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ABSTRACT The deployment of human pose estimation on edge devices are essential task in computer
vision. Due to memory and storage space limitations, it is difficult for edge devices to maintain implementing
Convolutional Neural Networks, which deployed large-scale terminal platforms with abundant computing
resources. This paper proposed novel Lightweight Cross-fusion Network on Human Pose Estimation with
information sharing. Using state-of-the-art efficient neural architecture, and Ghost Net, as the backbone,
which are gradually applying a cross-information fusion network for key points extraction in the baseline
and strengthen phases. As a result, the computational cost significantly reduced, while maintaining feature
confidence more accurate and predicting key points heatmaps more precisely. The network model entirely
executed on edge devices, and extensive self-comparison experiments evaluated the architecture’s effective-
ness. The MS COCO 2017 dataset proved that the cross-fusion network is superior than other lightweight
structures for pose estimation.

INDEX TERMS Cross-fusion network, human pose estimation, lightweight.

I. INTRODUCTION
Real-time human pose estimation has received much
attention in recent years due to its intelligent recognition
feature, which offers critical application scenarios, includ-
ing autonomous driving, intelligent security, human action
recognition, etc. The robust Convolutional Neural Networks,
offered simplicity and speed during learning and inference
[1]. Such networks showed to be the state-of-art approach in
human pose estimation such as single-person pose estimation
[2]–[4], multi-person pose estimation [5]–[9], video pose
estimation, and tracking [10], [11].

Improving accuracy and lightweight are the two main
research goals of neural network design, On the one hand,
the traditional Conventional Deep Neural Network obtains
satisfactory accuracy by increasing the network layer to gen-
erate many parameters and floating-point operations. There-
fore, such deep neural networks have significantly required
computational resources, which exceed the power of many
embedded developer kits, robots and edge devices. Net-
work pruning [12], [13], low-bit quantization [14], [15],
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knowledge distillation [16], [17], and other methods apply to
compact network structures, simultaneously, the lightweight
network architecture of Shuffle Net [18], [19] and Mobile
Net [20]–[22] with utilizing the depth wise and pointwise
convolution has achieved considerable success with fewer
parameters and computation complexity. On the other hand,
the state-of-the-art lightweight network architecture reduced
computation complexity and improved recognition accu-
racy by group convolutions. Learning multiple tasks has
the advantages of reserving more intrinsic information. For
instance, HR Net [23] gradually adopt high-to-low reso-
lution from high-resolution subnetwork, and continuously
fuse multi-resolution subnetworks by sharing the information
through the whole process. Multi-task learning by exchang-
ing information will help enforce a model with better gen-
eralizing ability than single-task learning [24]. Based on
the above observation, we expressed a new architecture,
namely Lightweight Cross-fusion Network, tailored explic-
itly for embedded development equipment and real-time
target detection requirements. Our network comprises two
set layer modules: backbone layer module and informa-
tion cross-layer module [25]. The backbone layer mod-
ule starts from the lightweight architecture, which reduces
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computation cost and parameters by adding the Ghost mod-
ule [26]. Another layer module extracts the initial features
obtained from the light network into two independent fea-
ture branches, eliminates interference information, and then
shares sufficient information to enhance each component’s
feature extraction through cross-fusion.

Therefore, our lightweight cross-fusion network maintains
the real state of human pose estimation and can be applied
to embedded applications, reducing parameters, and reducing
immediate memory access. Consequently, for conventional
network assessment from the COCO key points detection
dataset [27], our work has two contributions: (I) We utilize
the state-of-the-art efficient neural architecture, Ghost Net
[26] as the backbone to generate more superior features by
using fewer parameters. The approach applied for embedding
equipment the Nvidia TX2 device. (ii) A new cross informa-
tion network, performed repeatedly to boost the features rep-
resentations in a multi-fuse setup. The approach effectively
enhanced the estimation accuracy with the help of improving
the sharing information branch.

