
On the Performance Impact of Data Access
Middleware for NoSQL Data Stores

A Study of the Trade-Off between Performance and Migration Cost

Ansar Rafique, Dimitri Van Landuyt, Bert Lagaisse, and Wouter Joosen

Abstract—The last few years have seen a drastic increase in the amount and the heterogeneity of NoSQL data stores. Consequently,

exploration and comparison of these data stores have become difficult. Once chosen, it is hard to migrate to different data stores.

Recently, a number of data access middleware platforms for NoSQL have emerged that provide access to different NoSQL data stores

from standardized APIs. However, there are two key concerns related to: (i) the performance overhead introduced by these platforms,

and (ii) the effort required to migrate between different data stores. In this paper, we present two complementary studies that provide

answers to the above mentioned concerns for three of the most mature data access middleware platforms: Impetus Kundera, Playorm,

and Spring Data. First, we evaluate the performance overhead introduced by these platforms for the CRUD operations. Second, we

compare the cost of migration with and without these platforms. Our study shows that, despite their similarity in design, these platforms

are still substantially different performance-wise. Both studies are complementary as they show the trade-off inherent in adopting a

data access middleware platform for NoSQL: by allowing some performance overhead, the developer gain benefits in terms of

portability and easy migration across heterogeneous data stores.

Index Terms—Data management middleware, abstraction APIs, performance evaluation, migration across heterogeneous NoSQL

Ç

1 INTRODUCTION

THE cloud computing paradigm promises high availabil-
ity, elastic scalability, and thus offers increased flexibility.

The benefits of cloud computing are in terms of lower up-
front maintenance cost with higher scalability and availabil-
ity, and therefore over the last few years, many applications
have been built in or migrated to cloud environments [24].
However, the storage and computational requirements of
such applications have pushed centralized databases to their
limits [29]. For example, most of the popular Internet-based
services such as Amazon, Google, and Facebook rely on stor-
ing and processing massive amounts of data at a scale at
which traditional Relational Database Management Systems
(RDBMSs) fall short [35]. Therefore, to address the shortcom-
ings of traditional RDBMSs in handling large volumes of
data, a number of specialized solutions – so-called “NoSQL”
or “clouddatamanagement” systems – have emerged.

NoSQL, which stands for not only SQL, is an umbrella
term that refers to a wide range of data stores in which
ACID transaction constraints have been relaxed to allow
improved horizontal scaling and performance. The NoSQL
nomer combines a wide range of document databases,
column family stores, key-value stores, and graph-based

databases [24]. In the last couple of years, NoSQL data
stores have become increasingly popular for data storage
and management “in the cloud” [9].

Despite the appropriateness of NoSQL as cloud data
management systems, there is, currently, a wide variety
and heterogeneity among them. As stated by the CAP
theorem [6], trade-offs have to be made between key
concerns such as consistency and availability in case of a
partition when designing a horizontally scalable system,
and each NoSQL data store makes different choices when
it comes to these trade-offs [47]. Also, there is a lack of
standardization: NoSQL technologies differ in data models,
topology (master/slave versus peer-to-peer), replication
policy, and application programming interfaces (APIs) and
therefore, there is no standardized query interface.

The explosive growth and heterogeneity of NoSQL data
stores is problematic for organizations and application
developers that are interested in the benefits of NoSQL, but
lack the expertise or resources to compare different offer-
ings in depth. Indeed, technology exploration is expensive
as it involves a steep learning curve, and requires expert
knowledge. Furthermore, building applications against the
native APIs of a NoSQL data store introduces the significant
risk of technology, vendor, or provider1 lock-in: an applica-
tion that has been developed for a specific NoSQL technol-
ogy or provider requires significant effort to be migrated
to another one, a migration that in many cases involves
dealing with technology disruption. Finally, these systems
evolve quickly, and the number of NoSQL data stores keeps

� The authors are with iMinds-DistriNet (a research group within the
Department of Computer Science), KU Leuven 3001, Leuven, Belgium.
E-mail: {Ansar.Rafique, dimitri.vanlanduyt, bert.lagaisse, wouter.joosen}
@cs.kuleuven.be, .

Manuscript received 23 Apr. 2015; revised 29 Sept. 2015; accepted 4 Dec.
2015. Date of publication 23 Dec. 2015; date of current version 31 Aug. 2018.
Recommended for acceptance by R. Sitaraman.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TCC.2015.2511756 1. When the storage is used as-a-service.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 6, NO. 3, JULY-SEPTEMBER 2018 843

2168-7161 � 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:
mailto:

growing. For example, in 2011 only 50 NoSQL solutions
were available, while currently over 150 solutions exist [33].
Similarly, the development APIs evolve in parallel with
NoSQL systems. For example, for a long period of time, the
Thrift APIs have been the preferred choice for Cassandra [2],
but these are now being replaced with the Datastax Java-
driver [14], which is based on binary CQL protocol [13].

The problem of heterogeneity among NoSQL data stores
has been recognized by both the industry [25], [26], [27],
[40] and the research community [7], [39], [43], and this has
given rise to a number of data access middleware platforms
for NoSQL systems. These data access middleware plat-
forms provide a uniform API for NoSQL solutions (many of
them based on or inspired by the Java Persistence API
(JPA)) and this middleware provides the translation of this
uniform API into the native client APIs. The most notable
examples are Impetus Kundera [27], Playorm [26], Hiber-
nate OGM [25], Spring Data [40], and AppScale [43].
Although these middleware platforms are relatively new
and evolve on a daily basis, they indeed provide a promis-
ing alternative for organizations that are interested in the
benefits of NoSQL data stores. There is, however, still a lim-
ited understanding of the costs and trade-offs involved
when adopting such data access middleware platforms.

We present a study of the trade-off between the perfor-
mance overhead and the migration effort for heterogeneous
NoSQL data stores. First, we run a series of performance
benchmarks to investigate the significance of the perfor-
mance overhead for the insert, read, update, and delete
(CRUD) operations. Second, we perform a migration study
comparing the cost of migration, in terms of the effort
required (e.g., the development time, the impact on deploy-
ment) with and without using the selected data access mid-
dleware platforms. Both evaluations are applied in the
context of a real application case and we compare three of
the most mature open-source data access middleware plat-
forms for NoSQL data stores: Impetus Kundera [27], Play-
orm [26], and Spring Data [40].

The contributions of this paper are twofold: (i) we provide
an empirical comparison of alternative data access middle-
ware platforms and show that these platforms are very dif-
ferent in terms of performance overhead and migration cost,
and (ii) we provide insights in the essential trade-off between
performance overhead and migration effort that is inherent
to using a data accessmiddleware, andwe substantiate these
insights with empirical data. To our knowledge, this paper
reports the first study related to data accessmiddleware plat-
forms that combines both the performance evaluation and
the cost of migration when used with heterogeneous NoSQL
data stores in a real distributed environment.

The remainder of this paper is structured as follows:
Section 2 discusses the current state of data access middle-
ware platforms for NoSQL data stores, while Section 3 elab-
orates our motivation and further illustrates the problem
statement of this paper with the realistic application case
study. Section 4 presents the study of performance over-
head while Section 5, presents the study of migration cost
required across multiple NoSQL data stores. Section 6 con-
nects and contrasts our work with other related research.
Finally, Section 7 concludes this paper and indicates direc-
tions of future work.

2 CONTEXT: THE CURRENT STATE OF DATA

ACCESS MIDDLEWARE PLATFORMS FOR NOSQL

In this section, we first discuss the current state and the
benefits of employing data access middleware platforms.
Then, we elaborate on the typical underlying architecture
of these platforms. Finally, we present the list of data
access middleware platforms for NoSQL data stores and
pick three middleware platforms for the study presented
in this paper.

Use of data access middleware platforms. The recent advent of
data accessmiddleware forNoSQL is similar to the evolution
of RDBMSs. Specifically, the current state of practice in the
development of distributed systems relies heavily on the
existence of data access middleware platforms and ORM
tools for relational databases (e.g., Hibernate ORM, JDO,
EclipseLink). These systems rely on standardized APIs and
frameworks (e.g., JDBC, ODBC, JP-QL, JPA, etc.) that allow
the developer to access databases programmatically via a set
of well-chosen abstractions [28]. The main benefits of
employing data access middleware platforms are: (a) they
decouple the application from the database, improving
application and database portability, (b) they help to make
the system more understandable and hide some of the com-
plexity of the underlying data storage systems, thereby
reducing the time and effort to perform database operations,
(c) they help developers to get rid of writing complex data
stores related SQL statements and to experiment with differ-
ent storage systems with minimal migration effort, and
(d) they provide a uniform data query and retrieval facilities.
For these reasons, they are often also called abstraction layers.

