256 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 8, NO. 1, JANUARY-MARCH 2020

Predicting Workflow Task Execution Time
in the Cloud Using A Two-Stage Machine
Learning Approach

Thanh-Phuong Pham

, Juan J. Durillo, and Thomas Fahringer™, Member, IEEE

Abstract—Many techniques such as scheduling and resource provisioning rely on performance prediction of workflow tasks for
varying input data. However, such estimates are difficult to generate in the cloud. This paper introduces a novel two-stage machine
learning approach for predicting workflow task execution times for varying input data in the cloud. In order to achieve high accuracy
predictions, our approach relies on parameters reflecting runtime information and two stages of predictions. Empirical results for four
real world workflow applications and several commercial cloud providers demonstrate that our approach outperforms existing
prediction methods. In our experiments, our approach respectively achieves a best-case and worst-case estimation error of

1.6 and 12.2 percent, while existing methods achieved errors beyond 20 percent (for some cases even over 50 percent) in more than
75 percent of the evaluated workflow tasks. In addition, we show that the models predicted by our approach for a specific cloud can
be ported with low effort to new clouds with low errors by requiring only a small number of executions.

Index Terms—Performance prediction, workflow tasks execution time, machine learning

1 INTRODUCTION

HE cloud computing paradigm offers various advan-

tages for scientific applications, including rapid provi-
sioning of resources, pay-per-use and elasticity of a flexible
amount of resources. Nowadays, many scientists also use
scientific workflows to compose their applications to be exe-
cuted on clouds. Workflow applications [1] consist of a pos-
sible large number of components, also known as workflow
tasks, such as legacy programs, data analysis or computa-
tional methods, complex simulations or even smaller sub-
workflows. These components are connected by data and
control flow dependencies. Formally, a workflow is a
directed graph, often a directed acyclic graph, such that ver-
tices represent the tasks of the workflow and the edges
define data or control dependencies among tasks.

Scientific workflow applications are often time-consuming
and running them on cloud infrastructures can be econom-
ically costly. A crucial aspect for scientific workflows is the
effective optimization of runtimes, resource usage and eco-
nomic costs. These goals can be achieved through the use
of different techniques; in particular, scheduling or deter-
mining the resource on where to execute each workflow
task and resource-provisioning that determines how many
resources of which type are needed [2]. Many scheduling
and resource-provisioning techniques usually require or
can benefit from information about the execution time of

o The authors are with the Institut fiir Informatik, University of Innsbruck,
Innsbruck 6020, Austria. E-mail: {phuong, juan, tf}@dps.uibk.ac.at.

Manuscript received 18 Aug. 2016; revised 23 Jan. 2017; accepted 3 July 2017.
Date of publication 21 Aug. 2017; date of current version 11 Mar. 2020.
(Corresponding author: Phuong Thanh.)

Recommended for acceptance by D. Talia.

Digital Object Identifier no. 10.1109/TCC.2017.2732344

workflow tasks. Task execution times, however, are not
widely available for various reasons. Cloud infrastructures
offer a wide variety of computing resources, thus execution
times may only be known for a subset of cloud providers
and for a restricted set of workflow input data.

In this paper, we propose a novel method to predict the
execution time of workflow tasks with varying input data.
We model such execution times as functions that depend on
workflow inputs as well as on cloud features. Such models
are built using regression methods based on historical exe-
cutions of that workflow in the cloud. Cloud features
describe properties of the virtual machine (VM) type in
which the task is executed. As a VM can be launched on dif-
ferent physical servers, resulting in different execution
times, we also collect runtime information for different
clouds. Our approach uses two stages of predictions to esti-
mate the execution time of a task on a particular VM. First,
it considers the workflow input data, the VM type,' and the
cloud provider where a workflow task will be executed. In
the first stage, our approach derives the runtime parameters
for that execution. These parameters may be available as
historical data if that task has been executed before. If not,
the runtime parameters will be predicted from the work-
flow input data and VM type using a regression method. In
the second stage, the outcome of the first stage together
with the workflow input data and the VM information are
used as input for a final regression method to predict the
execution time of that task.

This paper explores the use of different regression meth-
ods from the Machine Learning (ML) domain. In particular,

1. For example, by the end of 2015, Amazon EC2 offered 19 virtual
machine types https://aws.amazon.com/ec2/instance-types/)

2168-7161 © 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4404-1977
https://orcid.org/0000-0002-4404-1977
https://orcid.org/0000-0002-4404-1977
https://orcid.org/0000-0002-4404-1977
https://orcid.org/0000-0002-4404-1977
https://orcid.org/0000-0003-4293-1228
https://orcid.org/0000-0003-4293-1228
https://orcid.org/0000-0003-4293-1228
https://orcid.org/0000-0003-4293-1228
https://orcid.org/0000-0003-4293-1228
mailto:
https://aws.amazon.com/ec2/instance-types/

PHAM ETAL.: PREDICTING WORKFLOW TASK EXECUTION TIME IN THE CLOUD USING A TWO-STAGE MACHINE LEARNING... 257

we select a set of machine learning methods explored for
performance prediction in related work. This set includes
linear regression, neural networks, regression trees and bag-
ging using regression trees. We also explore the use of ran-
dom forest [3], which is another regression technique that
has provided more accurate results than any other regres-
sion method in several fields. To the best of our knowledge,
random forest has not been applied for workflow task
predictions.

Experiments show that our two-stage approach outper-
forms state-of-the-art prediction methods, which are exclu-
sively based on a single stage for estimating the execution
time of tasks. In addition, when coupled with random for-
est, our proposal achieves prediction errors between 1.6 and
12.2 percent, while existing methods result in errors beyond
20 percent for most of the tasks of several evaluated work-
flow applications.

The main contributions of this paper are:

e characterization of workflow task executions on the
cloud by using a set of parameters that reflect work-
flow input data, VM type on which the task is exe-
cuted, and hardware-dependent runtime information;

e a novel fully automatic two-stage approach to pre-
dict task execution times for varying input data
across different cloud providers evaluated for vari-
ous real-world workflows applications;

e an experimental evaluation of our proposal using
different machine learning regression methods,
including random forest which to the best of our
knowledge has not been evaluated before for work-
flow tasks execution time prediction; and

e an analysis that examines the portability of our
approach to predict for new cloud providers.

This paper is organized as follows: the next section
describes related work. Section 3 describes background
information on which our work is based on. Section 4 intro-
duces our novel two stage prediction approach. In Section 5,
empirical evaluation is described. Section 6 analyses the
obtained results of our approach, compares them with exist-
ing methods, and evaluates the ability of our approach to
port predicted models to new clouds. Finally, we conclude
the paper with a summary and an outlook of future work.

2 RELATED WORK

Research on performance prediction for clusters, grids, or
clouds has been an active field for several decades.
Although the problem has been approached in different
ways, a taxonomy consisting of only three non-exclusive
categories of performance prediction models was pro-
posed [4]. In this section, we use this taxonomy to classify
our proposal as well as related work. We describe advan-
tages and disadvantages of every category and the difficul-
ties of methods for every category when applied for
performance prediction of applications running on clouds.
The three aforementioned categories for performance
prediction methods are: (1) Analytic Modeling, (2) Simulation
and Emulation, and (3) Empirical Evaluation. Analytic model-
ing encompasses methods based on high-level abstractions
of applications and architectures that are easy and quick to
evaluate. The second category is based on the idea of

simulating/emulating how an application runs on a given
target architecture. Simulator/emulators allow a high fidel-
ity model of hardware details, but are computationally
expensive to generate. Typical simulator /emulators require
the applications’ source code and accurate hardware infor-
mation based on which estimations of the number of
machine instructions and their execution time is computed.
Finally, empirical evaluation relies on a faster prototype of
the hardware model to evaluate and measure the applica-
tion runtime. The applicability of this category of methods
depends on the availability of such hardware prototypes.
For clouds it is difficult to determine the hardware on which
a task runs; hence, methods of this latter category are not
applicable in our case. Next, we further analyze some
related work that falls within the first two categories.

Some prediction approaches are based on a regression
function that estimates the runtime of an application from a
set of independent variables. Regression-based prediction
methods fall into the analytic modeling category. Related
work differs in the way the regression function is determined
and the variables on which it depends. The most popular
regression method is Machine Learning which can be found
in the form of simpler versions such as Linear regression [5],
[6]. But there are also more advanced methods such as Near-
est Neighbors [7], Instance Model Learning [8], Regression
Trees [9], [10], or the combination of several of these meth-
ods [11] which have been used for runtime prediction. Simple
regression methods such as linear regression assume a linear
(or another) relation between the runtime and the indepen-
dent variables. More advanced methods do not assume any
specific relation and can be used to model to any function.

