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ABSTRACT Drug combination is very common in the course of disease treatment. However, it inevitably
increases the overall risk of adverse drug reactions (ADRs). It is very important to early and accurately
detect and identify the potential ADRs for combined medication safety and public health. Social media is
an important pharmacovigilance data source for ADR detection. But the data are complex, mass, clutter,
highly sparse, so it is difficult to detect the ADR information from these data. Deep learning stands out
in terms of increased accuracy. However, it takes a lot of training time and requires a lot of computing
power. Quantum computing has strong parallel computing capability, and requires less computing power.
By introducing attention mechanism and quantum computing into Bi-directional Long Short-Term Memory
(Bi-LSTM), a quantum Bi-LSTM with attention (QBi-LSTMA) model is constructed for ADR detection
from social media big data. QBi-LSTMA is composed of 6 variable component subcircuits (VQC) stacked.
Under the condition that the main topology of Bi-LSTM remains unchanged, the biases of QBi-LSTMA
in input gate, forgetting gate, candidate memory unit and output gate are removed to simplify the network
structure, and the weight and active value qubits of the model are used to update the network weight. The
performance of the proposed method is evaluated on the SMM4H dataset, comparing with one traditional
ADR detection method and three deep learning based ADR detection approaches. The experiment results
show that the proposed method has great potential in ADR detection.

INDEX TERMS Social media big data, adverse drug reactions (ADRs), bi-directional long short-term
memory (Bi-LSTM), quantum Bi-LSTM with attention (QBi-LSTMA).

I. INTRODUCTION
Drug combination is very common in medication and clinical
practice [1]. However, it often causes various unexpected
ADRs, and the more drugs are combined, the more likely they
are to interact with each other in terms of pharmacological or
physicochemical properties and thus the greater the possibil-
ity of ADRs [2], [3]. ADRs are one of the great problems
facing the medical field. The occurrence of ADRs greatly
increases the length of hospital stay, economic burden and
mortality of patients. Most ADRs are mild to moderate and
can be controlled with adequate supervision and monitoring,
but few serious ADRs may result in deterioration, shock and
even death [4]–[6]. ADRs have become the fourth cause of
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death in the United States and in similar countries, after heart
disease, diabetes and AIDS [7]–[9]. Margraff and Bertram [9]
found that direct patient reporting systems exist in 44 coun-
tries and represent 9% of total reports, the rest coming
from healthcare professionals. Dorji et al. [10] investigated
the knowledge level of both ADRs and ADR reporting among
healthcare professionals (HCPs). The survey consisted of 12
questions pertaining to ADRs and 10 questions pertaining
to knowledge of ADR reporting. The results show that the
clinical doctors and pharmacists have better knowledge of
ADRs than nurses and traditional medicine practitioners,
while knowledge of ADR reporting is also low for all HCPs
surveyed.

Since ADRs are a serious health problem and a leading
cause of death, it is very important to detect and identify
ADRs correctly and timely. But it is hard and challenging
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to discover many ADRs, because they happen to certain
groups of people in certain conditions and they may take a
long time to expose. In fact, the direct or indirect causes of
ADRs are diverse, ranging from pharmacological, immune
and genetic factors to race, age, sex, social factors and factors
related to drugs and diseases. The traditionalmethods of ADR
detection by the ADR related databases and the reports of
ADR events rely on manual case and ADR event reviews by
clinical/pharmacological experts [11].

Recently the text unstructured data such as social media
networks are abundant and generated rapidly, and have been
used to mine ADRs [11], [12]. Motivated by limitations of
ADR detection in clinical trials and passive post-market drug
safety surveillance systems, a number of methods have been
presented for potential ADR detection from social media
data [12], [13]. Ho et al. [14] collected a large number
of literatures about ADR in the past 20 years, summa-
rized the existing ADR detection methods and established
three tables to provide brief information on the research
for ADR detection and prediction. They pointed out that
the data-driven approach is powerful in ADR detection and
prediction. Liu et al [15] presented a feature-based ADR
extraction method by utilizing various lexical, syntactic,
and semantic features, and compared with four well-known
kernel-based approaches (i.e., subset tree kernel, tree kernel,
shortest dependency path kernel, and all-paths graph kernel),
and tested thesemethods on three data sets: two health-related
discussion forums and one general social media site (i.e.,
Twitter). Azadeh et al. [16] reviewed ADR detection methods
in social media and their application in pharmacovigilance,
and classified the existing research results according to ADR
detectionmethods, data sources, corpus sizes, and availability
and evaluation criteria.