Typical architecture of data access middleware platforms. As
shown in Fig. 1, applications are developed against a
standardized, developer-friendly Abstraction API. The
Data Access Service converts the incoming data to an
intermediate representation and also implements middle-
ware-specific features (e.g., caching to improve the read per-
formance). The Data Storage Engine translates the
intermediate representation into the Data Storage API, a
uniform API for the different Pluggable Drivers. These
Pluggable Drivers use the data store specific native cli-
ent APIs to interact with each supported data store.

Data access middleware platforms for NoSQL data stores.
Table 1 lists the most notable data access middleware

Fig. 1. Typical underlying architecture of data access middleware
platforms.

844 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 6, NO. 3, JULY-SEPTEMBER 2018

platforms for NoSQL data stores. The second column pro-
vides information about the Abstraction API (e.g., JPA,
REST) provided by these platforms, showing that in a Java
context, JPA has become the de-facto standard [41]. As
shown in the third column, some data access middleware
platforms rely on third-party libraries to implement
advanced search operators (e.g., AND, OR, LIKE, IN) which
are not natively supported. As an example, Kundera relies on
Lucene to implement the LIKE operator in Cassandra [41].

Although they address similar goals, these platforms dif-
fer from each other in terms of (a) their support for different
application technologies (e.g., AppScale [43] only supports
Google App Engine (GAE) applications), (b) APIs and the
abstractions provided by these middleware platforms,
(c) advanced queries and the support for full-text search
(e.g., Hibernate OGM [25] uses Hibernate Search for the
full-text search whereas Kundera [27] uses Elastic-
search [21]), and (d) the supported data storage systems
(see Table 1, fourth column): Kundera [27], Appscale [43],
and Data Nucleus [12] support both relational SQL-based
and NoSQL databases, whereas such support is not yet
available in the other data access middleware platforms. It
is important to note that these middleware platforms are
under active development, and therefore, they constantly
evolve and improve.

Data access middleware platforms selection. For the study
presented in this paper, we picked three of most compara-
ble data access middleware platforms: Impetus Kun-
dera [27], Playorm [26], and Spring Data [40] (printed in
bold in Table 1). These platforms are selected because they
offer a JPA interface and support both Cassandra [2] and
MongoDB [31].

3 MOTIVATION AND PROBLEM STATEMENT

The motivation for this paper is based on our experiences
with a number of multi-tenant SaaS applications, obtained
in the context of several research projects in collaboration
with industry [10], [11], [18].

3.1 Application Case

The one such motivating case is a Log Management as a Ser-
vice (LMaaS) application, a multi-tenant B2B cloud offering,

that allows enterprises to maximize the value from their IT
infrastructure and application logs. It provides services to
monitor the entire infrastructure and perform complex anal-
ysis activities on the collected logs, e.g., detection of suspi-
cious activity, performing log forensics, etc. Fig. 2 provides
a schematic architectural overview of the LMaaS system.
Integration with the on-premise infrastructure is accom-
plished by installing a Log Collector which aggregates the
different log sources locally and communicates them to the
LMaaS system. Scalable storage is a key enabler to realize
the LMaaS service, i.e., scalable in terms of the sheer amount
of data and the number of tenants (i.e., customer organiza-
tions) involved.

3.2 Problem Statement

Currently, most of the storage in the LMaaS system is real-
ized with traditional relational database systems, but as out-
lined in Section 1, there are clear opportunities to adopt
NoSQL technology to realize the LMaaS system. The selec-
tion of appropriate NoSQL technology is essential to achieve
the desired level of performance, scalability, availability,
and security (e.g., public cloud versus private cloud).

However, NoSQL is still a rapidly changing technology
domain and due to the sheer heterogeneity involved, side-
by-side comparison requires large development effort and
expert knowledge, and is therefore costly. In addition, in
the early prototyping phase, committing to certain technolo-
gies is also risky, as this might lead to vendor or technology

TABLE 1
Overview of Existing Data Access Middleware

Name R/W Advanced Search Requires Supported Data Storage Systems

Impetus Kundera [27] JPA 2.0 + REST Lucene, Elasticsearch Apache Cassandra,MongoDB, Apache HBase, CouchDB,
ElasticSearch, MySQL, Neo4j, Oracle NoSQL, Redis

Apache Gora [1] Gora API Lucene, Solr Apache Cassandra,MongoDB, Apache Avro, Apache Hadoop,
Apache HBase, Apache Solr, Hypertable, Voldemort

Data Nucleus Access
Platform [12]

JPA 2.1 + REST - Apache Cassandra,MongoDB, Amazon S3, Apache HBase,
MySQL, Neo4j, Oracle, PostgreSQL

Playorm [26] JPA-like Scalable JQL(SJQL) Apache Cassandra,MongoDB, Apache HBase
Spring Data [40] JPA + REST Lucene Apache Cassandra,MongoDB, Apache Hadoop, Couchbase,

DynamoDB, Elasticsearch, Gemfire, Neo4J, Redis, Solr
Hibernate OGM [25] JPA 2.0 Hibernate Search MongoDB, Ehcache, Infinispan, Neo4j
AppScale [43] REST - Apache Cassandra,MongoDB, Apache HBase, Hypertable,

MemcacheDB, MySQL, Voldemort
EclipseLink [20] JPA - MongoDB, JMS, Oracle AQ, Oracle NoSQL, XML files

The platforms in bold are selected for our evaluation.

Fig. 2. Logical architecture of the log management as a service (LMaaS)
system.

RAFIQUE ET AL.: ON THE PERFORMANCE IMPACT OF DATA ACCESS MIDDLEWARE FOR NOSQL DATA STORES 845

lock-in. Furthermore, developers are still experimentingwith
different NoSQL systems while building and optimizing
their SaaS application services. Therefore, if both the SaaS
application services as well as data storage systems change
rapidly, a middleware in between is necessary to limit the
impact of migration changes. Moreover, such a middleware
facilitates experimentation and side-by-side comparison, and
provides a good starting point for hybrid setups.

Based on the current state of the middleware, as dis-
cussed in Section 2, it is clear that, in theory, data access
middleware platforms can solve the problems caused by
heterogeneity and limit the cost of technology disruption.
Despite this clear motivation for adopting data access mid-
dleware for NoSQL data stores, two key questions remain:

1) Is the performance impact of such an intermediate data
access middleware significant when compared to the
overall performance of the NoSQL data store?

2) Are the APIs offered by these platforms sufficient to
realize easy migration between NoSQL data stores?

The next two sections address these questions in a com-
parative study, conducted in the context of the LMaaS sys-
tem described above.

4 PERFORMANCE IMPACT

The first part of our study focuses on the performance
impact, specifically the performance overhead introduced
by the selected data access middleware platforms (Impetus
Kundera, Playorm, and Spring Data). We focus specifically
on answering the following questions:

Q1. Insert/Read Overhead: What is the performance impact of
using the selected data access middleware platforms
for insert and read operations?

Q2. Update2/Delete Overhead: What is the performance
impact of using these data access middleware platforms
for update and delete operations?

Q3. Data Scale Overhead: Does the performance overhead of
these data access middleware platforms remain con-
stant or does it increase with the increase in the data
volume?

Q4. Horizontal Scale Overhead: Does the number of nodes in a
cluster have an impact on the relative performance
overhead of the selected data access middleware
platforms?

Section 4.1 presents the experiments and their setup to
answer the four different questions discussed above. Then,
Section 4.2 presents the results of this part of the evaluation,
which are then summarized in Section 4.3.

4.1 Experimental Setup

The performance overhead of the selected data access mid-
dleware platforms is investigated for the insert, random
read, update and delete (CRUD) operations. As explained
in Section 2, search operations are not considered in this
evaluation because such operations are not directly sup-
ported by the selected data access middleware platforms
and require integration of third-party libraries. Apache Cas-
sandra [2] is selected for the back-end data storage and set
to be a constant throughout the performance experiments.

Table 2 lists the hardware and Table 3 lists the software
and APIs used for the evaluation on both client and server
sides. As shown in Table 2, all performance benchmarks
were run on the same hardware with a typical NoSQL clus-
ter environment consisting of commodity machines in a dis-
tributed setup.

