis distance method can better
evaluate the performance degradation state of the harmonic
reducer.

LSTM is employed to predict the performance state of
the harmonic reducer. Figure 13 demonstrates the compari-
son between the actual and the predicted degradation curves
of the two groups of experiments. Where blue indicates
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the actual degradation curve, and red represents the pre-
dicted degradation curve. It is found that with regard to
the performance degradation, the predicted results are sim-
ilar to the actual value, and infinitely close to the actual
value.

Here, we select the first 80% of the data in the full
life cycle samples as the training set, and the last 20% as
the test set. The training error and test error are shown in
Figures 14 and 15, respectively. As can be obviously under-
stood from the figures, the training errors of the two experi-
ments are 0.0004 and 0.0002, respectively, and the test errors
are 0.0188 and 0.0096, respectively. The test error is slightly
higher than the training error. But in general, there is no doubt
that the LSTM method for predictive analysis has less error
and better effect. It directly indicates that the LSTM method
has a greater prediction effect on the performance decline
trend of the harmonic reducer.

IV. CONCLUSION

In this study, the performance of harmonic reducer is ana-
lyzed based on multi-variable condition monitoring method
and performance degradation prediction method. The target
includes the following contents: a) The condition monitoring
of the harmonic reducer is carried out to realize the function
of fault early alarm. b) Predict the decline trend of harmonic
reducer and provide technical support for preventive main-
tenance. We consider utilizing the MSET to realize the fault
monitoring of the harmonic reducer, employing LargeVis to
reduce the dimensionality of the multi-dimensional features,
and combining the LSTM network to solve the prediction of
the decline trend of the harmonic reducer. The accelerated life
test verifies that the proposed method can not only give fault
warning signals 18 minutes in advance in the sample with a
life of 5.7 hours, but also has a strong ability to predict the
degradation trend.
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