II. RELATED WORK
A. MULTI-PERSON POSE ESTIMATION
1) TOP-DOWN
The matter of Multi-person pose estimation based top bottom
can first perform target detection, bounding box multiple
people, and then fulfill single-person key points pose estima-
tion on the marked target. As the detection targets increase,
the computational cost will increase sharply. In Deep Cut
[28], apply CNN to find all joint candidate points and then
cluster to determine which person these combined points
belong to and perform pose estimation. In [6], [29] utilized
the Resnet method in the detection stage and improved the
recognition accuracy, Deeper Cut [6] reduced the candi-
date nodes based on Deep Cut [28] to increase the speed
[29] clustered key points based on association and spa-
tial information. Reference [30] adopt Faster RCNN for
multi-person key points detection and image cropping, and
then Resnet is used to predict and integrate dense heatmap
and offset for each bounding box. RMPE [31] overcome
the positioning error problem through a spatial mapping
network and use the Stacked Hourglass method to recog-
nize human posture. HR Net [23] maintains high-resolution
expression as the backbone, performs high-to-low-resolution
down-sampling in parallel at each stage, and finally per-
forms multi-scale fusion and feature extraction. Based on
the top-down approach, the recognition accuracy is high.
However, the inference speed mainly depends on the number
of the bounding box in the image.

2) BOTTOM-UP
Another method is bottom-up, which detects all joints in the
detection target regardless of multiple people. It identified
that person and joint the key points which are related accord-
ing to the collective point relationship and connected them

to get the human posture skeleton. [5], [29], [32] adopted
CNN to predict the key points. In [5], realized fast joint point
connection through graph theory. [29] Combine the top-down
and bottom-up models. The top-down method used to make
a rough estimate of the human pose, and feed the bottom-up
module for precise adjustment to obtain more accurate joint
point positions. [32] improved the Open Pose [52] method,
using dilated Mobile Net [49] for lightweight design and
porting to edge devices. In [33], the association embed-
ding algorithm introduced the joint points grouped by an
end-to-end method. Since, the bottom-up process does not
require target detection, and the recognition speed is much
improved.

3) REALTIME PERSON POSE ESTIMATION
To predict the human pose in real-time, Reference [34],
[35] adopted the adversarial learning framework and per-
formed outdoor recognition. The 3D human pose structure
[34] learned in the fully annotated data which set is refined
into a field image with only 2D pose annotations. [35] pro-
posed a weakly supervised transfer learning method that used
mixed 2D and 3D label data for recognition. In contrast,
Reference [5], [36], [37] used the CNN framework for credit,
and Dense Pose [36] converted the 2D image into a 3D
human body model for real-time recognition. The pixels of
the human surface in the 2D image projected onto the 3D
human body surface. Using the Kinect device [37], the 2D
and 3D joint positions are regressed in real-time using a fully
convolutional posture formula. Real-time detection of 2D
multi-person posed [5], significantly increasing the speed
while maintaining detection accuracy.

In this paper, the edge devices are used for real-time human
pose detection. The data is in a real scene with multiple
people. Simultaneously, considering the edge device’s per-
formance, 2D multi-person used to estimate the human body
pose.

B. MODEL DESIGNS
1) DEEP NEURAL NETWORKS ON EDGE DEVICES
More and more edge devices need matching deep neural
networks, which require less computing power and improve
recognition speed. Google Net [38] used a modular struc-
ture design to reduce computational complexity. Inception
[39]–[41] series aimed to improve the expressive ability with-
out increasing the calculation. InceptionV2 [39] used the
convolutional solution method, replacing two 3 × 3 con-
volutional layers with a 5 × 5 convolutional layer. Incep-
tionV3 [40] is further improved, decomposing 7× 7 into two
one-dimensional convolutions to increase the nonlinearity
of the network. Inception V4 [41] combined the Inception
module with the residual connection, which dramatically
improved the training speed. ResNet [42], [43] used a bot-
tleneck structure, a residual structure to enhance network
performance, and has become a backbone feature extraction
in the computer vision.
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2) GROUP CONVOLUTIONS
Group convolution was first proposed by Alex Net [44] and
improved based on the GPU allocation model. ResNet [45]
ultimately demonstrated the effectiveness of group convo-
lution. The deep separable convolution model is currently
the state-of-the-art group convolution, which is exploited
in a lightweight application framework. MobileNetV2 [21]
improves the MobileNetV1 [20] series, using Inverted Resid-
uals and linear activation methods to improve accuracy.
MobileNetV3 [22] combines the advantages of V1 and V2.
Meanwhile, to minimize edge devices’ resource consump-
tion, the SE module and h-switch activation function are
added. Under the framework of MobileNetV3 [22], Ghost
Net [26] uses Ghost bottleneck, which uses fewer parame-
ters to generate more feature maps, replacing the bottleneck
structure.