The performance benchmarks involve four different
implementation setups3: (i) Native: an implementation
without using any of the selected data access middleware
platform, but uses the native Cassandra-Thrift API (see
Appendix A, which can be found on the Computer Soci-
ety Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TCC.2015.2511756, for more information
about the native client APIs for Cassandra), (ii) Kundera:
an implementation that uses Kundera as a data access
middleware platform, (iii) Playorm: an implementation
that uses Playorm as a middleware platform, and
(iv) Spring Data: an implementation that uses Spring Data
as a middleware platform. The Native setup represents
situation in which no data access middleware is used and
therefore is the baseline for comparing the performance
overhead introduced by the selected data access middle-
ware platforms.

Fig. 3a represents situation in which the application uses
a data access middleware platform, whereas Fig. 3b repre-
sents the situation in which the application directly uses the
native client API. The overhead of each implementation
setup that uses a data access middleware platform is calcu-
lated by comparing the performance of the selected data
access middleware platform (a + b + c + d in Fig. 3a) with

TABLE 2
Hardware Setup

Client Node

Processor Intel(R) Core(TM) i5 @ 2.60 GHz (Dual)
Memory 8 GB
Operating System Windows 8

Server: 1 to 5 Nodes

Processor 2 X Intel(R) Core(TM) 6,400 @ 2.13 Ghz
Memory 8 GB
Operating System Linux/Ubuntu

TABLE 3
Software Used for the Evaluation

Name Server Client

JDK Oracle 1.7.0_51 Oracle 1.7.0_51
Apache Cassandra 2.0.6 Cassandra-Thrift 2.1.3

Datastax Java driver 2.1.4
Kundera 2.15
Playorm 1.6.1

Spring Data 1.1.0

MongoDB 2.4.9 Java driver 2.10.1

Tomcat 7 Web Brower

2. In practice, an update operation in NoSQL data stores is an upsert
operation: insert if the record does not already exist otherwise update.

3. All the performance experiment setups are available at: http://
people.cs.kuleuven.be/�ansar.rafique/TCC-Experiments.zip.

846 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 6, NO. 3, JULY-SEPTEMBER 2018

http://doi.ieeecomputersociety.org/10.1109/TCC.2015.2511756
http://doi.ieeecomputersociety.org/10.1109/TCC.2015.2511756

the performance of the baseline that uses a native client API
(d in Fig. 3b). We assume that the choice of a specific back-
end storage system has no significant influence on the per-
formance overhead of the selected data access middleware
platforms and therefore can be factored out.4 To avoid
skewing the results, we repeat these experiments multiple
times for each implementation setup and we present the
average results.

To answer Q1, Q2, and Q3, Cassandra is deployed on a
five-node cluster. ForQ1, the performance overhead is evalu-
ated for the insert and random read operations and forQ2, the
performance overhead is evaluated for the update and delete
operations. The overhead of these operations is evaluated on a
large data volume,which involves 1,280,000 Log entries.

For Q3, the performance overhead is measured for
CRUD operations by running a number of different scenar-
ios. Each scenario considers Log entry volumes ranging
from 10,000 to 1,280,000. The goal is to analyze whether the
overhead introduced by these middleware platforms is con-
stant regardless of the data volume.

To answer Q4, Cassandra is deployed on three alterna-
tive deployment setups involving a single node, a three-
node, and a five-node cluster. The goal is to evaluate the rel-
ative overhead in the context of a realistic setup and analyze
whether the overhead decreases when the back-end (i.e.,
number of nodes) is more complex. The performance over-
head of the selected middleware platforms is measured for
CRUD operations by running a scenario involving 1,280,000
Log entries.

For comparability of the results, all four implementation
setups are configured to use the same Cassandra installa-
tion. The replication_factor is set to a constant which is 1 for
all implementation setups throughout the performance
experiments.

4.2 Performance Impact Results

This section presents the results of our performance
benchmarks and as such shows the performance impact
of the selected data access middleware platforms for
NoSQL data stores.

4.2.1 Insert/Read Overhead

The first experiment is designed to evaluate the perfor-
mance overhead of the selected data access middleware
platforms for insert and random read operations on a five-
node cluster (addressing Q1). The results of this experiment
are presented in Fig. 4.

The performance overhead of selected platforms, mainly
the overhead of Spring Data for the insert operation as well as
random read operation is higher when compared to Kundera
and Playorm. For the insert operation, the average overhead
introduced by Kundera is 0:77 ms, the average overhead of
Playorm is 1:18 ms, and the average overhead of Spring Data
is 1:26ms, which corresponds to 23, 35, and 37 percent over-
head of the actual insert time (Native), respectively. In case of
the random read operation, the average overhead intro-
duced by Kundera, Playorm, and Spring Data is 0:16, 0:10, and
1:03ms. That is to say, 5, 3, and 31 percent overhead of actual
read time (Native), respectively.

4.2.2 Update/Delete Overhead

This experiment is designed to evaluate the performance
overhead of the selected data access middleware plat-
forms for update and delete operations on a five-node
cluster (addressing Q2). The results of this experiment
are presented in Fig. 5.

For the update operation, the average overhead introduced
by Kundera is 0:73 ms, which is 23 percent overhead of an
actual update time (Native). The average overhead of Playorm
is 0:92ms, and the average overhead of Spring Data is 1:02ms
which corresponds to 29 and 32 percent overhead, respec-
tively. The performance overhead of the selected data access
middleware platforms is significant for the delete operation.
In case of the delete operation, the average overhead of Kun-
dera, Playorm, and Spring Data is 2:98, 1:42, and 4:25ms, that is
to say, 100, 47, and 142 percent overhead respectively.

4.2.3 Data Scale Overhead

The evaluation presented in Sections 4.2.1 and 4.2.2 focused
on storing, reading, updating and deleting large amounts of

Fig. 3. Architecture of (a) data access middleware platforms, and (b)
native client APIs.

Fig. 4. Average insert and random read time for 1,280,000 Log entries on
a five-node setup. Native is the baseline and the time above the Native is
the overhead introduced byKundera,Playorm, andSpring Data in ms.

4. We validate this assumption further in the Threats to validity sec-
tion (Section 4.3.5).

RAFIQUE ET AL.: ON THE PERFORMANCE IMPACT OF DATA ACCESS MIDDLEWARE FOR NOSQL DATA STORES 847

data. However, the question remains whether or not the
overhead introduced by the middleware platforms is con-
stant regardless of the data volume or if the data volume
has any sort of influence on the performance overhead
(addressing Q3). Therefore, for this evaluation, the perfor-
mance impact of the selected data access middleware plat-
forms is evaluated by inserting, reading, updating, and
deleting a number of data entries in different data volumes
(starting from 10 K up to 1;280 K).

Fig. 6a presents the performance results of the insert
operation. As we can see, the average performance over-
head introduced by the selected data access middleware
platforms is more or less constant, regardless of the data
volume. There are no big variations in terms of overhead at
different data volume.

Fig. 6b shows the performance results for the random
read operation. Initially, the average overhead increases
slightly with the amount of data read and then more or less
becomes constant again with only small variations. How-
ever, compared to Kundera and Playorm, the average over-
head of Spring Data is significant for the read operation.

Fig. 5. Average update and delete time for 1,280,000 Log entries on a five-
node Cassandra cluster. Native is the baseline and the time above the
Native is the overhead introduced by the selectedmiddleware platforms.

Fig. 6. Average time in ms for CRUD operations on a five-node Cassandra cluster with a minimum data volume of 10,000 and a maximum data vol-
ume of 1,280,000.

848 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 6, NO. 3, JULY-SEPTEMBER 2018

Fig. 6c presents the performance results of the update
operation. Again, there are no variations at different data
volume and the average overhead is more or less constant.

Fig. 6d shows the performance overhead results for the
delete operation. Again, the average overhead introduced
by data access middleware platforms is more or less con-
stant, but as we have shown in Section 4.2.2, very significant
compared to the baseline.

4.2.4 Horizontal Scale Overhead

The performance overhead for CRUD operations on a five-
node cluster has been discussed in Sections 4.2.1 and 4.2.2
respectively. Although NoSQL data stores are specifically
designed to run in a distributed setup (i.e., multiple
machines running NoSQL systems in a large data center),
but a single node setup is used in practice as well (e.g., small
web applications). Therefore, it is essential to evaluate the
performance overhead of the selected data access

middleware platforms for both a single node setup as well as
a multi-node setup (addressing Q4). The goal is to get a pre-
liminary idea of the overhead that can be introduced by the
selected data access middleware on different deployment
setups (i.e., on a single node, a three-node, and a five-node
cluster). Figs. 7a, 7b, 7c, and 7d present the relative overhead
introduced by the selected middleware platforms at the vol-
ume of 1,280,000 data entries for CRUD operations.