Deep learning has gained considerable attention and
achieved great success in big data classification and iden-
tification, including Person Re-identification [17] and com-
puter vision objection detection [18] and ADR detection [19].
Masino et al [20] framed the ADR detection problem as a
binary classification task, and developed a convolutional neu-
ral network (CNN) model for tweet ADR classification. The
results show the feasibility of detection of infrequent ADR
mentions in large-scale media data. The approach reduces
manual data-labeling requirements and is scalable to large
social media datasets. Tang et al [21] proposed a LSTM-CRF
based ADR recognition method by combining LSTM and
conditional random fields (CRFs) from social media. The
results on a benchmark corpus show that LSTM-CRF
achieves better F-score than CRF. Anne et al [22] developed
a recurrent neural network (RNN) model for labeling ADRs
in Twitter posts. The only input features are word-embedding
vectors, which are formed through task-independent pretrain-
ing or during ADR detection training. The results show that
the ADR detection performance in social media is signifi-
cantly improved by using a contextually aware model and
word embedding formed from large and unlabeled datasets.
Fan et al [23] proposed an adverse drug event detection and

extraction based deep learning by utilizing Bidirectional
Encoder Representations from Transformers (BERT) and
compared with the standard deep learning models and cur-
rent state-of-the-art extraction models. The proposed model
can be applied to the medical entity extraction and entity
recognition.

Although deep learning based methods outperform the tra-
ditional approaches, the general deep learning models require
a sharp increase in computational power as the amount of
data increases, and the training process of many deep learning
models based on the existing computational power is very
long, and even cannot be applied in practice. By now, quan-
tum machine learning models experience interesting results
compared to the traditional machine learning models, and
have shown promising results in natural language processing
tasks [24]. Quantum process neural network takes advan-
tage of the advantages of quantum computing, especially
the parallel computing characteristic of quantum computing,
and has stronger parallel computing capability and larger
data processing capability than classical neural network.
Jia et al [25] briefly reviewed the classical neural networks
and many crucial aspects of quantum neural network states,
and illustrated how to use neural networks to represent quan-
tum states and density operators. Cong et al [26] introduced
and analyzed a quantum CNN (QCNN) model motivated
by CNN, explicitly illustrated its potential with two exam-
ples, and discussed the potential experimental realization and
generalizations of QCNN. Shekhar et al [22] demonstrated
that quantum LSTM (QLSTM) model is capable of learning
and accurately predicting the languages used in social media
texts. This work paves the way for future applications of deep
learning methods in quantum dynamics without relying on
the explicit form of the Hamiltonian. Overall, the existing
ADR detection approaches are limited with shallow models
and heavily engineered features. There is a lack of an end-to-
end network model that relies on redundancy of unannotated
and annotated data.

Aiming at the hard-problem to predict ADRs from the
complex, sparse social media data, inspired by QCNN
and QLSTM, making use of the advantages of Bi-LSTM
and quantum computing in natural language processing,
a quantum Bi-LSTM with attention (QBi-LSTMA) model
is constructed for ADR detection based on Bi-LSTM, atten-
tion mechanism and quantum computing. It is an attempt
to introduce quantum computing into the deep learning to
greatly accelerate model training and reduce the demands on
computational power.

Compared with most of the deep learning based ADR
detection approaches, the proposed method does not
heavily rely on the quality of input instance representa-
tion and does not require any linguistic knowledge and
high computational power. The main contributions are as
follows:
• A QBi-LSTMA model is constructed by introduc-

ing attention mechanism and quantum computing
into Bi-LSTM.
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• QBi-LSTMA can extend the performance on Bi-LSTM
based ADR extraction method.