3) MULTI-INFORMATION FUSION
The multi-resolution fusion method [3], [46] decomposes
the source object into resolutions of different scales and
then feeds the multi-resolution aggregation into multiple net-
works. Reference [3], [4], [47] combine low features into
high-level feature resolution through jumpers. The cascaded
pyramid network [4] base on the idea of shortcut, which
gradually combines the feature elements generated from
high to low resolution. Reference [23] Based on the con-
cept of deep fusion, the multi-scale resolution is repeatedly
fused. Simultaneously, multi-information fusion approach
[23] is to cross-fuse different groups of information to
enhance data information sharing. Shuffle Net [18] pro-
poses the Channel shuffle method to exchange informa-
tion between groups. This information is the feature map
after group convolution, which ensures the accuracy of the
model. Cross Info Net [25] first generates two sets of fea-
ture sub-branches, sharing useful supplementary informa-
tion, and then cross-cascades the updated feature branches.
Our approach, inspired by multi-information task fusion,
aims to use a lightweight network to reduce computer con-
sumption and cross-fusion of shared information to improve
accuracy.

III. METHOD
Our method adopted a broad bottom-up pipeline to predict
the human body’s key points that is based on real-time multi-
person recognition. In Fig 1, the first unit showed the feature
extraction module. The most advanced lightweight network
method used, which consumed less, fewer parameters, and
able to produce more effective feature maps. The second part
is the basic cross-informationmixingmodule. First, this mod-
ule decomposed the featuremap into two branches: key points
heatmaps and pairwise relations (part affinity fields, pafs),
merging the two units. The second part is the strengthened
information module, fed from the baseline feature map to the
network for cross fusion again, and finally, the key points
extract.

FIGURE 1. Overall network architecture with lightweight cross-fusion
sharing setup.

A. LIGHTWEIGHT FEATURE EXTRACTION
As the initial feature extraction stage, we use Resnet18 and
Resnet50 [42] as the backbone network. However, the eval-
uation results are not satisfactory, and the average accuracy
has not been improved based on the increase of parameters.
To ensure the accuracy of using fewer parameters, we design
a lightweight feature extraction network, as shown in Fig 2.
Firstly, we apply Ghost bottleneck and Ghost bottleneck
down-sampling [26] to generate an efficient feature map.
Define the input image as I of the size 3×W ×H , the convo-
lution kernel size 3 ∗ 3, and the output 512×W ′ ×H ′. Then
perform refined feature extraction through group convolution
and group convolution down-sampling [32], the convolution
kernel size3 ∗ 3 and 1 ∗ 1, feature extraction image Fsize128×
W ′′ × H ′′, which feeds the follow-up refine network
module.

B. BASELINE CROSS-INFORMATION FUSION
ARCHITECTURE
The standard pose estimation method designs the human
body pose into binary tree branches: key points heatmaps,
and pafs (part affinity fields), and then optimize them
separately. Although, pafs are composed of key points
heatmap pairs, these two parts’ eigenvalues are output inde-
pendently. They can neither remove refine feature maps
nor enhance data information. To better extract force-
ful shared knowledge and reduce fusions, we propose a
novel key points acceptable extraction model based on
cross-information fusion. The model compartmentalizes two
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FIGURE 2. The initial lightweight feature extraction module.

FIGURE 3. Baseline cross-information fusion module.

parts: baseline cross-information fusion architecture and
strengthens cross-information fusion architecture. We first
illustrate baseline cross-information information, as shown
in Fig3.