Typical examples for independent variables on which
performance prediction methods depend, are the application
input data, the number of cores, and other specific hardware
details. Application and hardware features can be used as
variables in the regression method. The only restriction is
that their values should be available prior to predict. For
example, job names, user names, and submission times have
been used to predict the execution time in clusters [8], [12].
Other works require system performance attributes (CPU
micro-architecture, size, memory and storage speed) [11]
that might not be available for the cloud, and it has been
reported [13], [14] that CPU architecture, memory and stor-
age speed are important properties to improve the accuracy
of predicted application execution times. In the context of
clouds, Chikrin et al. [15] and Pietri et al. [16] estimate execu-
tion times of tasks using only task input data and no runtime
information. Monge et al. [17] use, in addition to task input
data, provenance and resources features obtained from
benchmarks. Most of the variables used by related work are,
however, not available for commercial clouds. For example,
commercial clouds usually have no queues to which users
submit their tasks and commercial providers rarely provide
information about their physical hardware.

There are numerous works that fall in the first and second
category mentioned before. Examples of these works are
ASPEN [4], COMPASS [18], PALM [19], or PEMOGEN [20].
All of them have tried to tackle the problem in a similar way:
they define a domain specific language that is used to anno-
tate the source code of applications. These annotations have
to be provided by expert analysts and are used to obtain an

258 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 8, NO. 1, JANUARY-MARCH 2020

estimate of the number of machine instructions that are exe-
cuted by that application. These estimates are based on
regression-like methods and simulations of machine instruc-
tion executions. These methods differ by how they deal with
various hardware architectures. For example, in PALM the
obtained estimates are hardware specific. In other cases, a
model describing the hardware in detail is required. For
example, COMPASS and ASPEN require detailed informa-
tion about each CPU core, such as whether it supports dou-
ble precision instructions and the presence of multiply-add
instructions; capacity, latency and memory bandwidth;
cache information (shared cache between cores, as well as
their capacity), and type of links between cores within a
same socket (Quick Interconnect (QPI), HyperTransport or
PCI). Although these methods can achieve low prediction
errors, their usability for our purposes is limited. First, in our
work we do not assume that the source code of applications
is available; for cases where code is available, we do not limit
applications written in a specific language, which hardens
the use of annotations. Second, we do not want to rely on
expert analysts, but we aim to provide a fully automated
method. Lastly, we cannot rely on architecture specific meth-
ods since the target architecture in the cloud on which the
application runs is in general not known beforehand. In the
context of clouds, CloudProphet [21] is a representative of
the second category, which uses agents to emulate a task’s
execution behavior.

In this work, we propose a performance prediction
method that falls into the first category of analytically
modeling to predict the execution time of workflow tasks
for clouds. Our method is fully automated and does not
require any expert analyst.

3 PREREQUISITES

In this section we present background information required
to describe our approach. First, we introduce some back-
ground in Machine Learning for prediction of workflow
task execution times. Afterwards, we introduce basic con-
cepts for cloud computing systems. Finally, we formally
describe a workflow application and present the four scien-
tific workflows used in our work.

3.1 Machine Learning Background
Machine learning (ML) methods generally learn the relation
between a set of input data and an output. This relation is
usually learned after observing a set of data for which input
and output values are known.” In the field of ML, this set of
data is usually referred as training set or simply training
data. The output can be any function or set of values. ML
commonly uses historical data about past executions of
workflows as training data. The output to learn for the
research problem of this paper is the task execution times.
Predicting the execution time of workflow tasks has been
considered by previous work in the field of distributed sys-
tems and ML. Various methods have been evaluated by these
approaches which led to different prediction accuracy for dif-
ferent problems [10], [11]. No single ML method has outper-
formed others in terms of prediction accuracy for all types of

2. In this work we focus on supervised learning.

problems [9]. Some of the methods commonly used for execu-
tion time prediction are Linear Regression [22], Regression
Trees [23], Bagging using regression trees [17] and Artificial
Neural Networks [24]. In this paper, we evaluate these ML
methods, as well as another ML ensemble method called ran-
dom forest [3], which usually provides better prediction accu-
racy in the presence of noisy data. We also apply clustering
techniques to the data in order to identify subsets of the histor-
ical data exposing a high correlation with the execution time.

Linear Regression. Linear regression assumes a linear
dependence between the input and the output—in our case,
execution time, and the considered variables (workflow
input, VM type, and runtime parameters). Linear regression
models the output by using the formula y = @’ # + b, where
y is the desired output, and & the vector of independent var-
iables (i.e., input). Linear regression determines the values
of @ and b which minimize the error over a set of observed
data. This method is reasonable to predict simple tasks
where the execution time is linear regarding the considered
variables [22]. In situations where such a linearity between
input and output does not exist, the accuracy of the method
can be unsatisfactory.

Regression Tree. As indicated in its name, it is a regression
technique. It works by building a tree-based structure in
which each node represents one parameter. Each branch
descending from that node corresponds to one of the possi-
ble values for the parameter and the leaf node represents
the decision achieved following that branch [23].

Artificial Neural Network. ANN is a machine learning
technique that simulates the structure of biological neural
systems. This technique constructs a network of computa-
tional nodes where each node operates as a function that
takes a number of inputs and produces a single output. This
process emulates the operation of neurons in the human
brain. ANNs usually compete with decision trees in noisy
data [25]. In this work we consider a specific type of ANN
called Multi-Layer Perceptron (MLP).

Ensemble methods. Ensemble methods internally use sev-
eral algorithms in order to achieve more accurate predic-
tions than any of these algorithms could yield in
isolation [26]. In order to do this, they usually apply
“bootstrapping”, which consists in generating different sub-
sets out of the training set by applying sampling with
replacement. This means that some samples are never con-
sidered and some are repeated across different subsets
which are used as the training set for the different ML algo-
rithms considered.

In this paper, we consider two ensemble methods called
Bagging [27] and Random Forest [3]. The former has been
already applied to performance prediction in the Cloud [17].
The latter, is an extension of the former, which requires to
train several regression trees with different subsets of the
input data, and with possible subsets of the input features.
The output of an ensemble method is the value proposed by
most of these trained ML algorithms. The combination of
many algorithms allows the ensemble method to achieve
better prediction accuracy than any single algorithm in iso-
lation [28]. In particular, RF is well suited to generate mod-
els with good prediction accuracy compared with other
regression techniques if the training data set is small and its
content is noisy.

PHAM ETAL.: PREDICTING WORKFLOW TASK EXECUTION TIME IN THE CLOUD USING A TWO-STAGE MACHINE LEARNING... 259

d2n2n+1

Fig. 1. Example workflow.

Clustering Techniques. Clustering is the task of grouping
similar objects into groups called clusters. Clustering techni-
ques group objects based on information found in the data
that describe the object’s properties or their relationships.
The goal is that the objects in a cluster are as similar as pos-
sible. The greater the similarity within a cluster, the better
the clustering technique.

3.2 Cloud Computing

Cloud computing is a model for enabling on-demand net-
work access to a shared pool of configurable computing
services that can be rapidly provisioned and released with
minimal management effort or service provider interaction.
Our work concentrates on Infrastructure as a Ser-
vice (IaaS) clouds, which provide user access to comput-
ing resources.

Our cloud model used in this paper resembles commer-
cial clouds such as the Amazon Elastic Compute Cloud
(EC2), Google Computing Engine (GCE) and RackSpace
Cloud (RS). In this model, the computing resources are pro-
vided to users by using virtualization, which is a technology
that allows to run one or multiple VMs on top of a single
physical server. A VM is the representation of a physical
machine by software and defines its own set of virtualized
hardware (RAM, virtual CPU (vCPU), hard disk, etc.) upon
which an operating system and applications are loaded.

A physical server can run several VMs isolated from each
other depending on its capacity. A VM can be instantiated
from a set of different VM types.> These types define the
amount and performance capabilities of resources which
are allocated to the VM. Commercial cloud providers usu-
ally offer several VM types. For example, the t2.small
VM type of Amazon EC2 defines a VM which will use a sin-
gle CPU core and two Gigabyte of RAM.