• A lot of extensive experiments are conducted to show
the reasonable performance of QBi-LSTMA.

The rest of paper is arranged as follows. Section 2 briefly
introduces the related works, including variational quan-
tum circuits (VQC) and quantum Long Short-Term Memory
(QLSTM). TheADR detectionmethod basedQBi-LSTMA is
described in detail in Section 3. The experiments and results
are presented in Section 4. Section 5 summarized the paper
and points out the future works.

II. RELATED WORKS
A. VARIATIONAL QUANTUM CIRCUITS (VQC)
VQC is a kind of quantum circuits that has tunable parameters
subject to iterative optimizations. It is a hybrid quantum-
classical approach which leverages the strengths of quantum
and classical computation, but it is more expressive than clas-
sical neural networks with a limited number of parameters,
which can be optimized in an iterative manner by a classical
computer. Its general structure is shown in Fig.1,

whereU (x) is the quantum routine for encoding the classi-
cal input data x into the quantum state of the circuit and is not
subject to optimization, and V (θ) is the variational circuit
block with learnable parameter θ that is optimized through
gradient method.

FIGURE 1. The general structure of VQC.

N-qubit state is denoted by

|ψ〉 =
∑

(q1,q2,··· ,qN ε{0,1})

cq1,q2,··· ,qN |q1〉 ⊗ |q2〉 ⊗ . . .⊗ | qN 〉

(1)

whereCq1,q2,...qN is the complex amplitude of each basis state
and each quantum qi ∈ {0, 1}, the square of the amplitude
Cq1,q2,...qN is the measurement probability of the measured
state |q1〉 ⊗ |q2〉 . . .⊗ | qN 〉, and the total probability should
sum to 1, i.e.,

∑
(q1,q2,...qN )∈{0,1}

∥∥Cq1,q2,...,qN ∥∥2 = 1.

To convert the initial state, |0〉 ⊗ · · · ⊗ |0〉 to an unbiased
state,

(H |0)⊗N =
1
√
2N

(|0〉 ⊗ · · · ⊗ |0〉 + · · · + |1〉 ⊗ · · · ⊗ |1〉)

≡
1
√
2N

2N−1∑
i=0

|i〉 (2)

where i is the decimal number marking the corresponding bit
string.

B. QUANTUM LONG SHORT-TERM MEMORY(QLSTM)
LSTM introduces an input gate, a forgetting gate and an
output gate. The input gate controls determines how much
of the network input is saved to the cell state at the current
moment. The forgetting gate determines how much of the
cell state at the previous time is retained to the current time.
Output gate controls how much the unit state outputs to the
current output value of LSTM, thus enabling semantic long-
term and short-term memory for longer sequences. In LSTM
and Bi-LSTM, there are a lot of parameters that need to be
trained. The architecture of a LSTM cell is shown in Fig. 2A.

Similar to LSTM, quantum LSTM (QLSTM) is con-
structed by introducing quantum computing into the LSTM.
The architecture of a QLSTM cell is shown in Fig.2B, con-
sisting of six VQCs stacked, where σ and tanh are the sigmoid
and the hyperbolic tangent nonlinear activation functions,
respectively, xt is the input at time t, ht is for the hidden
state, ct is for the cell state, and yt is the output, ⊗ and ⊕
are element-wise multiplication and addition, respectively.

FIGURE 2. The architecture of LSTM and QLSTM.

In QLSTM, VQC1 controls vt and outputs a vector ft with
values in the interval [0; 1] through σ , VQC2 deals with vt
and then passes through σ so as to determine which values
will be added to the cell state, VQC3 deals with the same
concatenated input and goes through tanh to generate a new
cell state candidate C̃t , the result from VQC2 is multiplied
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FIGURE 3. The flowchart of the proposed method.