The classic network structure first extracts the featuremaps
F captured from the initial feature and then feeds the feature
maps to the convolutional layer to pull the local feature
branch of the heatmapsH and pafsP. Finally, the updated fea-
ture maps F ′ obtained by cascading the heatmaps feature H
and the pafs feature P, and the feature maps F poured into the
next detailed convolution module, which repeated 2-5 times.
Nevertheless, this method does not concern the shared infor-
mation between the branches except for the cascading input
of features at each stage. However, the relationship between

the pafs feature branch and the feature branch’s heatmaps
feature may be inclusive or mutually exclusive. For example,
the pafs feature branch includes some local characteristics of
the heatmaps, which may enhance the pafs quality or noise.
Still, it is useful for feature extraction of the heatmaps itself,
and vice versa. We attempt to utilize a cross-information
fusion network to enhance data and acquire more effective
featuremaps, take sufficient advantage of shared information,
and eliminate potential noise.

The network diagram showed details in Fig 3, the initial
feature map F0, which included global heatmaps feature and
global pafs feature information. The feature branch of the
local heatmaps F1

h and the local pafs F1
p are respectively

obtained by formula 1.

F1
h = F0

∗ h; F1
p = F0

∗ p (1)

Secondly, in formula 2, the global feature maps F0 sub-
tracts the local heatmaps feature F1

h and the local pafs feature
F1
p respectively to obtain F1

h and F1
p , thereby reducing noise

interference and enhancing local information.

F1
h = F0

− F1
h ; F1

p = F0
− F1

p (2)

Thirdly, cross-cascade F1
h ⊕ F1

p and F1
p ⊕ F1

h update F1
h

and F1
p respectively to generate enhanced heatmaps branch

F1
h and pafs branch F1

p , as shown in formula 3.

F1
h = (F1

h ⊕ F1
p ) ∗ h; F1

p = (F1
p ⊕ F

1
h ) ∗ p (3)

Finally, in formula 4, the global feature maps F0, enhanced
F1
h and enhanced F1

p cascade to produce a rich global feature
map F1.

F1
= F0

⊕ F1
h ⊕ F

1
p (4)

C. STRENGTHEN CROSS-INFORMATION FUSION
ARCHITECTURE
The feature maps F1 produced in the baseline cross-
information fusion stage contains both global features and
fine local features related to heatmaps and pafs. As shown
in Figure 4, this stage performs enhanced feature extraction
on F1. Equations 5 and 6 are similar to equations 1 and 2.

F2
h = F1

∗ h;F2
p = F1

∗ p (5)

F2
h = F1

− F2
h ; F2

p = F1
− F2

p (6)

F2
h = (F2

h⊕F2
p⊕F

1
h ) ∗ h; F2

p = (F
2
p⊕F

2
h⊕F

1
p ) ∗ p (7)

It can be seen from the figure that the local heatmaps
feature F2

h , the residual heatmaps feature F2
p and the global

heatmaps feature branch F1
h from the previous stage are cas-

caded together to extract more sophisticated local features,
similar to pafs part. Formula 7 adds international units F1

h
and F1

p is based on cross-cascade, enhances the data’s prac-
tical information, and helps extract more high-precision joint
features.

Based on the above formula, the cross-information fusion
structure described in Algorithm 1. Among them, the number
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FIGURE 4. Strengthen cross-information fusion module.

of feature extractionmodules controlled by k . The input value
of each stage is the feature value Fk , and the output feature
Fk+1 then update after crossover and cascade operations.
Finally, the heatmaps feature Fk+1h and pafs feature Fk+1p
from Fk+1 are extracted for key points recognition and pose
estimation. Let k = 1, the key points of the human body are
obtained by F1

h and F1
p feature maps.

IV. EXPERIMENTAL RESULTS ON COCO
A. COCO KEY POINTS DETECTION
1) DATASET
MS COCO2017 dataset evaluated [48], which contains more
than 200,000 pictures and 250,000 individual instances
labeled with 17 key points. Among them, 2017 Train images
[118/18G] for training, 2017 Val image [5K/1G] for test
verification, the corresponding annotation information of the
picture 2017 Train/Val annotations [241MB].

2) EVALUATION METRIC
We evaluate the target detection results by the COCO dataset
standard evaluation metric Object Key points Similarity
(OKS). The object prediction key points have the same format
as ground truth: [x1, y1, v1, . . . , xk , yk , vk ], where xk , yk are
the coordinates of the Key points, and vk is the visible sign,
v is 0,1,2, which means unlabeled, occluded, and visual,
respectively. OKS is defined as for formula 8.