3. Therefore, sometimes a VM is also referred as a VM instance.

3.3 Scientific Workflows

A workflow application can be modeled as a graph, W =
(T, D) consisting of n tasks T'= |J;_,{t;}, interconnected
through dependencies D = {(t;,t;,d;;)|(ti ;) € T x T},
where d;; represents the size of the data, which needs to be
transferred from task t; to task ¢;. Formally, we use
pred(t;) = {ty|(tr, ti, dri) € D} to denote the predecessor set of
task t;, (i.e., tasks to be completed before starting ¢;).

Fig. 1 shows an example workflow consisting of 2n + 1
tasks (T = {tl,tQ, e ,tQ,H,l}). The set D = {(tl, tQ, dlg), (tl, t3,
d13)7 ey (tn+17 t2n+17 dn+12n+1)7 (t2n’ t2'7L+17 d2'712'n+1)} includes
the dependencies among of these tasks (some of which are
also depicted in the picture).

In order to evaluate the approach proposed in this work,
we have used the following real world workflows:

Montage [29] is a portable software toolkit that allows to
construct mosaic images out of astronomical sources. The
workflow contains nine different tasks in charge of obtain-
ing data, projecting and shrinking them, composing a
mosaic out of different tiles, or transforming to JPEG format.
The size of the workflow depends on the number of images
required to build the mosaic.

Wien2k [30] is a material science workflow for perform-
ing electronic structure calculations of solids using density
functional theory based on the full-potential (linearized)
augmented plane-wave ((L)APW) and local orbital (lo)
method. Wien2k consists of two parallel sections with
sequential synchronization tasks in between them resulting
in five different tasks.

The Persistence Of Vision Raytracer (POV-Ray) work-
flow is based on a free tool for creating three-dimensional
graphics and movies [31]. This creation is known to be a
time and resource consuming process used not only by hob-
byists and artists, but also in biochemistry research, medi-
cine, architecture and mathematical visualization. The
POV-Ray workflow is composed of two different tasks:
povray :Render2 which renders a set of frames (i.e.,
images) from a three-dimensional scene descriptor file and
povray : Convert which encodes the rendered images into
an animated GIF.

The Blender application is an integrated 3D suite
for modeling, rendering, animation, production, post-
production of movies. The Blender workflow [32] consists
of two main parts. A first phase where a set of parallel tasks
render different frames of a movie. A second phase where
all the rendered frames from the previous phase are merged
together to a movie.

4 A TwoO-STAGE PREDICTION APPROACH

4.1 Problem Motivation
Let us formalize a set of IaaS clouds C' = {¢1, ¢, ..., ¢,} and
a set of VM types V = {vy,vs,...,v:}. Each type consists of a
number of virtual cores, a specific memory size, and a given
version of the Linux operating system. All of the evaluated
cloud providers (see Section 5.2) offer a VM resembling
each of the considered types in this work (see Table 2).
Given a workflow W = (T, D), our goal is to predict the exe-
cution time of a task ¢, € T, on a virtual machine type
v, € V of the cloud ¢, € C.

IaaS clouds are composed of different physical servers
with different hardware (CPU, memory, etc) A cloud

260 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 8, NO. 1, JANUARY-MARCH 2020

TABLE 1
Parameters Used to Model Task Execution Times

Pre-Runtime Workflow Input parameters of
Parameters input data workflow
VM types Number of vCPU,
Memory capacity
Runtime uCPU CPU used time at user level
Parameters sCPU CPU used time at system level

Memory usage
Write operations
Read operations
File transfer
Bandwidth

Memory used by task

Number of written blocks of task
Number of read blocks of task
Size of transferred files by task
Bandwidth used by task

provider is in charge of selecting the physical server in
which each VM instance runs. Instances of the same VM
type may always run on the same type of physical hard-
ware, but nothing prevents the provider to use different
physical machines for different instances of the same VM
type as long as the service agreements (SLA) with users are
not violated. Therefore, executions of the same task in the
same cloud can run on different hardware, regardless of the
selected VM type, leading to different execution times. This
aspect increases the complexity to predict task execution
times on the cloud.

Related work suggests the inclusion of hardware param-
eters to improve prediction accuracy [11]. These approaches
are appropriate for grid and cluster systems, however, for
Iaa$S clouds, hardware information is not always accurate or
accessible. Even if a provider enables access to accurate
description of their hardware systems, the physical server
on which a VM runs may not always be reported in advance
to the user.

In this work, we propose a novel offline approach to pro-
vide accurate time predictions for workflow tasks for
clouds. This means we build our prediction model using
some prior workflow executions (referred as training data
in the rest of this work), and once the model is built, we use
it for the next execution of the workflow (with unseen input
data, cloud infrastructure, or virtual machine).

We use machine learning to build our model. As training
data we consider some executions of the workflow for dif-
ferent input data on a number of virtual machines on vari-
ous clouds. For each task execution covered in our training
data, we record a set of parameters which are used by the
ML method to build a corresponding execution time model.

Similarly to previous work, we use the workflow input as
part of our training data. This information is required to pre-
dict the execution time of a task since varying the workflow
input may lead to different execution times of the tasks com-
posing that workflow. For each task execution included in
our training data set we need to provide information describ-
ing the virtualised environment in which the task is exe-
cuted. For our approach we use parameters describing the
VM type such as the number of virtual CPUs or the amount
of virtual memory provided by that VM. These parameters
are used by the cloud provider to assign physical resources
to each virtual machine instance, which impacts the execu-
tion time of that task. Finally, in our training data we include
a set of parameters that describe the execution behavior of
that task in a given virtualised environment on a cloud. We

TABLE 2
Considered Virtual Machine Types
VMtype vCPU Mem(GiB) (O]
typel 1 2 Centos 7 (64bit)
type2 2 4 Centos 7 (64bit)
type3 4 16 Centos 7 (64bit)
typed 8 32 Centos 7 (64bit)

refer to this set as runtime parameters since they can only be
obtained by executing a task on a cloud. This set includes
information such as the CPU user time, CPU system time,
number of I/ O operations, network bandwidth, etc.

Our approach considers runtime parameters whose val-
ues are architecture dependent. These parameters can be
used to characterize the hardware on which a virtualised
environment is executed on a given cloud. In this paper we
propose a novel approach that uses a two-stage machine
learning prediction technique. The first stage generates a
model for each of the runtime parameters. These models are
generated by using machine learning techniques and aim to
learn the information about the hardware assigned by a
cloud to run a given VM type. This is learned indirectly by a
ML method which correlates the workflow input with infor-
mation of the VM type with the runtime parameters. The
second stage uses the runtime parameter models generated
in the first stage to predict the final execution time of a task.
Our algorithm is described in the following sections.

4.2 Considered Parameters

Table 1 describes the parameters considered by our predic-
tion approach which we collect for every execution of all
workflow tasks. We have evaluated the importance of each
of these parameters using a feature selection process [33].
Removing any of these features from our approach will
decrease the prediction accuracy, which is dependent on
the workflow task.

We classify the considered parameters into two groups
which are referred as pre-runtime and runtime parameters,
respectively. Pre-runtime parameters can be statically deter-
mined before executing a task on a cloud. Pre-runtime
parameters include the workflow input and parameters
describing the virtualised environment in which the task is
going to execute. The runtime parameters reflect performance
differences of tasks on different virtual machines of the
same or different cloud providers and are determined by
actually executing a task. They include the user CPU time,
the system CPU time, the number of written blocks to mem-
ory by a task, or the amount of data transferred to the net-
work by that task.

4.3 Method Description

Let A= {ao,...,a,} be the set of pre-runtime parameters.
For each pre-runtime parameter «;, 1 < ¢ < m, let ®; denote
the set of possible values for that parameter. Let us also con-
sider that there is a function I'; that derives the value of that
parameter for any task ¢, executed on a virtual machine v,
in a cloud ¢,. These functions can be represented as

PHAM ETAL.: PREDICTING WORKFLOW TASK EXECUTION TIME IN THE CLOUD USING A TWO-STAGE MACHINE LEARNING... 261

and refer only to pre-runtime parameters whose values
must be known for any possible combination of task, virtual
machine type and cloud, no matter whether that combina-
tion has been executed before or not.