Fig. 7a presents the performance results of the insert
operation. The average overhead of Kundera is 1:2 ms on a
single node, 1:0 ms on a three-node, and 0:77 ms on a five-
node cluster, which corresponds to 57 percent overhead of
an actual insert operation (Native) on a single node, 33 per-
cent overhead on a three-node, and 23 percent on a five-
node cluster. Playorm introduces an average overhead of
1:3, 1:42, and 1:18, which corresponds to 62, 47, and 35 per-
cent overhead of an actual insert operation (Native) on a sin-
gle node, a three-node, and a five-node cluster respectively.

Fig. 7. Average time in ms for the CRUD operations at varying cluster size from 1 node to 5 nodes for above million (1,280,000) log entries.

RAFIQUE ET AL.: ON THE PERFORMANCE IMPACT OF DATA ACCESS MIDDLEWARE FOR NOSQL DATA STORES 849

The average overhead of Spring Data is 1:34ms which corre-
sponds to 64 percent overhead, 1:52, and 1:26ms which cor-
responds to 50 percent overhead and 37 percent overhead
of an actual insert operation (Native) on a single node, a
three-node, and a five-node cluster respectively.

Fig. 7b presents the performance results of the random
read operation. In case of the random read operation, Kun-
dera introduces an average overhead of 0:32 and 0:27 ms
which is 16 percent overhead and 9 percent overhead of an
actual read operation (Native) on a single node and a three-
node cluster. However, in case of a five-node cluster the
average overhead of Kundera decreases to 0:16mswhich cor-
responds to 5 percent. The average overhead of Playorm is
more or less similar to the overhead of Kundera with a small
variation on different deployment setups. Playorm introdu-
ces 10 percent average overhead of an actual read operation
(Native) on a single node, 7 percent on a three-node, and 3
percent on a five-node cluster. Spring Data introduces an
average overhead of 0:74, 1:00, and 0:93ms, which is 36 per-
cent overhead of an actual read operation (Native) on a single
node, 34 percent on a three-node cluster; however, in case of
a five-node cluster, the overhead reduced to 28 percent.

For the update operation as shown in Fig. 7c, Kundera
introduces an average overhead of 1:10, 1:20, and 0:73 ms
which corresponds to 59, 47, and 23 percent overhead of an
actual update operation (Native) on a single node, a three-
node, and a five-node cluster respectively. The average
overhead of Playorm is 1:22 ms, which is equal to 65 percent
overhead of an actual update operation (Native) on a single
node, 1:49 ms, which is 58 percent overhead on a three-
node cluster, and 0:92 ms, which is 29 percent overhead on
a five-node cluster. Spring Data introduces an average over-
head of 1:24 ms on a single node, 1:57 ms on a three-node,
and 1:02ms on a five-node cluster, which corresponds to 66,
62, and 32 percent overhead.

Fig. 7d presents the performance results of the delete
operation. As shown, Kundera introduces an average over-
head of 2:15, 2:62, and 2:98 ms, that is to say, 117 percent

overhead of an actual delete operation (Native) on a single
node, 110 percent on a three-node cluster, and 100 percent
on a five-node cluster. The average overhead of Playorm is
1:43 ms, which is 78 percent, 1:83 ms, which is 77 percent,
and 1:42 ms, which is 47 percent overhead of an actual
delete operation (Native) on a single node, a three-node, and
a five-node cluster respectively. Spring Data introduces an
average overhead of 3:25, 4:13, and 4:25 ms which corre-
sponds to 178 percent overhead of an actual delete opera-
tion (Native) on a single node, 173 percent on a three-node
cluster, and 142 percent on a five-node cluster.

4.3 Discussion of the Results

We examined the overhead introduced by the selected data
access middleware platforms on different deployment set-
ups. The average absolute overhead introduced by these
platforms on different setups is summarized in Table 4 for
the insert and random read operations and in Table 6 for
the update and delete operations. Similarly, the average rel-
ative overhead introduced by the selected platforms is pre-
sented in Table 5 for the insert and random read operations
and in Table 7 for the update and delete operations.

4.3.1 Discussion on Q1

Overall, the obtained data presented indicates that the insert
operation is more costly than the random read operation
using data access middleware platforms. The random read
operation introduces less performance overhead because
the cost of translation from the Abstraction API (a in
Fig. 3a) to the Data Storage API (c in Fig. 3a) is high for
the insert operation. The main reason for this is that the
insert operation involves the entire entity, whereas the ran-
dom read operation only involves the identifier of the entity.
Also, a cache hit5 occurs more frequently for the random

TABLE 4
Average Absolute Performance Overhead in ms Introduced

by the Selected Data Access Middleware on Different
Deployment Setups for Insert and Read Operations

1-Node 3-Nodes 5-Nodes

Platform Insert Read Insert Read Insert Read

Kundera 1:20 0:32 1:00 0:27 0:77 0:16
Playorm 1:30 0:20 1:42 0:20 1:18 0:10
Spring Data 1:34 0:74 1:52 1:00 1:26 0:93

TABLE 6
Average Absolute Performance Overhead in ms Introduced

by the Selected Data Access Middleware on Different
Deployment Setups for Update and Delete Operations

1-Node 3-Nodes 5-Nodes

Platform Upd Delete Upd Delete Upd Delete

Kundera 1:10 2:15 1:20 2:62 0:73 2:98
Playorm 1:22 1:43 1:49 1:83 0:92 1:42
Spring Data 1:24 3:25 1:57 4:13 1:02 4:25

TABLE 5
Average Relative Performance Overhead Introduced by the
Selected Data Access Middleware on Different Deployment

Setups for Insert and Read Operations

1-Node 3-Nodes 5-Nodes

Platform Insert Read Insert Read Insert Read

Kundera 57% 16% 33% 9% 23% 5%
Playorm 62% 10% 47% 7% 35% 3%
Spring Data 64% 36% 50% 34% 37% 28%

TABLE 7
Average Relative Performance Overhead Introduced by the
Selected Data Access Middleware on Different Deployment

Setups for Update and Delete Operations

1-Node 3-Nodes 5-Nodes

Platform Upd Delete Upd Delete Upd Delete

Kundera 59% 117% 47% 110% 23% 100%
Playorm 65% 78% 58% 77% 29% 47%
Spring Data 66% 178% 62% 173% 32% 142%

5. A cache hit occurs when the requested data can be found in the
cache which avoids reading the data from the disk.

850 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 6, NO. 3, JULY-SEPTEMBER 2018

read operation where the future requests for that data can
be served faster. The performance overhead of Spring Data
is significant for insert and random read operations when
compared to the overhead of Kundera and Playorm. Spring
Data introduces more performance overhead compared to
Kundera and Playorm for the random read operation because
we believe that it does not use a cache to improve the per-
formance of random read operations. However, by looking
at Table 5, we can see that the performance overhead of
Spring Data is more or less similar to the overhead of Play-
orm for the insert operation, but is mainly significant for the
random read operation on different deployment setups.
Kundera performs better than Playorm and Spring Data for
the insert operation and introduces less performance over-
head. For the random read operation, both Kundera and
Playorm perform better than Spring Data and introduce
more or less the same performance overhead with small
variations on different deployment setups. Playorm per-
forms better than Kundera which in turn performs better
than Spring Data for the random read operation.

4.3.2 Discussion on Q2

Table 7 summarizes the performance results of the update
and delete operations on different deployment setups. As
with many Big Data applications, the LMaaS application
relies extensively on insert and read operations, and less on
update and delete operations. However, we included
benchmarks for update and delete operations in our study
for the sake of completeness. We have learned that there are
performance overhead differences between the selected
data access middleware platforms when compared to the
baseline (Native). These differences are significant mainly
for the delete operation. The delete operation is costly and
the selected data access middleware platforms introduce
significant performance overhead on all deployment setups.

We believe that the use of JPA is a potential cause of this
significant overhead introduced in the case of the delete
operation. The traditional approach requires the database to
read data before performing an update or delete operation.
These operations require seek, which is unnecessarily
expensive when the performance matters. One of the key
features of NoSQL data stores is to improve the perfor-
mance and, as such, most of the NoSQL data stores do not
update and delete data in-place on disk for performance
reasons. For example, Cassandra does not update or delete
data in-place on disk to improve the performance. In Cas-
sandra, SSTable files are immutable [16]. Therefore, every
update and delete operation in Cassandra is a new insert
operation, which does not require the reading of data first
using native APIs. However, in case of a JPA where the
operations are performed on entity level, data needs to be
read first, before performing delete operations on an entity.
This combines the cost of reading and writing data together
and therefore increases performance overhead.