OKS =
∑
i

[exp(−d2i /2s
2k2i )δ(vi > 0)]/

∑
i

δ(vi > 0) (8)

Algorithm Cross-Information Fusion
1: Input:

Feature F ; Stage k
heats maps feature extraction: h
pafs feature extraction: p
convolution operator: ∗
concatenate: ⊕

2: Initialize:
F0
= F; episode

F0
h = 0;F0

p = 0
3: k ← 0
4: while episode is not terminated do
5: Fk+1h = Fk ∗ h;Fk+1p = Fk ∗ p

6: Fk+1h = Fk − Fk+1h ;Fk+1p = Fk − Fk+1p

7:Fk+1h = (Fk+1h ⊕F
k+1
p ⊕Fkh )∗h;F

k+1
p = (Fk+1p ⊕F

k+1
h ⊕F

k
p )∗p

8: Fk+1 = Fk ⊕ Fk+1h ⊕ Fk+1p
9: k ← k + 1
10: end while
11: key points extraction according to Fk+1h , Fk+1p
12: Output: key points

Here di is the Euclidean distance between the detected key
points and the corresponding ground truth, ski is the standard
deviation. The standard average precision and recall scores
reflected: AP(IoU= 0.50:0.95); AP50andAP75 (IoU= 0.50,
0.75); APM for medium objects and APL for large objects
(IoU = 0.50:0.95), and AR at IoU = 0.50:0.95.

3) TRAINING DETAILS
We preprocess the image and reset the image size to 368∗368.
Data enhancement includes random rotation ([−40, 40]) and
random cropping ([0.5, 1.1]). Using Ghost Net [26] as the
Backbone, using ImageNet pre-training weights for initial-
ization, at the same time, choosing Adam algorithm to train
the model, the initial learning rate is 4e-5, and weight decay
is 5e-4.

Our network execution used PyTorch, two devices RTX
2080Ti GPU and the training time is 1 day, NVIDIA TX2
1080 GPU and the training time is 3 days while deleting extra
programs to provide enough memory.

4) RESULTS ON THE VALIDATION SET
The results of modus and other state-of-the-art methods
showed in Table 1. The approach of combining Ghost
Net [26] and Cross-fusion achieved both state-of-art AP
and inference speed with the respective GFLOPs counts.
Table 1 showed the comparison of GFLOPs to AP perfor-
mance on the validation set. (i) Compared to Ghost Net [26].
Both Retina Net [50] and Faster R-CNN [51] selected Ghost
Net [26] as the skeleton, and used the Ghost Net [26] skeleton
frameworkmethod. After cross information processing, AP is
much higher than the AP of Retina Net [50] and Faster R-
CNN [51], while the AP of Retina Net [50] is similar to Faster
R-CNN [51] and (ii) compared to lightweight Open Pose [32].
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TABLE 1. Accuracy versus Complexity of proposed network on COCO
validation set.

Lightweight Open Pose [32] used light networks, such as
MobileNetV1 [20], Dilated MobileNetV1 [49], and Dilated
MobileNetV2 [21], [49]. The highest AP value is 43.2 from
the Dilated MobileNetV1 [49] method, and process reached
44.4, which exceeded the optimal strategy in the lightweight
Open Pose [32]. (iii) compared to Open Pose [52]. Both the
Open Pose [52] and the lightweight Open Pose [32] methods
used a bottom-up approach, and the light Open Pose [32]
method used two stages of Refinement extraction. In this
methodology, a bottom-up, and two-layer progressive cross-
information shared and refined extraction method. Although,
AP value with the lightweight crossover method is lower than
Open Pose’s two-stage. AP value of 46.2, the GFLOPs of
Open Pose [52] are indeed as high as 80.3, while the GFLOPs
of approach is only 18.02.

B. SELF-COMPARISONS
Since Mobile Net [20] proposed, more and more lightweight
network framework with similar or improved series which
designed. ResNet [42], primarily for essential feature extrac-
tion in the visual field, is currently the most widely applied
CNN feature extraction network. Its residual system can
maintain a substantial increase in accuracy with increasing
depth. First, the networks evaluated from the ResNet [42]
family to replace the Mobile Net [20] and started from
ResNet-18.