Algorithm 1. Two-Stage Prediction Algorithm

Input: ¢, (a task of the workflow)

Input: v, (a virtual machine type)

Input: ¢, (a cloud)

Output: Time prediction value for ¢, on v, in ¢,

1ia—10 > initialize the set of pre-runtime
parameters to be the empty set

2041

3: while: < m do

4: o — aU{Tl(ty, vy,)} > Extend this set with all known

pre-runtime parameters

5 die—i+1

6: end while

70 j—1

8 p—10 > initialize the set of runtime param-

eters to be the empty set
> Extend the runtime parameter set
with known or predicted values
10: if exist(A;(tq, v, ¢;)) then

9: while j <ndo

11: o — pU{Aj(te, vy,)} D> If the value is known, add it
to the set
12: else
13: p — pU prediction-method_j(t,, vy, ¢,)
> If the value is unknown, predict
it with Algorithm 2
14: end if
150 j«—j5+1

16: end while
17: execution_time — machine_learning(c, p)
> Predict the execution time using
the sets of pre-runtime
18: > and runtime parameters generated before
19: return execution_time

For example, we can assume the parameter «, is the
number of virtual cores of a VM type. In this case, if we had
three VM types featuring one, two, and four virtual cores,
respectively, the set ®, is {1,2,4}, and the function I',
returns the value in that set for the specific execution of ¢,
on the virtual machine v, in the cloud c,.

Similarly, let R = {p;,...,p,} be the set of n runtime
parameters. For each of these runtime parameters p;,
1 <j<n,let \; define the set of possible values for that
parameter. Let us also assume that there exist a function
A, that derives the value of that parameter for a task ¢, exe-
cuted on a virtual machine v, in a cloud ¢,. These functions
are denoted as

Let p, be for example the user CPU time for a given exe-
cution. In this case, the set \, is a subset of R; in particular,
the subset of all possible user CPU times for a workflow
task. A, is the function that provides us with the user CPU
time of the task ¢, when executing on v, in the cloud c,.
Some A; functions, 1 < j < n, may not be defined for every
possible combination of task, virtual machine and cloud.

The functions are defined only for these combinations that
have been previously executed.

Our approach (see Algorithm 1) to predict the execution
time of workflow tasks in the cloud uses the functions
described above. The input of the algorithm consists of a
task t,, a virtual machine type v,, and cloud ¢,. The output
of the algorithm is the predicted execution time of ¢, for v,
in the cloud ¢,.

Initially, the algorithm creates a vector consisting of all
the pre-runtime parameters «;, 1 <14 <m, for the given
input (see lines 1-6). After that, the first stage of the algo-
rithm (lines 7-16) computes the values of the runtime
parameters for the given input. For each of these runtime
parameters, there are two options. If the input has been exe-
cuted before, the parameter value should be available in the
historical data. Otherwise, the missing value has to be pre-
dicted using a model based on ML (see Algorithm 2).

The first stage of the prediction is depicted by
Algorithm 2. The input of this approach is the task ¢,, virtual
machine type v,, and cloud ¢, for which a runtime parame-
ter needs to be predicted. The algorithm generates the pre-
dicted value for that runtime parameter by using a ML
method that has been trained with historical data, using
only pre-runtime parameters. Any state-of-the-art machine
learning regression method can be used for this phase.

Algorithm 2. Prediction Method for Runtime Parameter p;

Input: ¢, (a task of the workflow)
Input: v, (a virtual machine type)
Input: ¢, (a cloud)
Output: Predicted value for the runtime parameter p;
1: > Initialize the set of pre-runtime parameters to
the empty set
a—10
11
> Extend the set with all pre-runtime parameters
while i < m do
o — aU{L;(te, vmy,p.)}
i—1+1
end while
> Predict using the pre-runtime parameters set
i p; < machine_learning(c)
: return,oj

PO RN TN

p—

Once the values of all the runtime parameters are
extracted from historical data or predicted, they are used
together with pre-runtime parameters in a second stage
(Algorithm 1, line 13) to predict the execution time of the
task. This second stage incorporates again a ML method
trained with the historical data.

5 EMPIRICAL EVALUATION

This section is devoted to describe the experimental setup
and empirical evaluation of our performance prediction
approach.

5.1 Implementation Details

We use the Askalon[34] workflow management system
(WMS) to run our experiments on the cloud. We use the
ASKALON default scheduler which executes a task on each

262 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 8, NO. 1, JANUARY-MARCH 2020

TABLE 3
Description of the Internal Cloud
Name Physical Hardware Hypervisor Platform
I, 3x IBM Nodes (2x Intel(R) Xeon(R) CPU KVM 1.5.3-60.el7 0.11.x86_64 Openstack
E5-2680 v2 @ 2.80 GHz, 128 GRAM Infiniband QDR)
Ir 2x SUN 4600M2 Nodes (8xQad-Core AMD Opteron(tm) KVM 1.5.3-60.el7 0.11.x86_64 Openstack
Processor 8356, 64 GB RAM /server, Infiniband)
I3 3x Nodes IBM (4xIntel(R) Xeon(R) CPU X5570 KVM 1.5.3-60.el7 0.11.x86_64 Openstack

@ 2.93 GHz, 32 GB RAM, Infiniband QDR)

virtual core of a VM. Therefore, if a VM has four virtual
cores, the scheduler will execute four tasks concurrently in
that VM. An internal database is maintained by the WMS
system with information (i.e., pre-runtime and runtime
parameters) about all collected workflow executions. We do
not include any information about collocation of other VMs
in the same PM, since we cannot control the effect of VM
collocation; and, that information is commonly not pro-
vided by public providers to their customers.

In order to monitor the runtime parameters for workflow
tasks for virtualized environments, we instrumented the
tasks by using linux system calls to obtain CPU and memory
usage as well as I/0 operations. Our instrumentation has not
been done at the hypervisor level; instead, we provided a
lightweight instrumentation wrapper which has been trans-
parently injected in every task by our workflow management
system. In addition, we used the WMS to measure files trans-
fers. File transfer times have been used to compute the band-
width usage for every task. The training data for every
workflow task has been stored in the WMS database.

The data used in this paper has been generated by consid-
ering executions of workflows with different pre-runtime
parameters values. Table 6 summarizes the input parameters
of every workflow and the evaluated upper and lower
bound. These bounds have been chosen in such a way that
the execution time of the workflow is between a few minutes
and approximately one hour. We have randomly selected
values within these intervals following a uniform distribu-
tion in order to generate the training and validation sets. In
total, we have generated between 314 and 14,000 executions
for every task, to be used either as training or validation.

5.2 Evaluation Environment

Our internal cloud infrastructure is composed of a cloud
with three different regions. We refer to these three regions
as I;, 1 <1 < 3. The description of the computers, which are
part of these regions is included in Table 3. Moreover, we
also conducted experiments on three different commercial
cloud providers: Amazon EC2, * Google Compute Engine °
and Rackspace.® In order to guarantee a fair evaluation, we
used similar virtual machine types with the same virtual
CPU and memory across the clouds providers.

We used the VM types called typel, type2, type3 and type4
corresponding to t2.small, t2.medium, m4.xlarge and
mé.2xlarge of Amazon EC2, nl-standard-1, nl-
standard-2, nl-standard-4 and nl-standard-8 of

4. https:/ /aws.amazon.com/ec2/
5. https://cloud.google.com/compute/
6. https:/ /www.rackspace.com/cloud

Google Compute Engine, as well as generall-1, gen-
erall-2, generall-4 and generall-8 of Rackspace
Cloud. All of these types have the same configuration as illus-
trated in Table 2

In order to provide a fair comparison among different
hardware of many cloud providers, we choose the same
operating system for the images used in each virtual
machine. In this work, we used Centos-7 for all of experi-
ments across the clouds.

5.3 Evaluation metric

Let r;j, € RT be the actual execution time of executing task
t; on VM of type v; € V running on a cloud ¢; € C' with
1 <k < p. Let ¢;5 be the corresponding predicted execution
time for 7, by any approach analyzed in this paper. To vali-
date the accuracy of our approach, the relative absolute
error (RAE) [22] is used as a metric for evaluation,

Doict Irijr — el 3)
Sy Irige = £ 320 il

where n is the number of predictions computed. The
smaller the RAE, the better the prediction accuracy.

There are different metrics to assess the accuracy of
machine learning techniques. An empirical study of differ-
ent metrics [35] recommends RAE over other alternatives.
In addition, RAE has been used by prior works [9] for work-
flow performance prediction.

RAFE =

6 EVALUATION

This section is devoted to assess the performance of our pre-
diction method, which is compared against state-of-the-art
approaches.

