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ABSTRACT Recently, renewable energy is considered a vital source for electricity generation that aims
to reduce the carbon dioxide emissions acquired from fossil fuels. Concentrated solar power (CSP) is a
growing technology that collects solar energy from the sunbeams. One of the efficient CSP topologies is the
solar power tower (SPT), which aims to collect the direct sunbeams on a central collector using thousands
of reflecting mirrors, called heliostats. Many literature reviews have presented the development of control
techniques to improve tracking accuracy and SPT performance. However, on the component level, little
work has been issued. This article introduces a comprehensive review of the different SPT drives. More than
100 papers have been classified and discussed to allocate the development and the research-gaps in SPT
drives. The drive mechanisms, considering both the power source and mechanical transmission systems,
have been classified and discussed. Additionally, a comprehensive review of the different electrical motors,
along with their power electronic converters, used for heliostat units are presented, discussed, and compared.
The advantages and the drawbacks of the different electrical drive systems are presented and discussed.
Besides, the azimuth-elevation tracking technique is selected, discussed, and investigated with a dual-axis
two linear actuators mechanism. Additionally, a case study for a small-sized heliostat prototype is presented,
discussed, and analyzed using the azimuth-elevation dual-axis tracking to investigate the SPT’s performance
in Dhahran, KSA, as a promising location in the Gulf region. According to this review, the research gaps and
future work have been highlighted to help interested researchers in this area finding potential challenges.

INDEX TERMS Renewable energy, concentrated solar power, heliostat control system, electric drives, power
electronic converters.

NOMENCLATURE
Abbreviations
CSP Concentrating Solar Power
SPT Solar Power Tower
PDC Parabolic Dish Collector
PTC Parabolic Trough Collector
LFR Linear Fresnel Reflector
PV Photovoltaic
AC Alternative Current
DC Direct Current
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PMDC Permanent Magnetic DC
PMSM Permanent Magnetic Synchronous Motor
PI Proportional Integration

Symbols

γ ∗ reference azimuth angle
α∗ reference elevation angle
γmeas measurement azimuth angle
αmeas measurement elevation angle
D Duty Cycle
Ea back electromotive force
ia armature current
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Ra armature resistance
La armature winding leakage inductance
Rf field resistance
Lf field winding leakage inductance
Jm rotor moment of inertia
Bm frictional coefficient

I. INTRODUCTION
Nowadays, obtaining a clean environment and reducing CO2
emissions from fossil fuels has become a significant concern
of many researchers. Therefore, most studies focus on renew-
able energy resources as potential alternatives where the
sun is one of the most important renewable energy sources.
Solar energy is considered the first option for expanding,
upgrading, and modernizing power systems worldwide [1].
Governments all over theworld are joining that consensus and
preparing their plans in this regard. The usage of renewables
is the best option for improving access to affordable, depend-
able, and more reliable sources of advanced energy services.
Around 170 countries have set renewable energy goals, and
nearly 150 countries have established policies to capitalize on
businesses in renewable energy technologies [2].

One of the promising renewable energy technologies is
thermal-based solar power, called the Concentrated Solar
Power (CSP) system. The idea of a CSP system’s operation
is based on gathering sunbeams on a collector that transfers
the collected thermal energy using a specific fluid that can be
considered a heat source, which can be referred to as a thermal
energy generator. This generator can be applied directly to
feed thermal systems, like chillers, or indirectly for other
applications, such as electrical power generation and water
desalination.

One of the preferred CSP technologies is the Solar
Power-Tower (SPT) technology that is considered the most
efficient among the different CSP technologies. The benefit
of SPT topology is flourishing if the commercial develop-
ment cost is reduced [3]. Consequently, the levelized energy
cost for long-term deployment is lower than other topolo-
gies [4], [5]. The SPT concept uses a reflector, referred to
as heliostats, which reflects sunbeams on a definite point on
a collector, referred to as ‘‘target’’ placed on the top of the
fixed tower. Generally speaking, a heliostat is a flat mirror
supported on a movable mechanical structure that tracks the
sunbeams using a dual-axis tracking system.

Recently, the work in heliostat tracking and SPT focuses
on the tracking systems’ control and accuracy and the system
calibration. Generally, SPT heliostat fields face the obstacles
of high cost and low energy efficiency due to the large
number of sensors utilized. A cluster control technique is
made to reduce the number of used sensors, reducing the
field cost, and achieving reasonable accuracy [6]. Another
enhancement is made to increase the SPT overall efficiency
by creating multi-reflection stages. This technique provides
higher efficiencies. However, the tower receiver’s height still
needs more investigation [7], [8]. Extensive reviews have
been introduced in [9], [10] discussing the current larger-scale

SPT systems, concentrating on the tracking error sources and
the basic requirements of calibration systems. In addition,
the methods for improving power generation efficiency were
presented.

Generally, an SPT plant’s efficiency depends on the
heliostats’ ability to reflect the sunbeams on the target [11].
Such reflection over a year requires an accurate drive system
to move the heliostat over a wide range of azimuth and eleva-
tion angles for precisely reflecting the sunbeams. The precise
and reliable drive system needs an expensive power modu-
lator, control system, gearbox, and electric motor. Besides,
several thousands of heliostat units are required in one SPT
field, which makes the drive system contributing 30–40% of
the overall SPT cost [3], [12], [13]. Therefore, the need for
an advanced and economic heliostat drive system is essential
for SPT technology.