element wisely by C̃t , and the resulting vector is then used to
update the cell state, VQC4 processes vt and goes through σ
to determine which values in the cell state ct are relevant to
the output. The cell state itself goes through tanh and then is
multiplied element-wisely by the result from VQC4. Finally
this value of the above block is further processed with VQC5
to get the hidden state ht or VQC6 to get the output yt . That
is to say, VQC5 is used to transform ct to ht , and likewise
VQC6 to transform ct to yt . For VQC1 to VQC4, the input is
the concatenation vt of the hidden state ht−1 from the previous
time step and the current input vector xt, and the output is four
vectors obtained from the measurements at the end of each
VQCs. The measured values are Pauli Z expectation values of
each qubit by design, then go through σ and tanh. The feature
extraction process are given as follows,

ft = σ (VQC1 (vt)) ; it = σ (VQC2 (vt))

C̃t = tanh (VQC3 (vt))

ct = ft ∗ ct−1 + it ∗ C̃t , ot = σ (VQC4 (vt))

ht = VQC5 (ot ∗ tanh (ct))

yt = VQC6 (ot ∗ tanh (ct)) (3)

Different from LSTM, in QLSTM, the iterative transfer
relationship in the network is realized through four parts:
weighting, activation, aggregation and excitation. It extends
the classical LSTM into the quantum realm by replacing the
classical neural networks in the LSTM cells with VQCs.
To simplify the network structure, under the condition that
the main topology of LSTM remains unchanged, the biases
in input gate, forgetting gate, candidate memory unit and
output gate are removed, and the weight and active value
qubits of the network are updated to update the network

weight. In certain cases, QLSTM requires fewer parameters
than normal neural networks, making them promising for
modeling complex environments, and would play the roles
of both feature extraction and data compression.

III. QUANTUM BI-LSTM WITH ATTENTION (QBI-LSTMA)
FOR ADR DETECTION
The ADR detection task can be treated as a binary clas-
sification problem and classify an entity pair as related or
not. Aiming at the difficult problem of ADR detection,
QBi-LSTMA is constructed by combining Bi-LSTM, atten-
tion mechanism and quantum computing, and then an ADR
detection method is proposed based on QBi-LSTMA, con-
sisting of input and output, embedding, feature extraction
by QBi-LSTM, attention mechanism and ADR classification
by Softmax classifier. Its flowchart is shown in Fig.3. The
model assumes that a potentially related entity pair of drugs
can be supported by the relations between co-existing pairs
in the same sentence. From Fig.3, the steps to implement
QBI-LSTMA can be divided into five parts, introduced in
detail as follows.

A. INPUT
The original text collected from Twitter contains lots of
meaningless words or characters, such as URLs, some non-
alphabetic characters like ‘∗@,?&/)(’, which may decrease
the detection accuracy of ADR. We break it into fine-grained
tokens. After screening the noise, there are still some words
not related to drugs or ADRs in the data, such as preposi-
tions and verbs. This grammar form human-readable texts,
but previous studies have shown that bypassing these words
can reduce the solution space and improve performance of
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the model. Consequently, the dictionary of stop words is
compiled to filter these words.

Input the sentence set {S1, S2, . . . , Sm} into the model.
Build a crawler platform based on Scrapy package, obtain
corresponding posts according to the ID number of user posts
in Twitter, and store the crawled data in a text file uniformly.

B. EMBEDDING
Typically, classification and clustering algorithms require text
input to be represented as a fixed-length vector. The com-
mon models that meet this requirement are bag-of-words and
bag-of-n-grams. To better represent the words from social
media, beyond the contextual information of words, the mor-
phological and shape information are take into considera-
tion. We map each word into a low-dimensional dimension
vector, including word segmentation and word embedding.
Each word obtained and preprocessed by the input layer is
mapped into a word vector, entity type vector and part of
speech (POS) vector, and then are concatenated as a vector.
Word segmentation is to divide the input sentence by word
unit, and word embedding is a process of transforming words
into vectors. The word segmentation operation is carried out,
and then the vector E of each word in the sentence is obtained
by combining the word sequence dictionary and One-Hot
coding, whose length is the hyperparametric word embed-
ded dimension d . Then, the whole sentence-word embedding
matrix [E1,E2, . . . ,En] is obtained, whereN is the maximum
length of all sentences in the set S after word segmentation.
Finally, the same operation is carried out for each sentence in
the set to obtain a three-dimensional word-embedding matrix
with the size of m× n× d .