The results reported in Table 2. Above all, compared
ResNet-18 and ResNet-50 as skeletons. ResNet-18 has higher
AP and AR than ResNet-50. Secondly, the method showed
delicate feature extraction, the AP and AR of ResNet-18
and ResNet-50 are improved. The AP value of ResNet-18
exceeded the lightweight Open Pose [32] way with Dilated
MobileNetV1 [20], [49]. Finally, the Ghost Net [26] skeleton
network combined with the cross-fusion method to obtain the
highest AP value of 44.4.

C. LOSS FUNCTION COMPARISON
We conduct COCO data training on the network in a super-
vised manner. The mean square residual value (MSE) is the
minimum value of the estimated key points and the ground
truth as the training loss function.

TABLE 2. Self-comparison results on backbone selection.

1) HEATSMAP LOSS
The heatmaps used as a restriction to guide the network and
to obtain better global feature extraction. The heatmaps loss
function of detection at each stage shows in Equation 9.

LkH =
J∑
j=1

∥∥∥H k
j − Ĥj

∥∥∥2
2

(9)

where k is the value of the extraction stage, J is 19, the body’s
key points, and the background H k

j and Ĥj are the estimated
heatmaps and the ground truth, respectively. The heatmaps
resolution is 46∗46 px, the value is the Gaussian distribution
heat map generated by the joint sample points, and the offset
is 4 px. The overall heatmaps loss function is 10:

LH =
K∑
k=0

αuLkHu +

K∑
k=0

αvLkH v (10)

Set K = 1, LkHu is the heatmaps loss function before
crossover, and the corresponding balance factor is αu value
of 0.01, and LkH v is the heatmaps loss function after crossover,
and the balance factor αv is 1.

2) PAFS LOSS
Like the heatmaps loss function, the pafs loss function (11)
and (12) are defined as follows.

LkP =
I∑
i=1

∥∥∥H k
i − Ĥi

∥∥∥2
2

(11)

LP =
K∑
k=0

βuLkPu +
K∑
k=0

βvLkPv (12)

where pafs is the keypoints pairing of the human body, so the
value I is 38, the stage value K is 1, and the balance factors
βu and βv are also 0.01 and 1, respectively.

3) LOSS FUNCTION AND COMPARISON
Based on the above definition, (13) is the overall loss func-
tion. α is the balance factor value of the loss function of the
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FIGURE 5. Pafs loss function comparison.

FIGURE 6. Heatmaps loss function comparison.

entire heat map of 0.6. Similar to α, the amount of β is 0.4.

L = αLH + βLP (13)

Fig 5 compares the pafs loss function value, which divides
into a baseline phase and an enhancement phase, parti-
tion into two parts before and after the crossover. Initially,
ImageNet pre-training weights used for initialization. The
baseline stage loss value is lower than the strength stage
loss value, and the gap between them gradually decreased.
In contrast, the baseline-cross stage loss, which almost coin-
cided with the strengthen-cross stage, started to approach
the baseline stage’s and slowly expanded. Subsequently, due
to the increase in the number of iterations, all loss values
dropped rapidly, and the loss values in the strength stage
were progressively lower than the baseline stage values.
Eventually, the fluctuation of the loss value stabilized. The
strengthen-cross loss is much lower than the uncrossed loss
value, and the enhancement phase loss is lower than the
baseline loss value.

Fig 6 shows a comparison of heatmaps losses, similar
to pafs loss values. During the rapid decline of the loss
value, the baseline stage’s loss values, and the strengthening
stage coincide. The strengthen-cross loss value is lower than
the baseline-cross stage loss value throughout the training
iteration process.

V. CONCLUSION
In this paper, we proposed a lightweight cross-fusion neural
architecture for human pose estimation, which can gener-
ate accurate key-point heatmaps and deploy them on edge
devices. Our method showed that the network can run on

edge devices, and Ghost Net is a powerful and efficient back-
bone for human pose estimation. Furthermore, lightweight
pose estimation network, the backbone Ghost Net match-
ing cross-information and fusion framework have achieved
excellent results using the MS COCO 2017 data set. The
experimental results prove that, compared to all previous
participants, the proposed strategy is beneficial to acquire
more accurate results and also achieves the best result in the
human pose estimation. Finally, we plan to study lightweight
top-down methods to improve recognition accuracy and
generalization capabilities.
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