The overhead of Spring Data is significant when com-
pared to the overhead of Kundera, and Playorm for the delete
operation. This is mainly because the overhead of Spring
Data for the read operation is significant which affects the
overall performance of the delete operation.

As shown in Table 7, the performance overhead of the
selected data access middleware platforms for the update

operation is more or less similar to the insert operation
because every update operation is an upsert operation in
NoSQL data stores, meaning: insert if the record does not
already exist, otherwise update it.

4.3.3 Discussion on Q3

We have shown that the overhead of the selected data
access middleware platforms is constant and there is no cor-
relation to the amount of data being manipulated (the data
scale). The small variations, mostly visible before 80,000
data entries, are at the maximum level of 0:10 ms, which are
small enough to be ignored.

4.3.4 Discussion on Q4

We have shown that the relative overhead of the selected
data access middleware platforms is most significant on
a single node setup. However, the relative overhead
decreases with an increasing number of nodes as shown in
Tables 5 and 7. For example, the relative overhead intro-
duced by Kundera for the insert operation is 57 percent on a
single node, but decreases to 23 percent with an increasing
number of nodes. As discussed in Section 4.1, the replica-
tion_factor is set to 1 which means that there is one copy of
each row. The data is equally distributed over the storage
nodes. The relative overhead decreases because in case of a
multi-node setup, back-end storage systems require more
time to service the requests and thus the latency between
the storage systems for inter-node communication comes
into play. This increases the performance of the native client
and therefore, decreases the relative overhead of the data
access middleware platforms.

We have also noticed that there are small variations in
the absolute overhead. The absolute overhead of the data
access middleware platforms decreases slightly with an
increasing number of nodes for the insert, random read,
and update operations, but increases for the delete opera-
tion as shown in Tables 4 and 6. These variations are small
enough to be ignored. However, it remains to be deter-
mined why the absolute overhead introduced by the
selected middleware platforms decreases for all other oper-
ations, but increases slightly for the delete operation.

4.3.5 Threats to Validity

This section presents the threats to validity that can compro-
mise the results of this performance study.

Internal validity. The most noteworthy threat to the
validity of our conclusions relates to our performance
overhead calculation for the Spring Data middleware.
These calculations may be skewed because we employed
the measurements for the Native implementation as the
baseline for the comparison to calculate the performance
overhead for all three middleware. The Native implemen-
tation uses the Cassandra-Thrift API underneath, while
Spring Data does not use the Cassandra-Thrift API, but
the DataStax Java-driver API. Other studies [3], however,
show that the performance difference between these APIs
is typically not very large (at the scale of 0.01 ms), and as
such, the measurements for the Cassandra-Thrift API are
expected to be in the same ballpark as those for the Data-
Stax Java-driver API.

RAFIQUE ET AL.: ON THE PERFORMANCE IMPACT OF DATA ACCESS MIDDLEWARE FOR NOSQL DATA STORES 851

External validity. The main threat to external validity is
the fact that we have experimented with only one (albeit
representative) application, the LMaaS application which is
the prototype of an actual SaaS application. It is a typical
NoSQL application which stores a stream of logs to be able
to analyze the suspicious activities. The scalability and
availability requirements are the priority concerns of the
application. All the log information is stored in a single Log
entity and there are no associations between the entities.
The performance overhead of the selected data access mid-
dleware platforms might vary if we consider an application
which has associations between the entities. We expect, in
such a case, the performance overhead will be higher
because of the cost of translation involves multiple entities
to be examined.

In this study, we made the implicit assumption that the
choice of a specific back-end storage system has no signifi-
cant influence on the performance impact of the selected
data access middleware platforms. More specifically, we
assumed that the impact of the back-end is more or less con-
stant and therefore can be factored out of the equation. To
validate this and to improve our confidence in the assump-
tion, we ran the experiments again on a single node setup,
this time using MongoDB as the back-end storage system
instead of Cassandra. The results of these experiments are
presented in Table 8, next to the results obtained with Cas-
sandra as the back-end storage system.

These results indicate that the assumption is valid for
Kundera and Playorm, but invalid for Spring Data: there are
no big variations in terms of performance overhead for Kun-
dera and Playorm using both Cassandra and MongoDB as
back-end data storage systems. The small variations are negli-
gible because even a delay of 0:10ms results in 5—20 percent
increase in the performance overhead. However, our experi-
mental results show more significant variations in the case of
Spring Data for which the performance overhead seems to
depend on the specific back-end storage system. Although
this warrants further research, we believe that Spring Data
introduces variations mainly because it lacks a uniform API
for heterogeneous back-end data stores. Therefore, in order to
ran the experiments again using MongoDB as the back-end
storage system, we had to adopt a different API which offers
a different set of classes.We discuss in-depthwhy Spring Data
is different in Section 5.3.

5 COST OF MIGRATION

The second part of our study focuses on the effort required
to migrate across heterogeneous NoSQL data stores: Cas-
sandra [2] and MongoDB [31]. We selected these data stores

because they are the most popular and representative data
stores and they support very different data models (i.e.,
MongoDB is a document storage system, whereas Cassan-
dra is a wide column store), programming model, and sup-
port for available queries. Consequently, migration from
MongoDB to Cassandra or vice versa is a non-trivial activ-
ity. Migration usually involves both porting the application
as well as migrating the data to different data stores. In this
study, we focus on the former.

In Section 5.1, we discuss the prototype implementations
of the LMaaS system in terms of APIs and data storage sys-
tems used for the migration study. Then, Section 5.2
presents the results of migration study, which are then sum-
marized in Section 5.3.

5.1 Experimental Setup

Our migration study includes five prototypes of the LMaaS
system: (i) Prototype Cassandra uses Cassandra [2] for the
data storage and the Datastax Java-driver6 [14] as the native
client API to interact with Cassandra (see Appendix A,
available in the online supplemental material, for more
information about the native client APIs for Cassandra), (ii)
Prototype MongoDB uses MongoDB [31] for the data storage
and the Java MongoDB driver as the native client API to
interact with MongoDB (see Appendix A, available in the
online supplemental material, for more information about
the native client APIs for MongoDB), (iii) Prototype Kundera
uses both selected NoSQL data stores, Cassandra [2] and
MongoDB [31] for the data storage and the Kundera [27] as
an abstraction API to interact with these NoSQL data stores,
(iv) Prototype Playorm uses Cassandra [2] and MongoDB [31]
for the data storage and the Playorm [26] as an abstraction
API to interact with the selected NoSQL data stores, and (v)
Prototype Spring Data uses both NoSQL data stores, Cassan-
dra [2] and MongoDB [31] for the data storage and the
Spring Data [40] as an abstraction API to interact with these
data stores.

All these prototype implementations run on Tomcat 7.
We compared the required effort by port the prototype
implementations from Cassandra to MongoDB and vice
versa. We specifically focus on the lines of code (LOC) and
lines of configuration (LOConfig) files that were changed.

5.2 Migration Cost Results

In this section, we discuss the migration cost results for all
the prototype implementations of the LMaaS system dis-
cussed above. Section 5.2.1 discusses the migration results
for the prototype implementations that directly use the
native client APIs offered by the NoSQL data stores, while
Section 5.2.2 discusses the migration results for the proto-
type implementations that use the selected data access mid-
dleware platforms.

5.2.1 Results for Native Client APIs

The migration cost results of the prototype implementations
that use the native client APIs are presented in Table 9.

TABLE 8
Average Relative Performance Overhead Introduced by the

Selected Data Access Middleware for Cassandra and MongoDB
Data Stores on a Single Node Setup

Cassandra Back-end MongoDB Back-end

Platform Insert Read Update Delete Insert Read Update Delete

Kundera 57% 16% 59% 117% 55% 25% 58% 109%
Playorm 62% 10% 65% 78% 77% 18% 75% 81%

Spring Data 64% 36% 66% 178% 144% 25% 100% 145%

6. The Datastax Java-driver is preferred over the Cassandra-Thrift API
because of the abstraction it provides and thus reduces the migration
cost, development time, and effort.