6.1 Evaluated Approaches

We choose regression methods solely based on pre-runtime
parameters, as done in related work. Comparing our work
against alternatives such as ASPEN [4], COMPASS [18],
PALM [19] or PEMOGEN [20] is unfortunately difficult.
First, most of these alternatives require access to the applica-
tion source code, which is not the case for some of the con-
sidered workflow applications in this work. Second, most of
these methods require detailed hardware information,
which is an unrealistic assumption in particular for public
clouds. Finally, some of these approaches require an expert
analyst who annotates the source code of the application,
while we aim for a fully automated approach.

Related work often uses three main regression algo-
rithms: linear regression, neural networks, and regression
trees. Furthermore, in this work we also considered the
use of Random Forest, as described in Section 3.1, RF has

https://aws.amazon.com/ec2/
https://cloud.google.com/compute/
https://www.rackspace.com/cloud

PHAM ETAL.: PREDICTING WORKFLOW TASK EXECUTION TIME IN THE CLOUD USING A TWO-STAGE MACHINE LEARNING... 263

TABLE 4
Profiling Characteristics for Workflow Tasks

CPU Util(%) Peak Mem (MB) IOWrite(MB) IORead(MB) BandWidth(Mbps)
Task Mean Std Mean Std Mean Std Mean Std Mean Std
Blender-Render 57.836 6.995 242.147 56.987 5.007 0.537 0.299 2.925 37.935 4.214
Blender-Merge 4.797 0.185 1.826 0.002 494.593 0.00 491.819 2972 44.705 15.721
Povray-Render 99.042 0.061 23.464 0.035 0.2721 0.012 0.00 0.00 0.051 0.007
Povray-Convert 97.059 0.133 169.252 0.045 19.781 0.00 0.00 0.00 1.729 0.208
Wien2k-LapW0 99.178 0.054 36.602 1.029 1.347 0.00 0.172 0.00 7.158 1.937
Wien2k-pforLapW1 99.936 0.015 130.65 0.567 2.726 0.013 0.00 0.00 27.74 3.587
Wien2k-LapW2Fermi 85.317 0.132 5.501 0.005 1.199 0.00 0.136 0.00 1.916 0.043
Wien2k-pforLapW2 96.685 4.002 12.526 0.151 2.404 0.004 0.00 0.00 18.256 6.731
Wien2k-Mixer 17.225 0.162 18.295 0.002 24.487 0.00 0.00 0.00 4.329 0.884
AddTiles 63.564 2.316 7.878 0.004 199.062 0.00 1.707 0.143 215.869 25.721
AddShrink 85.692 5.634 8.939 0.019 91.641 0.00 1.149 1.691 16.485 10.729
BCorrection 83.001 5.677 14.835 0.016 101.798 27.577 0.338 0.471 25.422 12.298
CalcTiles 83.782 0.503 6.449 0.00 0.046 0.00 2.609 0.00 0.267 0.045
CalcModel 74.518 0.493 6.774 0.002 0.015 0.00 0.128 0.00 0.025 0.001
CalcOverlap 60.872 0.793 6.197 0.002 0.023 0.00 0.00 0.00 0.239 0.065
CalcDiffFit 67.417 13.051 4.675 0.00 6.178 10.949 0.441 0.721 31.857 21.042
DIAndProj 3.531 0.226 12.221 0.637 9.231 0.5961 0.001 0.001 0.448 0.082
RetrImgList 22.975 17.397 6.498 0.002 0.066 0.00 0.078 0.00 0.00 0.00

been shown recently to be very successful for many scenar-
ios. More specifically, we examined a total of six different
regression algorithms: linear regression (LR), multi-layer
perceptron (MLP) which is a specific type of (ANN), two dif-
ferent implementation of regression trees, M5P and REP,
Bagging using M5P (BM5P), as well as Random forest (RF).
We used an implementation of these algorithms provided by
the Weka library [22]. We configured these methods with the
default parameter values used by the version 3.8 of the Weka
library, which are summarized in Table 5. These values have
been adjusted by the library authors based on related work
describing these methods and they also provided the best
figures for us in some preliminary tests. As input features we
used only pre-runtime parameters since their values are
available before running the application (i.e., application
input, vin type, etc). This set of parameters includes most of
the ones used by Da Silva et al. [10] and Lee et al. [6]. We
will refer to these approaches as single-stage methods in the
remainder of this section.

Our two-stage approach also requires the use of ML regres-
sion techniques in the two described phases of Algorithm 1.
We analyzed the performance of our algorithm when coupled
with any of the six regression algorithms mentioned above.
Our goal was to prove that our two-stage approach can
achieve more accurate predictions than any existing method
regardless of the considered regression technique.

Some related work use clustering techniques to subdivide
training data into subgroups based on similar features.
When the prediction algorithm (e.g., in our case Algorithm 1)
is invoked based on a given input, the cluster to which that
input belongs to is determined. After that, a prediction for
that input is derived by considering only training data of
that same cluster. Da Silva et al. [10] showed that this
method outperforms predictions without clustering. The
same conclusion was obtained by Lee et al. [6] by filtering
the input of the method prior to deriving any prediction.
This filtering step requires to compute the cluster to which
the input belongs to.

In our experiments, we also applied clustering. Predic-
tions have been derived for every cluster separately. This
was done for our two-stage approach as well as for the
analysed related-work based techniques. In preliminary
experiments we have evaluated two types of clustering
techniques called DBSCANI[36] and EM[37]. We report in
this paper the results of the two-stage approach using the
EM clustering algorithm, since it resulted in better accuracy
than DBSCAN for clustering our data.

6.2 Obtained results

We have computed predictions for all tasks of the work-
flows introduced in Section 3.3. All tasks of these workflows
are sequential tasks (only a virtual core per task is used)
and they are of different nature, ranging from tasks with
almost no I/O operations and high CPU utilization to I/O

TABLE 5
Parameters used in Machine Learning Methods

Method Parameters

Learning Rate for the back-propagation
algorithm = 0.3

Momentum Rate for the back-propagation
algorithm = 0.2

Number of epochs to train = 500

Hidden layers = 1

Minimum number of instances per leaf = 4

MLP(ANN)

M5P

REP Minimum number of instances per leaf = 2
Number of folds for reduced error pruning = 3

Maximum tree depth = unlimited

BM5P
(Bagging M5P)

Bag size = 100

Maximum tree depth = unlimited

Number of trees to build = 100

Minimum number of instances per leaf = 1
RF Minimum numeric class variance
(proportional to train variance) to split = 1e-3
Maximum tree depth = unlimited

264
TABLE 6
Considered Workflow Parameter Values and
Chosen Lower and Upper Bounds
Workflow Parameter Values
Wien2k Kpoints . lower bound=100, upper bound=200
Integer Fraction lower bound=7, upper bound=9

Povra Total Frame lower bound=100, upper bound=500

y Frames per Activity lower bound=5, upper bound=10
Blender Total Frame lower bound=100, upper bound=500

ende Frames per Activity lower bound=5, upper bound=10

Montage Width of Image lower bound=0.5, upper bound=1.0

& Height of Image lower bound=0.5, upper bound=1.5

intensive tasks with low CPU utilization. A summary of the
profiling and statistical information for the workflow tasks
is shown in Table 4.

We have generated experimental data for all workflows
on different virtual machine types (see Table 2) on the
clouds reported in Section 5.2. These workflow instances
have been created by choosing their input as commented in
Section 4.2.

The obtained results are summarized in Tables 7, 8, 9,
and 10 for the tasks of the Povray, Blender, Wien2k, and
Montage workflows, respectively. Each table includes the
prediction results in the form of RAE values for the single
stage approach based only on pre-runtime parameters as
well as for our two-stage approach with different regression
methods for the different workflow tasks. These results
have been computed using 10-fold cross-validation. The

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 8, NO. 1, JANUARY-MARCH 2020

best (i.e., lowest RAE value) obtained results for each task
has been highlighted in bold font. Besides tabulating results
for every task, the last row of every table summarizes the
average RAE across all workflow tasks.

A quick analysis of our result shows that RF is the
regression algorithm resulting in the lowest prediction
errors for both single-stage and two-stage approach. When
comparing our proposal using RF against single-stage
approaches, the two-stage approach achieves lower predic-
tion errors in all the cases except for one task of the Mon-
tage workflow. In this case, RF using only pre-runtime
parameters is slightly better than the two-stage approach.
For this particular task, pre-runtime parameters are suffi-
cient to achieve good predictions. For the other tasks, how-
ever, we could observe that using also runtime parameters
can substantially improve the predictions.