FIGURE 4. The detail flow diagram for feature extraction.

C. FEATURE EXTRACTION BY QBi-LSTM
Use QBi-LSTM to obtain advanced features from Section B.
For a sentence text data EW, each word in the sentence
is embedded into the input of QBi-LSTM layer for feature
extraction. QBi-LSTM can make full use of the information
of the whole text sequence and thus enhance the memory
capability of Bi-LSTM, including the information of the
relationship between each word, and use this information for
the processing of each word. It constructs two processes of
forward propagation and backward propagation. The com-
plete classification is obtained by fusing the feature forward
propagation feature and the backward propagation feature.
The detail flow diagram for feature extraction is shown
in FIGURE 4.

D. ATTENTION MECHANISM
Generate a weight vector and multiply word-level function
and weight vector of each time step to merge them into
a sentence-level feature vector. The attention carries out
weighted transformation on the state information sequence
extracted by QBi-LSTM to highlight the contribution of
important state information and effectively improve the accu-
racy of the ADR detection. The process of attention is
described as follows,

M = tanh (H) , α = soft max
(
wTM

)
r = HαT , H∗ = tanh (r) (4)

where H is the feature set of all words in a sentence extracted
by QBi-LSTM, w is the parameter vector of training learning.

E. CLASSIFICATION AND OUTPUT
The output of the attention are concatenated and input into
Softmax classifier to calculate the ADR probability (y = c)
of the candidate drugs as follows,

P (y = c) = soft max (w · γ + b)

ȳ = argmaxy∈c P (y = c) (5)

whereW and b are weight matrix and bias, C is the set ADR
type label.

The probability biggest category label y is the ADR type
of the candidate drug. Finally, there are a lot of parameters
in QBi-LSTM which need to be trained during the model
training. The gradient descent based method is adopted to
learn the model parameters. In each training time, for L input
samples 〈xi, yi〉, the gradient (using the chain rules) of each
parameter relative to loss is calculated and then updated each
parameter with learning rate λ:

Loss =
L∑
i=1

− log p (xi|yi), θ = θ − λ
∂Loss
θ

(6)

where θ is the super parameter.
It is notable that fixed learning rate λwould lead to unstable

loss in training.
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TABLE 1. Statistical Information of two Corpuses.

IV. EXPERIMENTS AND RESULTS
To verify the effectiveness of the QBi-LSTM based ADR
detection method, a number of comparative experiments
are conducted using social medical data, and compared
the experimental results with the existing ADR methods,
i.e., linear neighborhood similarity (LNS) [32], CNN and
Word Embedding Features (CNNWEF) [20], recurrent neural
network (RNN) [22], and attention-based recurrent neural
networks (ATT-RNN) [28], where LNS is a traditional
method, CNNWEF is CNN, and ATT-RNN is to use attention
mechanism to incorporate RNN.

A. DATASET DESCRIPTION
Twitter is a particularly attractive platform because it has
a large, diverse user community. The challenges faced in
applying Twitter data to ADR detection are the ADR related
data are highly sparse relative to the overall number of user
posts and human review of all posts is impractical. In the
following experiments, two corpus sets TwiMed [29] and
TwitterADR [30], [31] are used to validate the proposed
method, which were all tagged from Twitter with the corre-
sponding ID and category tag for users. The statistical infor-
mation of two corpuses is shown in Table 1. The proportion
of the available samples on corpus set is about 60%. The
TwiMed corpus takes into account the proportion of positive
and negative samples in labeling, which is relatively more
balanced, about 1:1.6. The TwitterADR corpus size is larger
than that of TwiMed, and the ratio of positive and negative
samples is about 1:8.1.

B. EXPERIMENTAL SETTING
The experiments are conducted on 32G memory, with Intel
Core i5-4200U CPU @2.30 GHz, GPU GEFORCE GTX
1080ti, Ubuntu14.0. The deep learning architecture is Tensor-
flow1.7.0 and Keras, including LSTM. During the training,
the learning rate of the model is initialized as 0.001, the
attenuation rate is 0.1, the training cycle is set as 300, the
batch size is set as 10, the dropout coefficient is set as 0.5,
and other parameters are randomly initialized.