According to the recent work, as far as the authors know,
there are gaps related to the SPT heliostat drive systems in
the component level considering the electrical motors and the
power electronic converters. Therefore, this work introduces
a comprehensive survey for the SPT system considering the
component level. Hence, this paper presents a review of
the most recent CSP technologies and the SPT technology’s
superiority in terms of system efficiency. The different helio-
stat drive systems and their constructions will be reviewed.
The drive system mechanisms and the electric motors, along
with their power electronic conditioners, are described and
discussed. A comparison among different drive systems in
terms of their cost and performance is presented.

The remainder of this paper is arranged as follows.
An extensive survey of the different electric drive systems
implemented globally in different SPT plants is introduced in
Section I to reflect the current solar energy markets’ current
situation. A distinct review of CSP systems’ topologies and
the contemporary world CSP projects are summarized and
provided in Section II. The SPT definition and its compo-
nents are presented in Section III. The drive mechanisms and
the power source for the SPT heliostat unit are discussed
in Section IV. Section V describes the dual-axis tracking
models for the SPT heliostat unit. The electric drive systems,
including the different electric motors and their power elec-
tronic converters, are discussed in Section VI. Furthermore,
in Section VII, a case study of a roof-top small-size helio-
stat is discussed. Based on the discussions in this review,
the authors highlighted the future works in Section VIII.
Finally, the conclusion is derived in Section IX.

II. CONCENTRATED SOLAR POWER (CSP)
Scientists classify the sunbeams arriving at earth into three
different categories, as shown in Figure 1. These are direct,
reflected, and diffuse radiations. The most well-known
and efficient solar systems technologies utilize direct and
reflected solar radiations such as Photovoltaic (PV) and the
CSP systems.

CSP technologies can be classified according to
the method of sunbeams concentration to point- and
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TABLE 1. CSP projects topologies around the world with the total generation.

FIGURE 1. Different types of solar radiation.

line-concentrations, as depicted in Figure 2. Two well-known
topologies are based on the online concentration: Parabolic
Trough Collector (PTC) and Linear Fresnel Reflector (LFC).
Conversely, two different topologies are based on point con-
centration, which is Solar-Power Tower (SPT) and Parabolic
Dish Collector (PDC) [14], [15]. The line concentration
technique is based on collecting direct solar radiation to
collectors, which carry moving fluids that transfer the stored
thermal energy to a storage tank. In contrast, the point con-
centration is based on reflecting the sunbeams to a central
target, which can transfer thermal energy to a fluid that can

FIGURE 2. Solar energy system classification according to the sunbeam
concentration technique.

be used as a source of energy. Generally, the point focusing
technique is more efficient since it can produce a higher
temperature than the line focusing one [16], [17]. The CSP
projects worldwide started to appear in the last few years
due to advancements in manufacturing. Table 1 provides
information for the current CSP plants around the world [18].
The countries are arranged according to the number of
projects. This table describes the number of the different CSP
projects, the amount of power generated from each type, and
the overall generated power. Figure 3 shows the pie-chart
representation for the total projects implemented for each
CSP technology around the world. Besides, Figure 4 shows a
pie-chart representation of each CSP technology contribution
to power generation in the world. The different topologies of
CSP are briefly described in the following sections.

Firstly, SPT, shown in Figure 5(a), is also known as central
receiver systems (CRS). A heliostat field collector (HFC)
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FIGURE 3. Projects of the different CSP technologies.

FIGURE 4. Percent generated power for the different CSP technologies.

reflects and concentrates the sunbeams onto a central collec-
tor placed on a tower. A heliostat unit is a flat mirror or multi
flat mirrors supported by a mechanical structure that follows
the sunmovement using a dual-axis tracking system. The heat
is absorbed by a heat transfer fluid, which then transports
thermal energy by heating exchangers that empower a steam
Rankine power cycle [19]–[21]. The SPT system produces
relatively high temperatures, i.e., 540–840 ◦C, capable of
generating high-pressure steam to move the turbines. There-
fore, the cost of thermal storage is reduced substantially [22].
The SPT can be joined with steam cycles with a thermal
system efficiency of 40% and can be increased, by the com-
bined cycle, to reach 55% [11]. It could be observed that
overall, the share of SPT projects has increased during the
last decade compared to other CSP projects in 15 countries,
with 53 plants generating around 3442 MW [18].

A simple block diagram for PDC technology is shown
in Figure 5(b). PDC system concentrates the sunbeams at a
point held above the center of the PDC frame. The whole
system continuously tracks the sun movement by moving
the collector dish and focal receiver point in all daytime.
PDCs systems provide high transformation efficiency com-
pared with other CSP systems. However, they are costly and
possess low compatibility concerning storage systems and
the hybridization processes [23]–[25]. So, only two PDC
projects were established in the USA, and they are out of
service. In fact, PDC constitutes only 1.32% of the total CSP
projects [18].