If we focus on the two-stage approach, RF produces an
average error of 3.9 percent for the tasks composing the Pov-
ray workflow. For the Blender workflow, the average RAE
increases up to 5.25 percent, while for Wien2k and Montage
the RAE is 6.64 and 8.97 percent, respectively. Therefore, the
average RAE over all workflow tasks is always less than
10 percent, for each of the analyzed cases when the two-stage
approach is used in combination with RF. If we examine indi-
vidual workflow tasks, the minimum achieved RAE has been
1.6 percent for one of the tasks of Povray workflow, while the
maximum has been 12.2 percent for one of the Montage tasks.
Our approach has not been able to provide a RAE value
below 10 percent for five of the analysed task. Interestingly,
these tasks belong to one out of the following two groups: (1)

TABLE 7
Povray Tasks Estimation Errors (RAE) for Single-Stage and Two-Stage Approaches

Single-Stage Approaches

Two-Stage Approach

Task LR MLP Mb5P REP BM5P RF LR MLP Mb5P REP BM5P RF
Povray-Render 34.6 21.5 16.0 159 16.1 159 39 4.6 34 3.2 3.1 1.60
Povray-Convert 26.6 16.8 10.4 9.7 9.3 9.2 16.5 7.5 8.3 14.3 11.1 6.20
Average 30.6 19.15 13.2 12.8 12.7 12.55 10.2 6.05 5.85 8.75 7.1 3.9
TABLE 8
Blender Tasks Estimation Errors (RAE) for Single-Stage and Two-Stage Approaches
Single-Stage Approaches Two-Stage Approach
Task LR MLP Mb5P REP BMb5P RF LR MLP Mb5P REP BMb5P RF
Blender-Render 42.8 46.5 37.9 37.9 37.8 37.8 12.1 13.5 7.5 8.1 8.5 6.40
Blender-Merge 25.7 21.7 20.1 17.8 20.1 15.6 33.7 14.5 12.4 7.8 16.6 4.10
Average 34.25 34.1 29 27.85 28.9 26.7 229 14 9.95 7.95 12.6 525
TABLE 9
Wien2k Tasks Estimation Errors (RAE) for Single-Stage and Two-Stage Approaches
Single-Stage Approaches Two-Stage Approach
Task LR MLP Mb5P REP BMb5P RF LR MLP Mb5P REP BMb5P RF
LapWo0 93.9 94.2 88.2 80.3 86.7 77 .4 62.6 28.2 33.9 26.1 41.3 9.10
pforLapW1 49.3 12.7 8.4 7.9 8.4 7.7 2.0 2.1 2.0 2.5 2.5 1.80
LapW2Fermi 88.7 96.8 83.5 77.5 81.6 74.2 77.5 42.0 443 33.4 43.8 11.60
pforLapW2 40.5 45.6 37.2 37.1 36.9 37.2 11.7 17.1 9.7 7.1 36.1 2.60
Mixer 66.9 57.3 53.6 47.4 52.3 45.2 41.3 22.0 23.9 18.3 43.3 8.10
Average 67.86 61.32 54.18 50.04 53.18 48.34 39.02 22.28 22.76 17.48 33.4 6.64

PHAM ETAL.: PREDICTING WORKFLOW TASK EXECUTION TIME IN THE CLOUD USING A TWO-STAGE MACHINE LEARNING... 265
TABLE 10
Montage Tasks Estimation Errors (RAE) for Single-Stage and Two-Stage Approaches
Single-Stage Approaches Two-Stage Approach

Task LR MLP Mb5P REP BM5P RF LR MLP Mb5P REP BM5P RF
RetrImgList 69.7 69.7 65.4 60.4 65.2 58.2 45.1 14.3 25.5 22.1 27.4 10.50
CalcOverlap 56.5 55.2 54.8 53.9 54.8 49.5 56.8 15.2 35.7 33.1 34.2 12.20
DIAndProj 98.4 109.7 96.6 96.5 96.3 96.5 80.8 74.4 37.3 252 38.5 10.90
CalcDiffFit 90.4 86.5 88.6 86.4 88.5 85.0 46.8 40.0 23.3 16.2 241 6.70
CalcTiles 46.3 36.8 42.1 32.8 10.5 33.5 13.7 11.2 9.8 10.3 10.8 5.70
CalcModel 9.7 8.1 10.3 7.2 11.1 6.90 17.7 6.7 15.9 14.3 16.7 7.3
BCorrection 97.4 99.3 95.8 95.8 96.2 95.6 69.1 27.5 37.9 28.9 31.3 10.00
AddShrink 88.6 91.9 85.9 83.9 85.5 82.9 55.6 27.0 32.6 23.1 34.1 9.30
AddTiles 26.2 26.0 242 23.4 24.5 20.8 30.3 9.2 22.5 16.1 23.1 8.20
Average 64.8 64.8 62.63 60.03 68.7 58.76 46.21 25.05 26.72 21.03 26.7 8.97

tasks with very short execution times (less than a second); or
(2) tasks which are bandwidth dependent. Tasks belonging
to the first group are hard to predict since even small over-
heads (such as instrumentation overhead) can account for a
substantial percentage of the final execution time. Tasks in
the second group are influenced by the time to download/
upload data from/to the internet, which fluctuates with the
available bandwidth.

When comparing our two-stage approach against single-
stage approaches regardless of the regression method, our
experiment show that the former is better than the latter for
all cases when considering all workflow tasks (see average
reported RAE for each workflow). The only case where
single-stage approaches and our proposal are comparable
(i.e., they computed similar RAE values) is when the two-
stage approach uses LR as regression method.

In terms of improvements, our approach using RF
achieves a three time lower RAE than single-stage based
approaches. For the Blender workflow, the improvements
reach up to five times smaller RAE. For Wien2k and Montage,
the results are even more impressive: eight and nine times
smaller RAE than related-work based methods, respectively.

6.3 Model Portability: Covering a New Cloud
Provider

In this section we want to explore the portability of our pre-
diction model. We consider a scenario when we got training
data for several clouds, but no training data for a new pro-
vider. We want to explore two questions, (1) how accurate
is our model for the new provider?; and (2) how many exe-
cutions on the new cloud are required to adjust our model
for achieving a low RAE?

For this experiment, we consider the three evaluated
commercial clouds in this paper (Amazon EC2, Google
Compute Engine, and Rackspace). For each cloud C out of
these three, we assume that we have training data of our
internal cloud and the other two providers, and we want to
extend the model to predict for C. For example, when we
consider Amazon EC2 as the new provider for which we
want to extend our model, we will consider the same train-
ing data set as in the previous sections, but we remove all
the executions pertaining EC2. These removed executions
will be the validation set which we use to test the predic-
tions (compute their RAE) for EC2.

For answering the second question, we consider that
some executions are available on the new provider. For this
setup, we randomly add to the training set described in the
paragraph before several executions derived from the new
provider. These executions are taken from the validation
set. More specifically, we analyze the results when adding
one, two, five, ten, twenty five, and a hundred executions
on the new cloud. We perform these experiments ten times
per cloud provider.

Without loss of generality we perform these experiments
only for the two-stage approach when using RF, since based
on our previous experiments, RF has shown to achieve the
best results for the majority of evaluated workflow tasks.
For this experiment we will not apply clustering techniques.
This is because the executions on the new cloud may form
its own cluster, which may not contain enough data to pro-
vide accurate predictions.

We illustrate here the obtained results for four tasks of
the Wien2k workflow. We do not consider the task LapW2 -
Fermi from this workflow due to its short execution time
(below 0.7 secs) for which predictions are challenging to
derive for clouds for which no information is available.

Fig. 2 depicts the obtained results using a Boxplot repre-
sentation for every cloud provider. The graphs included in
that figure illustrate a substantial drop in prediction accuracy
(compared to the results reported in Section 6.2) when no
data on a given cloud is available. Nevertheless, the obtained
predictions are in some cases more accurate than the evalu-
ated related-work based methods as shown in Table 8.

If we consider the four evaluated tasks in this section,
prediction accuracy ranges between 50 and 14 percent
when no data is available for the new cloud. These results
indicate that porting the model to a new provider is a com-
plex issue that may result in low prediction accuracy when
no data for the new cloud is available.

On the other hand, the obtained results also show that by
performing only a few trial runs on the new provider, the
quality of the model quickly improves. In some cases, the
RAE falls below 10 percent with only five task executions
on the new provider (see tasks pforLapWl and Mixer
for Amazon EC2 and Rackspace Clouds). Obviously, as
depicted by the graph, the more data for the new cloud is
included in the training data, the better the resulting predic-
tion accuracy, which tends to converge towards the results
reported in Section 6.2.