852 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 6, NO. 3, JULY-SEPTEMBER 2018

The first row of the Table 9 shows that the Prototype
Cassandra required 120 LOC to be changed to port the proto-
type implementation from Cassandra data store to the Mon-
goDB data store, which corresponds to 30 percent of the
entire prototype. Porting Prototype MongoDB, required
changing 200 LOC to port the prototype implementation
from MongoDB to Cassandra, which corresponds to 50 per-
cent of the entire prototype, as shown in the second row of
Table 9. The native APIs do not rely on configuration files.

5.2.2 Results for Data Access Middleware Platforms

The migration results of the prototype implementations that
use data access midddleware platforms are presented in
Table 10.

As shown in the first row of Table 10, the Prototype Play-
orm only required changing 5 LOC to port the prototype
implementation from Cassandra to MongoDB and vice
versa, which corresponds to 1:25 percent of the entire proto-
type. In Playorm, the data store specific configuration is
specified in the application code as shown in Listing 1.

On the other hand, the Prototype Spring Data required
changing 85 LOC which corresponds to 21:25 percent of the
entire prototype to port from Cassandra to MongoDB and
60 LOC (15 percent of the entire prototype) had to be
changed to migrate the prototype implementation from
MongoDB to Cassandra as shown in the second row of the
Table 10.

In case of Prototype Kundera, only 3 LOConfig which cor-
responds to 0:75 percent of the entire prototype were
changed to migrate from Cassandra to MongoDB and vice
versa as shown in the last row of the Table 10. In Kundera,
the data store specific configurations are defined in the
persistence.xml configuration file which is the stan-
dard way of defining configurations in JPA. In this file, each

data store configuration is defined as a persistence-unit that
contains a number of properties specific to a data store as
shown in Listing 2.

5.3 Discussion on Migration Cost

We have conducted a study to examine the cost of
migration across heterogeneous NoSQL data stores using
the selected data access middleware platforms compared
to the native client APIs. The performance impact evalu-
ation of Section 4.3 has shown that the selected data
access middleware platforms come with a performance
cost. This study sheds some light on the flipside of the
coin by showing that these platforms provide benefits in
terms of easy migration across NoSQL data stores. Our
evaluation shows that the selected data access middle-
ware platforms significantly simplify migration across
heterogeneous NoSQL data stores when compared to the
native client APIs.

Furthermore, Kundera and Playorm require less develop-
ment time for migration, making it easy to migrate across
multiple data stores with limited effort. Moreover, an appli-
cation that is developed using Kundera or Playorm requires
the same LOC to be changed to migrate across supported
data stores.

In the case of Spring Data, the required development effort
is higher in terms of changed LOC. Although Spring Data
also addresses the heterogeneity problem, it lacks a uniform
API that offers a set of features implemented by a number of
heterogeneous NoSQL data stores (i.e., the Abstraction

API (a) depicted in Fig. 3). Instead, it provides a different
module for each supported NoSQL data store which offers
a different API to the developers. Hence, porting an

TABLE 9
Cost of Migration for Prototype Cassandra and Prototype

MongoDB using the Selected Native Client APIs

LOC changed LOConfig changed

Prototype Cassandra MongoDB Cassandra MongoDB

Cassandra - 120/30% - -
MongoDB 200/50% - - -

TABLE 10
Cost of Migration for Prototypes Playorm, SpringData, and

Kundera Using the Selected Middleware Platforms

LOC changed LOConfig changed

Prototype Cassandra MongoDB Cassandra MongoDB

Playorm 5/1:25% 5/1:25% - -
Spring Data 60/15% 85/21:25% - -
Kundera - - 3/0:75% 3/0:75%

RAFIQUE ET AL.: ON THE PERFORMANCE IMPACT OF DATA ACCESS MIDDLEWARE FOR NOSQL DATA STORES 853

application to different NoSQL data stores supported by
Spring Data requires re-implementing against these APIs and
thus involves changing substantiallymore LOC.

Another important factor to consider is the type of
change required to port across the heterogeneous NoSQL
systems which reflects the (re)deployment of an application.
In Prototype Playorm and Prototype Spring Data, the applica-
tion code needs to be changed, and therefore the application
has to be (re)compiled and (re)deployed. In case of Prototype
Kundera however, this is done in the configuration file
which is the standard way of defining a data store specific
information. In Kundera, neither the code of the prototype
implementation needs to be changed, nor the application
code needs to be (re)compiled and (re)deployed as the data
stores can be (re)configured at run time. Migrating to and
from another SQL or NoSQL data store (e.g., HBase,
CouchDB, Redis, MySQL) that is supported by Kundera
only requires 3 LOConfig changing in the persistence.

xml configuration file.
In the case of native client APIs, in which both prototypes

use native libraries, Prototype Cassandra and the Prototype
MongoDB require the same operations to be supported for
Cassandra [2] and MongoDB [31]. As a consequence, this
requires substantial (re)writing of the application code.
Additionally, both native prototypes involve different data
models to be adopted, hence requiring significant learning
curve to deal with this heterogeneity.

5.3.1 Threats to Validity

The most obvious threats to the validity relates to the pro-
totype implementation used for the migration study. The
study is conducted on a small prototype implementation.
The main objective of this study is to highlight the benefits
of using data access middleware platforms. More specifi-
cally, the benefits offered by data access middleware plat-
forms in terms of easy migration. However, we expect in
larger applications the cost of porting across heteroge-
neous NoSQL data stores when used with different data
access middleware platforms (e.g., Kundera, Playorm) will
be the same.

6 RELATED WORK

This section discusses three domains of related work: (i) het-
erogeneity support, (ii) performance studies, and (iii) migra-
tion studies.

6.1 Addressing Cloud Heterogeneity

The increasing popularity of NoSQL data stores has
spawned the interesting research on middleware dealing
with heterogeneity and support interoperability and porta-
bility. The problem of heterogeneity among the NoSQL sys-
tems has been recognized by both the industry [25], [26],
[27] and the research community [4], [7], [8], [17], [42]. Simi-
larly, there are a number of other research works [5], [19]
that provide a federated cloud storage system to integrate
diverse public cloud storage providers. These works aim to:
(i) hide the complexity of using different interfaces pro-
vided by these public cloud storage providers, and (ii) use
multiple public cloud storage systems to get composite ben-
efits as well as avoid vendor and technology lock-in.

In our previous work [37], we investigated the heterogene-
ity problem across PaaS platforms by building an abstraction
API, supporting different NoSQL systems for a common PaaS
service in a hybrid cloud environment. The work addresses
the challenges of heterogeneity and support application por-
tability across the PaaS platforms in a hybrid setup; however,
we have learned that this heterogeneity, in terms of different
data storage systems, exists even within a single cloud envi-
ronment (e.g., private cloud). The work clearly indicates the
need to address the heterogeneity problem, improve database
portability, and tackle vendor/technology lock-in.

6.2 Performance Studies

The applicability and the performance evaluation of NoSQL
data stores has been studied before [9], [15], [22], [36], [44],
[45]. However, to the best of our knowledge, there is no sys-
tematic study that characterizes both the performance over-
head as well as the cost of migration in data access
middleware platforms when used with NoSQL data stores.

Storl et al. [41] studied the state-of-the-art in object-
relational mappers and dedicated object-NoSQL mappers
that can handle heterogeneous NoSQL data stores. The
authors study the performance of the abstraction layers
for NoSQL data stores with a focus on the run-time per-
formance which is comparable to the first part of our
study. The main difference to our work is that we perform
a more extensive (e.g., a multi-node setup) performance
evaluation and consider other popular data access mid-
dleware platforms (e.g., Spring Data, Playorm). Their
research states several interesting conclusions worth dis-
cussing in relation to our study: (i) when reading the data,
there are small run-time performance differences between
the native and the abstraction APIs, whereas we have
learned that the conclusion is not valid for all abstraction
APIs (i.e., the overhead of Spring Data is significant for
the read operation), (ii) they conclude that the overhead
of abstraction APIs is significant for the write operation,
which we confirmed in our performance study, and (iii)
their research concludes that the back-end storage system
has an influence on the performance overhead of these
abstraction APIs. In Section 4.3.5, we investigated further
to analyze the impact of the back-end on the performance
of data access middleware platforms and learned that this
conclusion does not hold for all the abstraction APIs.

Another related work is the research conducted by
Bunch et al. [8]. The authors present AppScale: a Platform-
as-a-Service (PaaS) cloud infrastructure. AppScale is a plat-
form that provides a uniform API, enabling different
NoSQL systems to be evaluated. In their research, the focus
is on the performance evaluation of heterogeneous NoSQL
systems using AppScale platform, but they don’t quantify
the performance overhead of AppScale, which is the focus
of our research.