Producers claim that PDCs systems can supply mass pro-
duction, which will allow them to compete with larger CSP

FIGURE 5. Different CSP topologies.

systems. Each PDC system produces electricity indepen-
dently and offers a low power capacity and usually reaches
tens of kW or smaller [26]. Therefore, hundreds of thousands
of these dishes are needed to establish a large-scale power
station like other CSP topologies with operating temperatures
achieved are in the range of 100–1500 ◦C.
A block diagram for the PTC is shown in Figure 5(c). The

PTC reflectors are designed in a curve shape in one dimension
to concentrate sunbeams onto the collector tube positioned in
the PTC unit’s focal line. The movement for both reflector
and absorber tube is compatible with the sun for all day-
time. That was a group of parallel-connected mirrors called
the solar field. The temperature of the PTC varies between
150–400 ◦C. The PTC can be joined to steam cycles to gener-
ate electricity up to 500 MW with a thermal-cycle efficiency
of 30–40% [27], [28]. Besides, PTC projects are located
in 17 countries, constituting around 23.03% of the overall
CSP plants and producing 61.73% of electricity generated by
CSP plants [18].

The LFR design approximates the parabolic curve using
flat mirrors in long rows to reflect the sunbeams onto a facing
direct linear receiver. A receiver is fixed over a mechanical
structure, as shown in Figure 5(d), along with the linear
reflectors. LFR systems have low installment costs compared
to other CSP technologies [29]. However, LFR stations are
less efficient than PTC and SPT, and they possess more
complexities to connect their storage capacity into the whole
design. Recent LFR plants are known as compact LFRs,
where two parallel receivers are used with each row of reflec-
tor mirrors [30], [31]. Therefore, they require less land than
PTC plants with the same output generation, with possession
of a high operating temperature range to 150–270 ◦C. The
LFR technology comes in third place, where it has been estab-
lished in eight countries with 15 projects and a full capacity of
about 3.99% of the CSP projects electricity generation [18].

The overall comparison for the different topologies is listed
in Table 2. It can be observed that the SPT has higher overall
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TABLE 2. Comparison of CSP topologies [21]–[25].

TABLE 3. Basic approaches for heliostat cost reduction.

efficiency and higher temperature levels [32]. However,
a central receiver solar thermal power plant’s effectiveness
depends on the heliostats’ ability to reflect the sunbeams onto
the receiver. Reflecting the sunbeams for a full year requires
a drive system to move the heliostat over a wide range of
azimuth and elevation angles, representing a challenge in
developing novel, efficient and low-cost drive systems.

III. SOLAR POWER TOWER SYSTEM
Comparing the different CSP topologies gives an advantage
to the SPT system in terms of overall efficiency and tem-
perature levels. However, a central receiver solar thermal
power plant’s effectiveness depends on the heliostats’ ability
to reflect the sunbeams onto the receiver. Generally, reflecting
the sunbeams for a year requires a drive system to move the
heliostat over a wide range of azimuth and elevation angles,
representing a challenge in developing new efficient and
low-cost drive system designs. Heliostats are considered the
bulk cost of SPT plants as they contribute about 40% of the
power plants’ overall cost [33]–[36]. Therefore, reducing
the heliostat cost will lead to a substantial reduction in the
SPT overall cost. An impressive amount of unconventional
heliostat concepts was found so far as surveyed in [1]. The
basic idea for the heliostat cost reduction is given in Table 3.

The following sections describe different drive systems
with their motors and the power electronic converters due to
the drive system’s high share of heliostat unit cost. Besides,
various drive system mechanisms, operation, and control
techniques are discussed along with their pros and cons.

IV. DRIVE MECHANISMS FOR HELIOSTAT UNIT
The drive system mechanism is accountable for managing
the position of the heliostat frame. Meanwhile, they are
responsible for applying the required torque to rotate the
heliostat structure to reflect the fixed target’s sunbeam. For
improving the accuracy and efficiency of the heliostat move-

ments, a rotation on two axes, azimuth, and elevation is
required [37]–[39]. The movement of the heliostat unit and
the meaning of the aforementioned angles will be discussed
in Section V.

According to the power source characteristics, the trans-
mission solutions differ considerably to fulfill the heliostat’s
velocity and torque requirements [39]. The following subsec-
tions describe the different power sources and transmission
systems used in the industry.

A. POWER SOURCES
Concerning power sources, two well-known technologies
are being used in heliostat systems: hydraulic and electrical
actuators.

1) HYDRAULIC ACTUATORS
Hydraulic actuators are usually associated with high-power
applications [40]. The hydraulic system consists of a
hydraulic pump connected with a servo-valve related to elec-
tronic control and rotary hydraulic motor [41], [42]. Pumps
of incompressible oil power the hydraulic actuators. The
pressure that the fluid createsmoves the cylinders and, in turn,
helps to move the connected load. These actuators are sat-
isfied with high-force applications and are customizable to
practically any weight. Besides, they are the most powerful
actuators on the market and are suitable to work under heavy
loads and pressures.

Due to the pressure-producing system’s cost and com-
plexity, hydraulic actuation regularly needs many actuators
to move the load. Thus, hydraulic actuators are not com-
petitive when the system requires one or a low number of
actuators, as in CSP applications. Furthermore, hydraulic sys-
tems require costly plumbing, maintenance, and continuous
checks. Due to the nature of the product, the possibility of
oil leakages is high. Besides, high-temperature environments
can cause damage to the overall system if not monitored
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diligently [43]. Hydraulic linear actuators are not contained
and require numerous external components. For a small appli-
cation, these may not be the best option. These actuators are
hard to control accurately and may suffer from ‘‘stick-slip.’’