266 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 8, NO. 1, JANUARY-MARCH 2020
Predictions for EC2 Predictions for GCE2 Predictions for RSDFW2
Task: Wien2k-LapWO0 Task: Wien2k-LapWO0 Task: Wien2k-LapWO0
< — — 8 —
. &
<
8 R - 8 -
w — w © - wo . i al
£ % H= 2 L £ S
— = - & - E == - S
2 ~ === —
—_— e s]
T T
Nodata 1 2 5 10 25 100 Nodata 1 2 5 10 25 100 Nodata 1 2 5 10 25 100
of measurements # of measurements # of measurements
Predictions for EC2 Predictions for GCE2 Predictions for RSDFW2
Task: Wien2k-pforLapW1 Task: Wien2k-pforLapW1 Task: Wien2k-pforLapW1
- —_ E - < -
o — g] — ;
E g) 2
w T w w
< o == < o e <
o - o - o
w - = - - == e
© - E © an % [——]
o - =] — @ ——
T T
Nodata 1 2 5 10 25 100 Nodata 1 2 5 10 25 100 Nodata 1 2 5 10 25 100
of measurements # of measurements # of measurements
Predictions for EC2 Predictions for GCE2 Predictions for RSDFW2
Task: Wien2k-pforLapW2 Task: Wien2k-pforLapW2 Task: Wien2k-pforLapW2
uo) | Q E] E '9]
3 3 . 3 -
y — = — y 81— E' - y o | =T —
T g | == . E z ° — =
¥ == i - | -
- T —
o —t
§ =4 71 == - 2 - =
T T T T T T T = T T T T T T T T T T T T T T
Nodata 1 2 5 10 25 100 Nodata 1 2 5 10 25 100 Nodata 1 2 5 10 25 100
of measurements # of measurements # of measurements
Predictions for EC2 Predictions for GCE2 Predictions for RSDFW2
Task: Wien2k-Mixer Task: Wien2k-Mixer Task: Wien2k-Mixer
< — —
o |
o 3
< 7 -
—_ ! 8 2
W 8 | w g —_ W g —
g7 — 2 =T - 2
O I T =5 =
L4 — : o | - T
— == - e - =
=E = _ ==
T T
Nodata 1 2 10 25 100 Nodata 1 2 5 10 25 100 Nodata 1 2 5 10 25 100

of measurements

Fig. 2. Extending the two-stage model for different Cloud Providers.

An interesting observation can be made for instance for
task pforLapW2 for Amazon EC2 and Rackspace which
yields better predictions without data than using a single
execution on the new cloud. The reasons for this behavior is
the inherent noise of ML methods. With only one execution
the model tries to predict for the new cloud, but the data are
not enough to generate a suitable model. This effect dimin-
ishes when five or more executions in the new cloud are
included in the training data.

7 CONCLUSIONS AND FUTURE WORK

In this paper we have addressed the problem of predicting
the execution time of workflow tasks for varying input data
for different IaaS clouds.

Given a task to be executed on a specific cloud, our
method predicts the execution time for different input data
in two stages. The first stage predicts the value of the run-
time parameters based on historical data for that task on the

of measurements

of measurements

given cloud or on another cloud. The second stage uses all
the predicted runtime parameters together with pre-runtime
parameters to predict the execution time of the task.
Experiments for the tasks composing four real workflow
applications demonstrate that our two-stage based approach
clearly outperforms existing prediction approaches, which
are primarily based on pre-runtime parameters. To demon-
strate the advantage of our two-stage approach versus a pre-
diction based on pre-runtime parameters, we evaluated the
use of different machine learning regression methods such as
linear regression, multi-layer perceptron, regression trees,
bagging using regression trees, and random forest. The aver-
age relative absolute errors over the task of these four work-
flows show that the two-stage approach achieves better
accuracy when using random forest than with other algo-
rithms. We also observed that two types of tasks are harder to
predict than others. These types have short execution times
(less than one sec.) and/or are bandwidth dependent tasks.

PHAM ETAL.: PREDICTING WORKFLOW TASK EXECUTION TIME IN THE CLOUD USING A TWO-STAGE MACHINE LEARNING... 267

In addition, we also demonstrated that our two-stage
model can be used to predict task execution times for new
IaaS clouds. With only a few executions the model accuracy
can be substantially improved. We analyzed this behavior
when porting our model to three commercial clouds: Ama-
zon EC2, Google Computing Engine and Rackspace. We
showed that the resulting prediction errors with only five
task executions on the new cloud can reach an estimation
error of less than 10 percent for some workflow tasks. For
increasing training data on the new cloud, the prediction
accuracy consistently improves.

To build our predictor, we have first collected all the
training data and, afterward, we generate the prediction
model. This approach may be sensible for highly dynamic
cloud workloads. A possible solution to overcome this prob-
lem may require an update of our predictor after every task
execution (i.e., retrain the model every time new data is
available). This scenario will be a subject to future work. In
addition, we will also examine the use of the model pro-
posed in this paper to support different workflow schedul-
ing and resource provisioning techniques for clouds.

ACKNOWLEDGMENTS

This paper has received funding from the European Unions
Horizon 2020 research and innovation programme as part
of the ENTICE project under grant agreement No 644179.

REFERENCES

[1] J. Qin and T. Fahringer, Scientific Workflow: Programming, Optimi-
zation, and Synthesis with ASKALON and AWDL. Berlin, Germany:
Springer, 2012.

[2] J. Durillo and R. Prodan, “Multi-objective workflow scheduling
in amazon EC2,” Cluster Comput., vol. 17, no. 2, pp. 169-189,
2014.

[3] L. Breiman, “Random forests,” Mach. Learning, vol. 45, no. 1,
pp- 5-32, 2001. [Online]. Available: http://dx.doi.org/10.1023/
A%3A1010933404324

[4] K. L. Spafford and J. S. Vetter, “Aspen: A domain specific lan-
guage for performance modeling,” in Proc. Int. Conf. High Perform.
Comput., Netw. Storage Anal., 2012, pp. 84:1-84:11. [Online]. Avail-
able: http://dl.acm.org/ citation.cfm?id=2388996.2389110

[5] S.Seneviratne and D. C. Levy, “Task profiling model for load pro-
file prediction,” Future Gener. Comput. Syst., vol. 27, no. 3, pp. 245—
255, 2011. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0167739X10001743

[6] B.-D.Lee and]. M. Schopf, “Run-time prediction of parallel appli-
cations on shared environments,” in Proc. IEEE Int. Conf. Cluster
Comput., Dec. 2003, pp. 487-491.

[71 N. Kapadia,]. Fortes, and C. Brodley, “Predictive application-
performance modeling in a computational grid environment,” in
Proc. 8th Int. Symp. High Perform. Distrib. Comput., 1999, pp. 47-54.

[8] H.Li, D. Groep, and L. Wolters, “An evaluation of learning and
heuristic techniques for application run time predictions,” in Proc.
11 th Annu. Conf. Advance School Comput. Imag., 2005.

[9] T.Miu and P. Missier, “Predicting the execution time of workflow
activities based on their input features,” in Proc. SC Companion:
High Perform. Comput., Netw. Storage Anal., 2012, pp. 64-72. [Online].
Available: http://dx.doi.org/10.1109/SC.Companion.2012.21

[10] R. F. da Silva, G. Juve, M. Rynge, E. Deelman, and M. Livny,
“Online task resource consumption prediction for scientific work-
flows,” Parallel Process. Lett., vol. 25, no. 03, 2015, Art. no. 1541003.
[Online]. Available: http://www.worldscientific.com/doi/abs/
10.1142/50129626415410030

[11] A. Matsunaga and J. A. B. Fortes, “On the use of machine
learning to predict the time and resources consumed by
applications,” in Proc. 2010 10th IEEE/ACM Int. Conf. Cluster
Cloud Grid Comput., 2010, pp. 495-504. [Online]. Available:
http://dx.doi.org/10.1109/CCGRID.2010.98

[12] W. Smith, I. Foster, and V. Taylor, “Predicting application run
times with historical information,” J. Parallel Distrib. Comput.,
vol. 64, no. 9, pp. 1007-1016, Sep. 2004. [Online]. Available:
http://dx.doi.org/10.1016/j.jpdc.2004.06.008

[13] P. Dinda, “Online prediction of the running time of tasks,” in Proc.
10th IEEE Int. Symyp. High Perform. Distrib. Comput., 2001, pp. 383-394.