In another similar study, the research conducted by van
Zyl et al. [46] gain insight into the performance differences
of using two persistence mechanism such as object data-
bases (i.e., db4o) and object-relational mapping (ORM) tools
(i.e., Hibernate ORM) to communicate with relational data-
bases. In their research, the focus is only on the relational
model, whereas our research focus on broader aspect,
address heterogeneity, and cover NoSQL data stores which

854 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 6, NO. 3, JULY-SEPTEMBER 2018

follow different data models (e.g., document oriented data
model and wide column).

6.3 Migration Studies

Data migration across heterogeneous NoSQL systems is a
non-trivial activity due to the heterogeneity in these technolo-
gies. Some Database-as-a-Service (DBaaS) providers provide
tools to import and export data from their data stores. How-
ever, the usage of such a tool is limited to a specific NoSQL
storage system and does not address the vendor lock-in.

Another research conducted by Scavuzzo et al. [38]
focuses on data migration across columnar NoSQL data
stores. The authors proposed an extensible system that can
be used to migrate data across different NoSQL data stores.
The system allows developers to easily add a support for
the new data store. The goal of their research is to provide a
platform for easier migration across columnar NoSQL data
stores. However, the key differences is that they have only
focused on data migration in terms of the performance cost
while our research focuses on the development effort
required to migrate across multiple NoSQL data stores.

7 CONCLUSION AND FUTURE WORK

We have conducted an in-depth study of the trade-off
between the performance overhead and the cost of migra-
tion, inherent to the decision of using data access middle-
ware platforms. We present two complementary studies in
which we compare three Java-based data access middle-
ware platforms for NoSQL systems: Impetus Kundera, Play-
orm, and Spring Data. These platforms are inevitable to
achieve portability, interoperability, and easy migration
across NoSQL storage systems. Due to the heterogeneity
and increasing popularity of NoSQL data stores, we believe
that such a middleware platform will become increasingly
useful in the near future.

Our performance study shows that, despite these plat-
forms are similar in design, there are still substantial differ-
ences in terms of performance which indicates different
levels of maturity. In general, the extent of the performance
overhead depends highly on the nature of the operation, the
delete operation being the most costly. In particular,
we have demonstrated that by allowing some performance
overhead, the developer gain benefits in terms of portability
and easy migration across heterogeneous data stores. Our
studies show that Kundera is ahead of the studied systems,
introduces less performance overhead, and requires the
least migration effort. This study also highlights the limita-
tions of using JPA in case of NoSQL data stores, notably for
the delete operation and raises the question if this standard
is suitable for NoSQL systems.

The work presented in this paper forms the foundation of
our ongoing research. Based on our experience with the ini-
tial evaluation, we have several short and long-term goals.
In the future, we first plan to extend our evaluation to
include search operations. Second, we plan to consider
other data access middleware platforms and conduct our
benchmark in extended setups, e.g., spanning multiple
availability zones on the server side, to evaluate the over-
head of these platforms. In another line of work, we want to
confirm our findings with other benchmarks (e.g.,
YCSB [9]). Finally, we intend to extend our migration study

by also taking into account the cost to migrate data across
heterogeneous data storage systems.

ACKNOWLEDGMENTS

This research is partially funded by the Research Fund KU
Leuven (project GOA/14/003 - ADDIS) and the iMinds
DMS2 project, which is co-funded by iMinds (Interdisciplin-
ary institute for Technology), a research institute founded
by the Flemish Government. Companies and organizations
involved in the project are Agfa Healthcare, Luciad, UP-nxt,
and Verizon Terremark, with project support of IWT (gov-
ernment agency for Innovation by Science and Technology).

REFERENCES

[1] Apache. (2014, Oct. 13). Apache gora [Online]. Available: http://
gora.apache.org/

[2] Apache. (2015, Mar. 11). Cassandra [Online]. Available: http://
cassandra.apache.org/

[3] Apache. (2014, Oct. 18). Compare string vs. binary prepared state-
ment parameters [Online]. Available: https://issues.apache.org/
jira/browse/CASSANDRA-3634

[4] P. Atzeni, F. Bugiotti, and L. Rossi, “Uniform access to non-rela-
tional database systems: The sos platform,” Proc. 24th Int. Conf.
Adv. Inf. Syst. Eng., 2012, vol. 7328, pp. 160–174.

[5] D. Bermbach, M. Klems, S. Tai, and M. Menzel, “Metastorage: A
federated cloud storage system to manage consistency-latency
tradeoffs,” in Proc. 4th Int. Conf. Cloud Comput., 2011, pp. 452–459.

[6] E. Brewer, “Pushing the cap: Strategies for consistency and
availability,” J. Comput., vol. 45, no. 2, pp. 23–29, 2012.

[7] F. Bugiotti and L. Cabibbo, “An object-datastore mapper support-
ing NoSQL database design (ONDM),” [Last visited on Jun. 30,
2014].

[8] C. Bunch, N. Chohan, C. Krintz, J. Chohan, J. Kupferman,
P. Lakhina, Y. Li, and Y. Nomura, “An evaluation of distributed
datastores using the appscale cloud platform,” in Proc. IEEE 3rd
Int. Conf. Cloud Comput., 2010, pp. 305–312.

[9] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with ycsb,” in
Proc. 1st ACM Symp. Cloud Comput., 2012, pp. 25–36.

[10] CUSTOMSS. (2014, Jun. 27). CUSTOMization of Software Services
in the cloud (iMinds ICON project [Online]. Available: http://
www.iminds.be/en/research/overview-projects/p/detail/
customss

[11] D-Base. (2014, Jun. 27). Decentralized support for Business pro-
cesses in Application Services [Online]. Available: http://www.
iminds.be/en/research/overview-projects/p/detail/d-base

[12] DataNucleus. (2015, Mar. 17). DataNucleus, tags = “data access
middleware” [Online]. Available: http://datanucleus.org/

[13] Datastax. (2014, Jun. 29). DataStax Java Driver: A new face for
Cassandra [Online]. Available: http://www.datastax.com/dev/
blog/new-datastax-drivers-a-new-face-for-cassandra

[14] Datastax. (2015, Mar. 12). DataStax Java Driver for Apache
Cassandra [Online]. Available: https://github.com/datastax/
java-driver

[15] E. Dede, M. Govindaraju, R. S. Canon, and L. Ramakrishnan,
“Performance evaluation of a mongodb and hadoop platform for
scientific data analysis,” in Proc. 4th ACM Workshop Sci. Cloud
Comput., 2013, pp. 13–20.

[16] E. Dede, B. Sendir, P. Kuzlu, J. Hartog, and M. Govindaraju, “An
evaluation of cassandra for hadoop,” in Proc. IEEE 6th Int. Conf.
Cloud Comput., 2013, pp. 494–501.

[17] A. Dey, A. Fekete, and U. Rohm, “Scalable transactions across het-
erogeneous nosql key-value data stores,” Proc. VLDB Endowment,
vol. 6, pp. 1434–1439, 2013.

[18] [DMS]2. (2014, Jun. 18). Decentralized Data Management and
Migration for SaaS (iMinds ICON project [Online]. Available:
http://www.iminds.be/en/research/overview-projects/p/
detail/dms2

[19] D. Dobre, P. Viotti, and M. Vukolic, “Hybris: Robust hybrid cloud
storage,” in Proc. ACM Symp. Cloud Comput., 2014, pp. 1–14.

[20] eclipse. (2015, Mar. 12). Eclipselink [Online]. Available: https://
eclipse.org/eclipselink/

RAFIQUE ET AL.: ON THE PERFORMANCE IMPACT OF DATA ACCESS MIDDLEWARE FOR NOSQL DATA STORES 855

http://gora.apache.org/
http://gora.apache.org/
http://cassandra.apache.org/
http://cassandra.apache.org/
https://issues.apache.org/jira/browse/CASSANDRA-3634
https://issues.apache.org/jira/browse/CASSANDRA-3634
http://www.iminds.be/en/research/overview-projects/p/detail/customss
http://www.iminds.be/en/research/overview-projects/p/detail/customss
http://www.iminds.be/en/research/overview-projects/p/detail/customss
http://www.iminds.be/en/research/overview-projects/p/detail/d-base
http://www.iminds.be/en/research/overview-projects/p/detail/d-base
http://datanucleus.org/
http://www.datastax.com/dev/blog/new-datastax-drivers-a-new-face-for-cassandra
http://www.datastax.com/dev/blog/new-datastax-drivers-a-new-face-for-cassandra
https://github.com/datastax/java-driver
https://github.com/datastax/java-driver
http://www.iminds.be/en/research/overview-projects/p/detail/dms2
http://www.iminds.be/en/research/overview-projects/p/detail/dms2
https://eclipse.org/eclipselink/
https://eclipse.org/eclipselink/

[21] Elasticsearch. (2014, May 24). Elasticsearch [Online]. Available:
http://www.elasticsearch.org/

[22] A. Floratou, N. Teletia, D. J. DeWitt, J. M. Patel, and D. Zhang,
“Can the elephants handle the NoSQL onslaught? ” Proc. VLDB
Endowment, vol. 5, pp. 1712–1723, 2012.