2) ELECTRICAL ACTUATORS
Electricmotors are used in rotary or linear actuators, as shown
in Figure 6 [44], [45]. Among the advantages, the possibility
to provide a minimal to large power capability with per-
fect motions and vast controlling performance can be stated.
Different kinds of electrical actuators were being used in
heliostat systems with various types of motors, DC, and AC,
which were utilized to minimize the driving system cost and
increase the system efficiency and controllability. Moreover,
lifetime and maintenance characteristics are advantageous as
well. These Electrical actuators have much more advantages
over hydraulic actuator solutions [46], [47] like:

• Faster response timewith higher stability at a wide range
of speed control,

• Smoother acceleration and deceleration,
• They are easily programmed for controlling speed and
braking.

Hence, the electrical actuator is preferred instead of
the hydraulic one, particularly with small-sized heliostat
units [48], [49].

FIGURE 6. Rotary and linear actuators based on electrical actuators.

B. TRANSMISSION SYSTEMS
Several solutions were utilized to achieve the requisite trans-
mission in heliostats [53] depending on the power source,
speed, and desired accuracy. Figure 7 shows several gearbox
solutions used in various industrial applications. There are
some well-known transmission solutions used in heliostats.
Besides, the advantages, drawbacks, and applications for
each transmission system are listed in Table 4.

1) WORM CONFIGURATION GEARS
Worm gear transmission is shown in Figure 7(a). This
gear provides a high transmission ratio in each stage [51].
However, worm gears are not efficient compared to other
gearboxes.

FIGURE 7. Transmission configuration solutions [39].

2) RACK AND PINION GEARS
Figure 7(b) shows the Rack and Pinion gear type. This config-
uration provides high efficiency with a drawback in transmis-
sion ratio, and back driving the stage is always possible [52].

3) BEVEL GEARS
Bevel gears are useful when the direction of a shaft rotation
needs to be changed. They are usually mounted on shafts
that are 90 degrees apart but can be designed to work at
other angles as well, as seen in Figure 7(c). If ball screws
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TABLE 4. Advantages and drawbacks for the different mechanism solutions.
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are employed, the smooth movement and efficiency are sig-
nificant to move in three axes [53].

4) SPUR GEARS
Spur gears transmission technology provides a smooth move-
ment, as shown in Figure 7(d) [54]. The available trans-
mission ratio in each stage is between 2:5 ranges, so many
steps are necessary. The gears have high efficiency with the
drawback of having irreversible transmission.

5) CAPSTAN DRIVE
Capstan drive uses a cable to couple the movement of dual
elements called capstan drive. Figure 7(e) shows this drive
that relies on two pulleys. This drive deals with a rope to the
lifters at its end. In this technique, the backlash is canceled,
where the gear relies on contact forces and is composed of
discrete elements [55].

6) CHAIN AND PINION
Chain and pinion actuation provide the possibility to deal
with low-cost transmission [39]. Figure 7(f) offers a clear
image of the solution. Chain and pinion solutions require
different parts for their assembly, which may impact the
overall system’s accuracy and efficiency.

7) HARMONIC DRIVE
A harmonic drive configuration solution is called strain wave
gear [56]. It relies on contact and deformation to offer a
high transmission ratio, usually reaches 100:1, with high
accuracy, as shown in Figure 7(g). The configuration has
high efficiency with a backlash-free rotational motion trans-
mission. However, the high cost prevents its use in CSP
applications [57], [58].

8) PLANOCENTRIC CONFIGURATION
Planocentric configuration solution drives implement
extraordinary gear reduction reaching over 30000:1 in a very
compact package Figure 7(h). The heliostats units are con-
sidered the only application for this concept, and they cannot
profit from these systems produced for other applications.
The solution suggested being the lowest-cost option for large
heliostats azimuth heliostats [39].

V. A HELIOSTAT’S DUAL-AXIS TRACKING
To understand the drive system’s rule, the tracking sys-
tem requirements have to be defined in terms of sun
and heliostat angles. The solar tracking systems must be
adjusted continuously and accurately to reflect the sunbeams.
A single-axis tracking system is less costly, and its control
system is simple to be achieved. However, system efficiency
is less compared with the dual-axis solar tracking system.
To track the sunbeams, three sets of angles must be defined,
i.e., sun, tower, and heliostat angles. The following subsec-
tion describes the mathematical model used to identify these
angles.

A. SOLAR MODEL
Two principal angles are needed to define the sun position.
These are solar elevation angle (αs) and solar azimuth angle
(γs) (See Figure 8). The αs angle is expressed by:

αs = 90− θz;

θz = cos−1 [cos (ϕ) cos (δ) cos (ω)+ sin (ϕ) sin (δ)] ;

δ = 23.45 sin
(
360×

284+ n
365

)
(1)

where δ is the declination angle, θz is the zenith angle, ϕ is
latitude angle, ω is the time angle, and n is the day number;
n = 1 on Jan. 1st every year.