C. SYSTEM CONFIGURATION
Ten-fold-cross validation criterion is used to carry out the
experiments. For each fold, all data are split into the training
and test sets, and the training dataset is split into training
and validating sets, and the ratio of training set to verifica-
tion set is 9:1. The word embedding dimension used in the
experiment is 100, the embedding dimension is 50. The cross
entropy loss is used as the objective function of classification
problem. Stochastic gradient descent (SGD) algorithm is used

FIGURE 5. Precision versus the stacked layer number of QBi-LSTM.

FIGURE 6. Losses with the different number of iterations.

to optimize the training the model. The training stops when
there is no performance improvement on the validation set
after 5 consecutive epochs.

D. EVALUATION METRICS
Precision (P), Recall (R) rate and F1-score (F1) of the posi-
tive class (instances labeled as containing the description of
ADRs) are used as evaluation metrics to test the performance
of QBi-LSTMA in the experiment. F-score is defined as F1=
(2PR)/(P+), where F1 can play a balancing role between
P and R.

E. RESULTS
First, we evaluate the impact of the number of the stacked
layers of QBi-LSTM on TwiMed dataset. FIGURE 5 show
the Precisions versus the number of the stacked layers of
QBi-LSTM. From FIGURE 4, it is found the optimal number
is 4, more stacked layers usually mean more learnable fea-
tures, but further increasing its number does not improve the
performance, and more than 4 layers may cause the model
difficult to train. In the following experiments, the stacked
layer number of QBi-LSTM is set as 4.
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FIGURE 7. Losses with the different number of iterations by QBi-LSTMA,
Bi-LSTM and QBi-LSTM without attention.

To test the converge performance with the different itera-
tion times, FIGURE 6 shows the losses on the set training and
test set of the TwiMed dataset with the different number of
iterations. From FIGURE 6, it is seen that the training and test
losses of QBi-LSTMA decrease as the number of iterations
processed increased, at the initial stage of learning, two losses
are high, and then reduce down very quickly before the 1000th

iterations, after 2000 iterations, the losses become slowly
stable, and we select the trained QBi-LSTMA at the 2500th
iterations. It is also seen that the performance in training set
is slightly better than that in test set overall.

Attention mechanism equivalently appends additional
restrictions to the model and requires semantic meanings
to match strictly. To test the effect of attention mechanism,
FIGURE 6 shows the losses by QBi-LSTM with atten-
tion (QBi-LSTMA) and QBi-LSTM without attention on
the TwiMed dataset with the different number of iterations,
comparing with the existing Bi-LSTM. From FIGURE 7,
it is obviously seen that the performance of QBi-LSTMA
is distinctly superior to that of Bi-LSTM and QBi-LSTM
without attention. The reason is that attention mechanism

FIGURE 8. Precisions by QBi-LSTMA versus word embedding lengths.

TABLE 2. The ADR detection results on TwiMed by LNS [32],
CNNWEF [20], RNN [22], ATT-RNN [28] and QBi-LSTMA.

TABLE 3. The ADR detection results on TwitterADR by LNS [32],
CNNWEF [20], RNN [22], ATT-RNN [28] and QBi-LSTMA.

TABLE 4. The characteristics of Bi-LSTM, Bi-LSTMA and QBi-LSTMA.

can fully extract character-level, word-level, sentence-level
and even inter-sentence relationship features, so that the
pre-trained word vector can better represent syntactic and
semantic information in different contexts and improve
the performance of entity recognition. The performance of
QBi-LSTMA and QBi-LSTM without attention is much bet-
ter than that of Bi-LSTM, because quantum networks have
excellent nonlinear approximation ability, ideal generaliza-
tion performance and fast convergence rate.