[14] P. Dinda and D. O’Hallaron, “An evaluation of linear models for
host load prediction,” in Proc. 8th Int. Symp. High Perform. Distrib.
Comput., 1999, pp. 87-96.

[15] A. M. Chirkin and S. V. Kovalchuk, “Towards better workflow
execution time estimation,” IERI Procedia, vol. 10, pp. 216223,
2014. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/52212667814001282

[16] I. Pietri, G. Juve, E. Deelman, and R. Sakellariou, “A performance
model to estimate execution time of scientific workflows on the
cloud,” in Proc. 9th Workshop Workflows Support Large-Scale Sci.,
2014, pp. 11-19. [Online]. Available: http://dx.doi.org/10.1109/
WORKS.2014.12

[17] D. A. Monge, M. Holec, F. Zelezn}’r, and C. Garino, “Ensemble
learning of runtime prediction models for gene-expression analysis
workflows,” Cluster Comput., vol. 18, no. 4, pp. 1317-1329, 2015.
[Online]. Available: http://dx.doi.org/10.1007 /s10586-015-0481-5

[18] S.Lee,].S. Meredith, and J. S. Vetter, “Compass: A framework for
automated performance modeling and prediction,” in Proc. 29th
ACM Int. Conf. Supercomputing, 2015, pp. 405-414. [Online]. Avail-
able: http://doi.acm.org/10.1145/2751205.2751220

[19] N.R. Tallentand A. Hoisie, “Palm: Easing the burden of analytical
performance modeling,” in Proc. 28th ACM Int. Conf. Supercomput-
ing, 2014, pp. 221-230. [Online]. Available: http://doi.acm.org/
10.1145/2597652.2597683

[20] A. Bhattacharyya and T. Hoefler, “Pemogen: Automatic adaptive
performance modeling during program runtime,” in Proc. 23rd
Int. Conf. Parallel Archit. Compilation, 2014, pp. 393-404. [Online].
Available: http://doi.acm.org/10.1145/2628071.2628100

[21] A. Li, X. Zong, S. Kandula, X. Yang, and M. Zhang,
“Cloudprophet: Towards application performance prediction in
cloud,” SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, pp. 426—
427, Aug. 2011. [Online]. Available: http://doi.acm.org/10.1145/
2043164.2018502

[22] 1. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical
Machine Learning Tools and Techniques, 3rd ed. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2011.

[23] S. Salzberg, “C4.5: Programs for machine learning by j. ross quin-
lan. morgan kaufmann publishers, inc., 1993, ” Mach. Learning,
vol. 16, no. 3, pp. 235-240, 1994. [Online]. Available: http://dx.
doi.org/10.1007/BF00993309

[24]]J. W. Shavlik, R. J. Mooney, and G. G. Towell, “Symbolic and neu-
ral learning algorithms: An experimental comparison,” Mach.
Learning, vol. 6, no. 2, pp. 111-143, 1991.

[25] T. M. Mitchell, Machine Learning, 1st ed. New York, NY, USA:
McGraw-Hill, Inc., 1997.

[26] H. Trevor, T. Robert, and F. Jerome, The Elements of Statistical
Learning, 2nd ed. Berlin, Germany: Springer, 2009.

[27] L. Breiman, “Bagging predictors,” Mach. Learning, vol. 24,
no. 2, pp. 123-140, 1996. [Online]. Available: http://dx.doi.org/
10.1007 /BF00058655

[28] T.G. Dietterich, “Ensemble methods in machine learning,” in Proc.
First Int. Workshop Multiple Classifier Syst., 2000, pp. 1-15. [Online].
Available: http://dl.acm.org/ citation.cfm?id=648054.743935

[29]].C.Jacob, et al., “Montage: A grid portal and software toolkit for
science;grade astronomical image mosaicking,” Int. J. Comput. Sci.
Eng., vol. 4, no. 2, pp. 73-87, Jul. 2009. [Online]. Available: http://
dx.doi.org/10.1504 /]JCSE.2009.026999

[30] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and]. Luitz,
“Wien2k,” An Augmented Plane Wave+ Local Orbitals Program for Cal-
culating Crystal Properties, Technical Universitat Wien Austria, 2001.

[31] P.T., “Povray - persistence of vision parallel raytracer,” in Proc.
Comput. Graph. Int. Conf., 1998, pp. 123-129.

[32] S. Loew, “Rendering blender on the grid,” Master Thesis, Faculty
for Mathematics, Computer Science and Physics, University of
Innsbruck, Innsbruck, Austria, 2008.

[33] I Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” J. Mach. Learning Res., vol. 3, pp. 1157-1182, Mar. 2003.

[34] T. Fahringer, et al., “Askalon: A grid application development
and computing environment,” in Proc. 6th IEEE/ACM Int. Work-
shop Grid Comput., 2005, pp. 122-131. [Online]. Available: http://
dx.doi.org/10.1109/GRID.2005.1542733

http://dx.doi.org/10.1023/A%3A1010933404324
http://dx.doi.org/10.1023/A%3A1010933404324
http://dx.doi.org/10.1023/A%3A1010933404324
http://dl.acm.org/citation.cfm?id=2388996.2389110
http://www.sciencedirect.com/science/article/pii/S0167739X10001743
http://www.sciencedirect.com/science/article/pii/S0167739X10001743
http://dx.doi.org/10.1109/SC.Companion.2012.21
http://www.worldscientific.com/doi/abs/10.1142/S0129626415410030
http://www.worldscientific.com/doi/abs/10.1142/S0129626415410030
http://dx.doi.org/10.1109/CCGRID.2010.98
http://dx.doi.org/10.1016/j.jpdc.2004.06.008
http://www.sciencedirect.com/science/article/pii/S2212667814001282
http://www.sciencedirect.com/science/article/pii/S2212667814001282
http://dx.doi.org/10.1109/WORKS.2014.12
http://dx.doi.org/10.1109/WORKS.2014.12
http://dx.doi.org/10.1007/s10586--015-0481-5
http://doi.acm.org/10.1145/2751205.2751220
http://doi.acm.org/10.1145/2597652.2597683
http://doi.acm.org/10.1145/2597652.2597683
http://doi.acm.org/10.1145/2628071.2628100
http://doi.acm.org/10.1145/2043164.2018502
http://doi.acm.org/10.1145/2043164.2018502
http://dx.doi.org/10.1007/BF00993309
http://dx.doi.org/10.1007/BF00993309
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1007/BF00058655
http://dl.acm.org/citation.cfm?id=648054.743935
http://dx.doi.org/10.1504/IJCSE.2009.026999
http://dx.doi.org/10.1504/IJCSE.2009.026999
http://dx.doi.org/10.1109/GRID.2005.1542733
http://dx.doi.org/10.1109/GRID.2005.1542733

268

[35]

[36]

[37]

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 8, NO. 1, JANUARY-MARCH 2020

J. S. Armstrong and F. Collopy, “Error measures for generalizing
about forecasting methods: Empirical comparisons,” Int. J. Fore-
casting, vol. 8, pp. 69-80, 1992.

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise,” in Proc. 2nd Int. Conf. Knowl. Discovery Data Mining, 1996,
pp- 226-231.

A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likeli-
hood from incomplete data via the em algorithm,” J. Royal Stat.
Soc. Series B, vol. 39, no. 1, pp. 1-38, 1977.

Thanh-Phuong Pham received the master
degree from Faculty of Computer Science and Engi-
neering, University of Technology, Vietnam, in 2011.
He received the second master degree in computer
science from the University of Nice Sophia Antipolis,
France, in 2012. He is currently working toward the
PhD degree in the Distributed and Parallel Systems
Group, University of Innsbruck, Austria. His
research interests include fault tolerance, machine
learning, data analysis and performance prediction
for distributed computing.

Juan J. Durillo received the PhD degree in com-
puter science from the University of Mlaga, Spain,
in 2011. Currently, he is an assistant professor in
the Distributed and Parallel Systems Group, Uni-
versity of Innsbruck, Austria. His main research
interests are single and multi-criterion optimiza-
tion, parallel and distributed computing, cloud
computing, software auto-tuning, search based
software engineering, green computing, and
GPU computing

Thomas Fahringer received the PhD degree
from the Vienna University of Technology, in
1993. Since 2003, he has been a full professor of
computer science in the Institute of Computer
Science, University of Innsbruck, Austria. His
main research interests include software archi-
tectures, programming paradigms, compiler tech-
nology, performance analysis, and prediction for
parallel and distributed systems. He is a member
of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