FIGURE 8. Elevation and azimuth sun angles.

The angle δ is the sun’s angular position at solar noon
concerning the equator’s plane, north positive; −23.45◦ ≤
δ ≤ 23.45◦. The angle θz is the angle between the vertical
and the line to the sun, that is, the angle of incidence of beam
radiation on a horizontal surface. Additionally, the angle ϕ is
the angular location north or south of the equator; i.e.−90◦ ≤
ϕ ≤ 90◦ where north is positive. The angle ω is the angular
displacement of the sun east or west of the local meridian due
to rotation of the earth on its axis at 15◦ per hour considering
morning in negative and afternoon in positive [73], [74].
Depending on time and date values (year, month, day, hour,
minute, and second) and location (longitude (ϕ) and latitude
angles), the solar elevation and azimuth angles are described
in Figure 8. The angle γs can be calculated as:

γs = sign (ω)

∣∣∣∣cos−1 (cos (θz) sin (ϕ)− sin (δ)
sin (θz) cos (ϕ)

)∣∣∣∣
+180; θz 6= 0 (2)

It is worth mentioning that this angle’s zero value is not
achievable, as been proved practically in Section VII.

B. TOWER AND HELIOSTAT MODEL
The tower elevation angle (αT) which is a function of the
tower height (H), the heliostat height (h), and the distance
of the heliostat from the tower (R), which is illustrated in
Figure 9. In addition to the elevation angle, the target position
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FIGURE 9. Elevation and azimuth target angles.

FIGURE 10. Elevation and azimuth heliostat angles.

of the tower is defined by the azimuth target angle (γT) which
is referenced by the North direction of the heliostat and tower.

The sun tracking is identified by two angles, called helio-
stat angles, as described in Figure 10. These angles are helio-
stat elevation angle (α∗H ) and heliostat azimuth angle (γ ∗H ).
The following method is used to obtain the heliostat tracking
angles. Firstly, the sun and tower angles are converted to
Cartesian coordinates as described by (3), (4). Then, the nor-
mal mirror vector based on three-dimensional Cartesian form
(x, y, and z) can be calculated using (5). Finally, the heliostat
tracking angles α∗H and γ ∗H can be calculated using (6) [75].

z1 = sin (αs)

x1 = cos (αs) ∗ cos (−γs)

y1 = cos (αs) ∗ sin
(
−γ s

)
(3)

z2 = sin (αT)

x2 = cos (αT ) ∗ cos (−γT )

y2 = cos (αT ) ∗ sin
(
−γ T

)
(4)

x =
x1 − x2

2
+ x2

y =
y1 − y2

2
+ y2

z =
z1 − z2

2
+ z2 (5)

α∗H = sin−1
(

z√
x2 + y2 + z2

)

γ ∗H =

∣∣∣∣∣∣∣∣∣∣∣∣

tan−1 (−y/x) if x > 0
tan−1 (−y/x)+ 90 if x < 0, and y ≥ 0
tan−1 (−y/x)− 90 if x < 0, and y < 0

90 if x = 0, and y > 0
−90 if x = 0, and y < 0

undefined if x = 0, and y = 0

∣∣∣∣∣∣∣∣∣∣∣∣
(6)

VI. ELECTRICAL DRIVES FOR DUAL-AXIS TRACKING
SYSTEMS
Ablock diagram for a generic electrical drive system is shown
in Figure 11. It mainly consists of an electric motor, power
electronic converter, sensors or transducers, and a digital
controller. The power electronic converter is used tomodulate
the input supply to a suitable energy source for the electric
motor. The sensors are used to transfer the measured signals
to the digital controller. The control technique is implemented
within the digital controller to steer the power electronic con-
verter with a suitable train of pulses suitable for the control
command.

FIGURE 11. Generic block diagram for the electrical drive system.

For a heliostat dual-axis solar tracking system, themechan-
ical load represents the mirror, the movable structure, and the
gearbox coupled with the motor shaft to transfer the mechan-
ical energy to a suitable form; for instance, from rotational
motion to translational motion for linear actuators. The sensor
needed for such a system is a position sensor that is used to
feedback themirror positionmeasurement. Based on the elec-
trical source nature, AC or DC, and the motor type, the power
electronic converter can be selected. On the other hand, motor
selection depends on the mechanical characteristics of the
connected load. Two-directional movements are needed to
control both azimuth and the elevation axes to maximize the
reflected solar energy. In the next subsections, the different
electrical drive systems will be elaborated.

A. DC DRIVES
DC motors are mostly used in many applications because of
their control simplicity at a wide range of speeds, in addition
to the ability to operate at high torque values. Moreover,
DC motors have the advantages of fast starting, acceleration,
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deceleration, forward, and reverse responses. Different DC
motors can be used in SPT applications, i.e., shunt, com-
pound, and permanent magnet DC motors [76].

In early 1985, DC drives have been utilized for an old SPT
heliostat design, as described in [77], [78]. A switched-mode
DC/DC Buck regulator, shown in

Figure 12 is used to drive a Permanent Magnet
DC (PMDC) motor [78]. This converter allows a unidirec-
tional power flow that helps only the motoring operation
of DC motors. However, the abovementioned circuit cannot
control the DC motor in the four quadrants, essential in
DC drives. Furthermore, Buck converter is a switched-mode
regulator that includes a passive filter, which is unnecessary
for drive applications, where the machine inductance fulfills
the current filtering.