[23] GehrigKunz. (2014, Jun. 29). ClientOptions Thrift [Online]. Avail-
able: https://wiki.apache.org/cassandra/ClientOptionsThrift

[24] K. Grolinger, W. A. Higashino, A. Tiwari, and M. A. M. Capretz,
“Data management in cloud environments: NoSQL and newsql
data stores,” J. Cloud Comput.: Adv., Syst. Appl., vol. 2, no. 1, p. 22,
2013.

[25] Hibernate. (2014, Jun. 29). Object/grid mapper (OGM) [Online].
Available: http://hibernate.org/ogm/

[26] D. Hiller. (2014, Jun. 28). Playorm: Orm for NoSQL with scalable
SQL [Online]. Available: https://github.com/deanhiller/playorm

[27] Impetus. (2014, Jun. 28). Kundera: Object-datastore mapping
library for NoSQL datastores [Online]. Available: https://github.
com/impetus-opensource/Kundera

[28] E. J. O’Neil, “Object/relational mapping 2008: Hibernate and the
entity data model (edm),” in Proc. ACM SIGMOD Int. Conf. Manag.
Data, 2008, pp. 1351–1356.

[29] I. Konstantinou, E. Angelou, C. Boumpouka, D. Tsoumakos, and
N. Koziris, “On the elasticity of NoSQL databases over cloud
management platforms,” in Proc. 20th ACM Int. Conf. Inf. Knowl.
Manage., 2011, pp. 2385–2388.

[30] mongoDB. (2015, Mar. 12). Java MongoDB Driver [Online]. Avail-
able: http://docs.mongodb.org/ecosystem/drivers/java/

[31] INC MongoDB. (2014, Jul. 7). Mongodb [Online]. Available:
http://www.mongodb.org/

[32] Netflix. (2014, Jun. 28). astyanax - cassandra java client [Online].
Available: https://github.com/Netflix/astyanaxs

[33] NoSQL. (2014, Jun. 29). Nosql your ultimate guide to the non-
relational universe [Online]. Available: http://nosql-database.org/

[34] Nate McCall (zznate) Patricio Echague (patricioe). (2014, Jun. 29).
Hector - a high level java client for apache cassandra [Online].
Available: http://hector-client.github.io/hector/build/html/

[35] J. Pokorny, “NoSQL databases: A step to database scalability in
web environment,” Int. J. Web Inf. Syst., vol. 9, pp. 66–82, 2013.

[36] T. Rabl, S. G. Villamor, M. Sadoghi, V. M. Mulero, H.-A. Jacobsen,
and S. Mankovskii, “Solving big data challenges for enterprise
application performance management,” Proc. VLDB Endowment,
vol. 5, no. 12, pp. 1724–1735, 2012.

[37] A. Rafique, S. Walraven, B. Lagaisse, T. Desair, and W. Joosen,
“Towards portability and interoperability support in middleware
for hybrid clouds,” in Proc. IEEE INFOCOM CrossCloud Workshop,
2014, pp. 7–12.

[38] M. Scavuzzo, E. Di Nitto, and S. Ceri, “Interoperable data migra-
tion between NoSQL columnar databases,” in Proc. 18th Int. Enter-
prise Distrib. Object Comput. Conf. Workshops Demonstrations, 2014,
pp. 154–162.

[39] R. Sellami, S. Bhiri, and B. Defude, “Odbapi: A unified rest API for
relational and NoSQL data stores,” in Proc. IEEE Int. Congress Big
Data, 2014, pp. 653–660.

[40] Spring. (2015, Jun. 29). Spring data [Online]. Available: http://
projects.spring.io/spring-data/

[41] U. Storl, T. Hauf, M. Klettke, and S. Scherzinger, “Schemaless
nosql data stores object-NoSQL mappers to the rescue?” in Proc.
16th Conf. Database Syst. Bus., Technol. Web, 2015, pp. 579–600.

[42] T. Sun and X. Wang, “Research on heterogeneous data resource
management model in cloud environment,” Int. J. Database Theory
Appl., vol. 6, no. 1, pp. 141–152, 2013.

[43] AppScale Systems. (2014, Jun. 30). The open source implementa-
tion of google app engine - take your apps everywhere [Online].
Available: https://github.com/AppScale/appscale

[44] B. G. Tudorica and C. Bucur, “A comparison between several
NoSQL databases with comments and notes,” in Proc. IEEE 10th
Roedunet Int. Conf., 2011, pp. 1–5.

[45] J. S. van der Veen, B. van der Waaij, and R. J. Meijer, “Sensor data
storage performance: SQL or NoSQL, physical or virtual,” in Proc.
IEEE 5th Int. Conf. Cloud Comput., 2012, pp. 431–438.

[46] P. van Zyl, D. G. Kourie, and A. Boake, “Comparing the perfor-
mance of object databases and ORM tools,” in Proc. Annu. Res.
Conf. South African Instit. Comput. Scientists Inf. Technol. IT Res.
Develop. Countries, 2006, pp. 1–11.

[47] W. Vogels, “Eventually consistent,” Commun. ACM, vol. 52, no. 1,
pp. 41–44, Jan. 2009.

[48] D. Washusen. (2014, Jun. 29). A java library for accessing the cas-
sandra database [Online]. Available: https://github.com/s7/
scale7-pelops

Ansar Rafique is a PhD researcher at the
iMinds-DistriNet, a research group within the
Department of Computer Science of KU Leuven,
Belgium. In 2013, he obtained MS degree in
Computer Science from Uppsala University,
Sweden. His research interests include cloud
computing, distributed systems, big data, and
NoSQL systems. He is particularly interested in
issues concerning cloud data storage and effi-
cient data management.

Dimitri Van Landuyt is a research expert in Soft-
ware Engineering at iMinds-DistriNet, the Distrib-
uted Systems research group of the Department
of Computer Science of KU Leuven, Belgium.
Dimitri obtained his PhD degree in 2011 and
focuses his current research on applying and vali-
dating established software engineering princi-
ples to cloud computing, more specifically in the
context of Software-as-a-Service applications.

Bert Lagaisse is industrial research manager at
the iMinds-DistriNet research group in which he
manages a portfolio of applied research projects
on cloud and security middleware in close collab-
oration with industrial partners. He obtained his
MS and PhD in 2003 and 2009 from KU Leuven,
Belgium. Bert is experienced with industrial valo-
rization of research as well as the cross-fertiliza-
tion between academic know-how and industrial
expertise in multi-partner industrial projects. He
has a strong interest in distributed systems,

enterprise middleware, cloud platforms, and security services.

Wouter Joosen is full professor in distributed
software systems at the Department of Computer
Science of KU Leuven, Belgium. He obtained a
PhD degree from KU Leuven in 1996. He has
also co-founded spin-off companies of KU
Leuven: Luciad, a company specializing in soft-
ware components for Geographical Information
Systems, and Ubizen (now part of Verizon Busi-
ness Solutions), where he has been the CTO
from 1996 till 2000, and COO from 2000 till 2002.
His research interests are in cloud computing,

focusing on software architecture and middleware, and in security
aspects of software, including security in component frameworks and
security architectures.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

856 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 6, NO. 3, JULY-SEPTEMBER 2018

http://www.elasticsearch.org/
https://wiki.apache.org/cassandra/ClientOptionsThrift
http://hibernate.org/ogm/
https://github.com/deanhiller/playorm
https://github.com/impetus-opensource/Kundera
https://github.com/impetus-opensource/Kundera
http://docs.mongodb.org/ecosystem/drivers/java/
http://www.mongodb.org/
https://github.com/Netflix/astyanaxs
http://nosql-database.org/
http://hector-client.github.io/hector/build/html/
http://projects.spring.io/spring-data/
http://projects.spring.io/spring-data/
https://github.com/AppScale/appscale
https://github.com/s7/scale7-pelops
https://github.com/s7/scale7-pelops

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