To decide the embedding word length, we addition-
ally combine different word embedding lengths and utilize
QBi-LSTMA to deal with the challenge that encountered in
data representation of multiple sources, and further identify
text containing ADR information. FIGURE 8 shows the Pre-
cisions versus word embedding lengths. From FIGURE 8,
it is known that the word embedding length affects the perfor-
mance of QBi-LSTMA. The reason is that low-length vectors
do not contain enough semantic information, while increasing
the embedding length brings much more noise despite their
richer semantics. The appropriate dimension is 50.

From FIGURE 5 to FIGURE 8, we obtained a trained
QBi-LSTMA, where the stacked layer number of QBi-LSTM
is 4, the number of iterations is 2500, and theword embedding
length is 50.

The ten-fold-cross validation experiments are repeated 10
times, and their average results are regarded as the ADR
detection result of each method, as shown in Table 2 and
Table 3. To validate the training performance, the parameter
scales of four networks are also given in Table 2.
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From the above experiments and result analysis, the
merits & demerits of LNS, CNNWEF, RNN, ATT-RNN and
QBi-LSTMA are listed in TABLE 4.

Through contrast experimental results in Tables 2 to 4,
it can be seen that the QBi-LSTMA based ADR detection
method outperforms the other methods. It is also found that
deep learning models based methods are is far better than the
traditional method LNS, and RNN and ATT-RNN are better
than CNNWEF. The reasons are concluded as follows.

LNS is a traditional method, has few parameters to be
determined by training, and none memory, so its accuracy
is lowest. CNN in CNNWEF has strong feature extraction
ability, but poor memory ability. It is well suited for image
recognition, but not for text classification, including ADR
detection. Compared with LSTM, RNN can only handle
short-term dependencies. ATT-RNN is to use attention mech-
anism to incorporate RNN. RNN is relatively simple with
only one parameter matrix and has a very short memory
and is prone to the long dependence problem of gradient
disappearance, while QBi-LSTMA is more complex with
four parameter matrices and can solve this problem by having
a longermemory. RNNhas no cell state; QBi-LSTMA similar
to LSTM, remembers information through cellular states.
The biases of QBi-LSTMA in input gate, forgetting gate,
candidate memory unit and output gate are removed to sim-
plify the network structure, and the weight and active value
qubits of the model are used to update the network weight.
CNN in CNNWEF assigns a weight to each word when mak-
ing classification decision usually needs to copy the feature
detector, which will reduce the model building efficiency, and
CNN is often insensitive to spatial position, it is difficult to
effectively encode information such as position information
and semantic information in text sentences. RNN is better
than CNN since RNN has long and short timememory ability.
QBi-LSTMA is the best, because it integrates the advantages
of Bi-LSTM, attention and quantum computing, and the non-
linear approximation ability and generalization performance
of the original LSTM and Bi-LSTM are improved. From
Table 2, it is found that the parameter scale of QBi-LSTMA
is minimal, since six VQCs are used instead of the traditional
neural networks.

On the whole, QBi-LSTMA outperforms the other models.

V. CONCLUSION AND FUTURE WORK
Adverse Drug Reactions (ADRs) are potentially dangerous
to patients and are amongst the top causes of morbidity and
mortality, and are one of main concerns in the drug discovery,
which gains wide attentions, however it is unfeasible to inves-
tigate all possible ADDIs. It is known that a great number of
computational methods have been proposed for ADR detec-
tion, but it is still hard to detect and predict all ADRs, because
many ADRs hide in the massive social media big data,
which contain a lot of ill-grammatical sentences and short
forms. A QBi-LSTMA based ADR detection method is pro-
posed to detect the possible ADRIs from social media data.
QBi-LSTMA takes the advantages of additional Bi-LSTM,

attention and quantum computing and thus enhance the detec-
tion performance, training ability and robust. Experimental
analysis indicates that the proposed method achieves a good
overall performance on the ADR task. Future research is to
optimize QBi-LSTMA so as to be applied to the computation-
ally constrained mobile device, and we will consider using
a multi-stage classifier to handle each type of data in a tar-
geted manner. The generalization ability and computational
complexity of the proposed QBi-LSTMA need to be further
studied.
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