FIGURE 12. Buck DC/DC switched-mode regulator.

In [79], a bidirectional DC/DC converter, Class-E DC
chopper shown in Figure 13, is used to supply the arma-
ture winding of a separately excited DC motor. This con-
verter topology is preferred in DC drive applications to fulfill
the four-quadrant operation, including motoring and reverse
motoring. However, the field winding of this DC motor
requires an additional DC source to energize the machine.

FIGURE 13. Class-E DC chopper.

Regarding the control techniques, neural networks, PI, and
PID controllers are commonly used to control heliostat drive
systems’ movement. The PI and PID gains are tuned using
two different fuzzy logic (FL) techniques in [79]–[81]. The
two methods are based on considering the error signal and/or
derivative of the error signal. The results reflected the FL
technique’s superiority that felt both the error signal and its
derivative. However, these studies have not been experimen-
tally validated. In [82], computer vision is used to control the
dual-axis heliostat drive system. An educational prototype is
made based on a thermal camera interface to a Raspberry Pi

microcomputer system. This system is considered the most
advanced in SPT control techniques. However, applying such
a method to practical SPT with thousands of heliostat units is
not feasible due to the high cost. Although DC drive control
is preferred due to its simplicity, the DC drives have the draw-
backs of relatively high capital cost and regular maintenance
costs due to commutators and brushes’ incidence. These are
considered a severe issue for CSP plants that have thousands
of heliostat units, likewise the Noor III CSP plant inMorocco,
which has around 50,000 computer-controlled heliostats or
mirrors spread over a 30 km2 area [83].
For the interested readers, the well-known applications,

the advantages, and drawbacks of the different DC motor
types are listed in Table 5. Furthermore, brushed DC motors
are mainly used in CSP applications requiring high dynamic
performance that used drives up to several hundred kilo-
watts [92], so the different power electronic converters used
for brushed DC drives are depicted in Table 6.

B. STEPPER MOTOR DRIVES
Stepper motors (STMs) are prevalent in the heliostat drives
units considering their relatively high torque at low speeds.
Generally, STMs are classified into three main categories,
i.e., variable reluctance STM, permanent magnet stepper
motor (PM-STM), and hybrid stepper motor (HB-STM) [96].
A stepper motor’s general features are the ability to work
at open-loop control and the high precision movement with
non-accumulated movement error. Moreover, the absence of
a commutator leads to less maintenance and a long lifetime.
Therefore, no shaft encoder is needed to acquire the motor
position [97].

Currently, STMs are used in the dual-axis tracking system
for heliostat drives [98]–[102]. Modeling and simulation of
closed-loop control for STMs are presented in [98], where
two sets of HB-STMdrives are used to control an SPT located
in the Sonora desert in Mexico. Although STM operation
does not require shaft encoders to define the motor position,
it has been used in a closed-loop control to move the heliostat
structure, which leads to an increase in the drive system
cost. The power electronic circuit used to drive an STM
depends on the number of stator phases, i.e., two, three, and
four phases of stepper motors [99]. Therefore, the two-phase
bipolar stepper motor used in [98] requires two Class-E DC
chopper modules, as shown in Figure 14.

Another study in [100] provided an HB-STM for SPT
based on using a thermal camera. The image processing along
with FL is used to analyze the image in order to track the
sunbeams. Accurate experimental results have been obtained.
However, the drive system cost and complexity are high due
to the thermal camera and the digital controller used for
image processing. Furthermore, having thousands of heliostat
units, complex interfacing circuits, and multiples of digital
controllers can be difficult to deal with.

It is worthmentioning that the unipolar PM-STM, shown in
Figure 15, is another configuration for PM-STMs configura-
tion, in which the phase mid-points are commonly connected
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TABLE 5. Comparison of the different motors used for heliostat units.

FIGURE 14. Power Circuit of Bipolar PM Stepper Motor Model.

to the ground to allow a unidirectional current flow in each
half-coil. This configuration reduces the controlled switches
used. However, it reduces the machine torque compared to
the bipolar PM-STM working at the same step operation,

i.e., full-, half-or micro-step control. Although this circuit is
relatively cheaper and easier to control, it has not been used in
the heliostat drive system yet as far as the best of the authors’
knowledge.

Hence, it is an exciting point to be investigated. A summary
of different stepper motors and their power electronic con-
verter circuits are listed in Table 5. and Table 6, respectively.

C. INDUCTION MOTORS DRIVES
Induction motors (IMs) are widely employed in heliostat
drive systems and industrial applications. They can produce
relatively high torque at low speed, great accuracy, long
lifetime, with the availability of several manufacturers in both
small and large sizes.

In addition, IMs have higher efficiency than DC motors
for the same size and rating, particularly for high ratings,
which makes them very suitable for big-size solar tracking
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TABLE 6. Typical motors, converter, and application guides.

FIGURE 15. Power Circuit of unipolar PM Stepper Motor Model.

systems [36], [105], [106]. Figure 16 shows the typical back-
to-back converter used for three-phase IM drives. Variable
frequency drive (VFD) and IMs are used together to provide
smooth and accurate elevation and azimuthal movements.
This method shows a feasible product [107]. A practical solu-
tion for double-axis solar tracking applications based on IMs
was provided by Siemens [110]. Although the IM and VFD
are preferred in industrial applications, the main drawback

FIGURE 16. Back-to-back converter for three-phase Induction Motor.

of this drive system is the difficulty of implementing and
justifying the control system compared to DC drives.

Furthermore, for small rating heliostat units using PV as
a main supply, it is not easy to get a sufficient DC volt-
age to supply the IM VFD to drive the IM. Otherwise,
an additional boost converter stage has to be added, which
is considered an extra cost. The main advantages and draw-
backs of the IM drives are listed in Table 5. Furthermore,
Table 6 provides a rough guide of combinations of suitable
motors and power electronic converters for a few typical
applications.
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D. SYNCHRONOUS MOTOR DRIVES
For Synchronous motors (SMs), the rotor speed is synchro-
nized with the applied supply speed/frequency, irrespective
of the connected load [116], [117]. The stator construction
is similar to that of an IM. The difference is in the rotor,
which can be a permanent magnet-based rotor or conven-
tional based-field winding rotor [118].

PMSM has many advantages compared to IMs, such as
high-power density, high efficiency, high reliability, simple
structure, and decreasing the price of permanent magnet
materials in recent years. It has become more widely used
in various industrial applications [111]. The motor model
can be designed with broader air gaps than IMs, which
provides more stability. So, the efficiency can exceed 90%
[119], [120]. One of the SMs drawbacks is the double exci-
tation for the field-circuit-based type, where a DC source
supplies the rotor circuit.

Furthermore, SMs are not self-starting ones, requiring a
closed-loop control for starting motor operation at a defi-
nite rotor position, which needs shaft encoders that increase
the drive system cost [121]. Furthermore, PMSM is a typ-
ical nonlinear system with strong coupling and multiple
variates. The main challenging factors include current cou-
pling, system saturation, parameter perturbation, and external
disturbance [122].

The VFD used for IM can be used for SM drives, which
facilitates the speed control of SMs. Although the SMs have
better efficiency than IM drives, SMs are considered unsuit-
able for applications requiring frequent starting or high start-
ing torques needed [122]. Thus, SMs are rarely used in CSP
applications. This gap needs to be investigated to improve
SM’s performance, starting to get the benefits of SM drives
in CSP applications.

Further information about the advantages and disadvan-
tages is mentioned in Table 5. Moreover, the different
power electronic converters used for SMs are summarized in
Table 6.

E. SUMMARY FOR THE ELECTRICAL MOTORS USED IN
SPT SYSTEMS
Based on the previous subsections’ discussions, the different
motors used in SPT systems, the IM is considered the superior
motor according to the outstanding advantages compared
to others. Additionally, the IM is regarded as the cheapest
type according to the markets offering and the mass produc-
tion [107], [111]–[115]. PM synchronous motors are rarely
used in CSP applications as depicted in the different studies
and the worldwide implemented plants. This point needs to
be investigated to improve the PM synchronous performance
and start to get SM drives’ benefits in CSP applications.
However, the PMmotors have the drawback of relatively fast
demagnetization of their magnets in particular for such out-
door applications and at high ambient temperature levels, i.e.,
in Gulf Cooperation Council (GCC) countries [123]–[125].

Therefore, investigating the thermal stress on the PM-based
motors is essential.

Regarding the power electronic converters, there are some
common advantages and drawbacks for the different power
electronic converter according to the basic components, i.e.,
thyristor, MOSFET, IGBT, and GTO. For instance, the MOS-
FET and IGBT-based converters, compared to the GTO
and Thyristors ones, have faster response and lower losses,
particularly at relatively high switching frequencies (sev-
eral kHz to several hundreds of kHz). Besides, the most
recent semiconductor technologies, i.e., the wide-band-gab
(WBG) technologies, have lower turn-on and -off transi-
tions. These semiconductor technologies reduce the converter
switching losses and allow the converter’s operation at high
switching frequencies, which greatly impacts the perfor-
mance of the electrical drives [?], [?], [134]–[138]. Therefore,
the WBG-based electrical drives utilized for SPT need more
investigation.

VII. A CASE STUDY FOR DUAL AXES HELIOSTAT
TRACKING IN KINGDOM OF SAUDIA ARABIA
A Case study for SPT heliostat CSP topology in Dhahran,
Kingdom of Saudi Arabia (KSA), was demonstrated in [138].
A MATLAB code is implemented for the solar position algo-
rithm to calculate the incident angles to track the sunbeams
during the year. A drive system composed of two linear actu-
ators, a DC motor-based drive, was developed. A heliostat
prototype of an adequate scale is implemented in Dhahran,
Saudi Arabia, to validate the theoretical study.

A block diagram for the dual-axis heliostat is shown in
Figure 17. It consists of two DC drive systems, i.e., elevation
and azimuth drives. Each drive system consists of a linear
actuator based on a PMDCmotor, and they are supplied from
a class-E DC chopper. The model has been validated experi-
mentally using a roof-top heliostat prototype. The experimen-
tal platform was tested for several days in different seasons to
confirm the prototype capabilities for sun tracking during the
year.

FIGURE 17. Block diagram of dual-axis solar tracking system [138].

To track the sunbeams, three sets of angles, defined in
Figure 8-Figure 10, have to be calculated using relations
(1)–(6) as a function of time, date, and location. The model
converts the sun and tower angles to points and then finds the
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normal mirror vector based on three-dimensional Cartesian
form. Solar angles for four typical mid-day of the months,
July, October, January, and April, represent different seasons.
They were simulated based on the longitude of Dhahran,
Saudi Arabia. The solar field longitude and latitude are 50.01◦

and 26.5◦, respectively. The solar elevation angle, and the
solar azimuth angle, were calculated and plotted for four typi-
cal days as explained in Figure 18 and Figure 19, respectively.
Considering the heliostat and tower positions, with αT =
38.71◦ and γT = 170.77◦, the resultant tracking angles are
represented in Figure 20 and Figure 21. These figures reflect
the long sunny day in this location, which is a good location
for CSP applications.

FIGURE 18. Solar elevation angle curves for Dhahran, Saudi Arabia time.

FIGURE 19. Solar azimuth angle curves for Dhahran, Saudi Arabia time.

Experiments have been conducted for several days to eval-
uate the drive system performance under several conditions.
The integrated heliostat prototype is shown in Figure 22-a.
The location is the roof-top of an academic building at King
Fahd University (KFUPM) in Dhahran, Saudi Arabia. The
drive system could reflect the sunbeams accurately, similar
to the presented one-day results.

FIGURE 20. Heliostat elevation angle curves for Dhahran, Saudi Arabia
time.

FIGURE 21. Heliostat azimuth angle curves for Dhahran, Saudi Arabia
time.

FIGURE 22. The proposed prototype of the automatic dual-axis solar
tracking unit.

For instance, one day’s experimental results (Jul. 15th,
201) from sunrise to sunset are presented in Figure 23 and
Figure 24. These figures represent a comparison between the
reference calculated angles and the measured angles. There-
fore, the drive system starts moving from the stow-position to
the calculated heliostat angles for both azimuth and elevation
angles. The tracking system could then follow the reference
heliostat angles along the day, as shown in the same figures.
By the end of the day, the heliostat drive is returned to
the mirror to the stow-position at sunset at 6:30 P.M. The
figure reflects that the drive system could follow the reference
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FIGURE 23. Reference and tracking angle for azimuth angle with
heliostats mirror angles on Jun. 15th, 2020.

FIGURE 24. Reference and tracking angle for elevation angle with
heliostats mirror angles on Jun. 15th, 2020.

angles properly. Figure 22 b & c illustrate the heliostat oper-
ation instantly while the mirror reflects the sunbeams to the
desired target. The experimental and simulation results were
well agreed.

VIII. FUTURE WORK
According to the discussions in this paper, the following
topics are considered promising and need more investigation.
These are:

• The electrical motor performance is affected by the
operating temperatures and weather conditions. There-
fore, studying the effect of different weather conditions,
particularly the high ambient temperature, should be
investigated on the other electrical motors, especially the
permanent magnet ones.

• Recently, advanced semiconductors have been invented,
such as WBG technologies. These technologies are pre-
ferred due to their superior performance in terms of
efficiency and fast responses. Therefore, the outdoor
CSP WBG-based power electronic converters need to
be investigated at the different operating conditions,
i.e., normal and abnormal operating conditions.

• The electrical drive needs more investigations for dif-
ferent motor types such as switched reluctance, PMSM,
and BLDCmotors. Developing resilient drive systems is
crucial under harsh weather conditions, similar to that in
Saudi Arabia.

• Cheap sensors used for solar tracking control need to be
developed to reduce the SPT drive system cost, along
with achieving accurate reflection for the heliostat units.

• A communication protocol for an STP plant needs to be
developed to reduce communication losses and improve
control performance.

• A huge power cabling network is used to supply the
SPT heliostat drive systems. Therefore, a sustainable
self-supplied heliostat is an excellent solution and needs
proper design and investigation.

IX. CONCLUSION
This paper introduced a comprehensive review of the differ-
ent SPT drive system topologies, performance, and applica-
tions. A comparison between the different CSP topologies
and corresponding standing projects worldwide has been
presented. The advantages of the SPT system in terms of
overall efficiency and temperature levels have been demon-
strated. The different drive mechanisms, considering the
power source and the industrial transmission solutions, have
been summarized. It has been concluded that the electrical
actuator is preferred compared with hydraulic ones, particu-
larly with small size heliostat units. The different electrical
motors and their corresponding power electronic converters
used for SPT heliostat have been discussed. The advan-
tages and drawbacks of each electrical drive have been pre-
sented. A summary of the electrical motors and the recent
advancements of power electronic converter components are
discussed. The elevation-azimuth tracking model has been
discussed in detail and developed for a dual-axis tracking
system based on two linear actuators’ drive system. Dhahran
KSA is selected, as a promising location for CSP technolo-
gies, to test the proposed prototype. The results showed the
accuracy of the proposed drive system and validated the use
of the azimuth-elevationmodel for the dual-axis SPT tracking
system.
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