
Fast and Reliable Restoration Method
of Virtual Resources on OpenStack

Yoji Yamato,Member, IEEE, Yukihisa Nishizawa, Shinji Nagao, and Kenichi Sato

Abstract—We propose a fast and reliable restoration method of virtual resources on OpenStack when physical servers or virtual

machines are down.Many providers have recently started cloud services, and the use ofOpenStack, which is open source IaaS software, is

increasing.When physical servers are down, there is a fail-overmethod using the high-availability cluster software such as Pacemaker to

restore virtual resources. However, it takes a long time to restore all virtual resources. There is also amethod formonitoring each virtual

machine by using Ping or othermethods and restoring a virtualmachinewhen it is down.However, datamay be destroyed due to the double

mounts of virtualmachines depending on the timing of failures because restorationmethods of failed physical servers and virtualmachines

are independent. Therefore, we propose a fast and reliable restorationmethodwith a uniformway for plural types virtual resources. In our

method, Pacemaker only detects a physical server failure and notifies a failure to a virtual resource arrangement scheduler, then a virtual

resource arrangement scheduler determinesmultiple physical servers to restore virtual resources and calls OpenStackAPIs to rebuild.

The virtual resource arrangement scheduler also detects virtualmachine failures by using a Libvirt monitoringmodule and restores virtual

machineswithout data loss by handling Pacemaker and Libvirt notifications uniformly.We implemented the proposedmethod and showed

its effectiveness regarding fast restoration through performancemeasurements.

Index Terms—OpenStack, cloud computing, IaaS, high availability, fast restoration

Ç

1 INTRODUCTION

RECENTLY, cloud computing technologies, such as virtu-
alization and scale-out, have been advancing and many

providers have started cloud services. According to the defi-
nition of NIST [1], cloud service models can be categorized
as Software as a Service (SaaS), Platform as a Service (PaaS),
and Infrastructure as a Service (IaaS). The IaaS model pro-
vides hardware resources of CPU or disk via a network. For
example, Amazon Elastic Computing Cloud (EC2) [2] and
Rackspace Cloud Servers [3] are production IaaS services.

RackSpace uses open source software OpenStack [4] as
an Iaas infrastructure. OpenStack, CloudStack [5], and Euca-
lyptus [6] are major open source IaaS software and adop-
tions of open source IaaS software are increasing. Recently,
the OpenStack community has been very active and new
features are released every six months. We also have
launched production IaaS services named cloudn which use
OpenStack since 2013 [7], [8].

However, the main target of OpenStack is providing
primitive control APIs of virtual resources, not failure man-
agement; thus service providers need to consider such man-
agement. In particular, OpenStack does not support the
restoration of virtual resources when a physical server or vir-
tual machines (VMs) are down and service providers have
to restore them. The high-availability (HA) mechanisms of

some virtual network resources have been discussed in the
OpenStack community [9], but the discussions are scattered
for each virtual resource type and there is no uniform
method to restore plural types virtual resources.

This work objective is to restore virtual resources fast and
reliably with a uniform method when physical servers or
virtual resources on IaaS cloud are down and to minimize
users’ impacts such as long down time and lack of data.

There is a redundant method which uses HA cluster soft-
ware such as Pacemaker [10] to restore virtual resources
when physical servers are down. However, there is a prob-
lem that it takes a long time to restore all virtual resources.
There is also a method for monitoring each VM by using
Ping and restoring a VM when it is down. However, data
may be destroyed due to double mounts of VMs depending
on the timing of physical server and VM failures. Double
mounts mean two VMs connect to the same volume.

Therefore, we propose a fast and reliable restoration
method of virtual resources, such as VMs and logical
routers (LRs), when physical servers or VM processes are
down for cloud providers to operate reliable production
IaaS services on OpenStack. The main function of proposed
method is a virtual resource arrangement scheduler which
manages empty spaces of physical servers, restoration sta-
tuses of virtual resources and restores virtual resources
fast when physical servers or VMs are down. With the pro-
posed method, Pacemaker detects a physical server failure
and sends a failure notification to the virtual resource
arrangement scheduler. As with Pacemaker notification, a
Libvirt (VM control library) [11] monitoring module also
detects a failed VM and sends a notification. The virtual
resource arrangement scheduler determines physical serv-
ers that have enough resources for virtual resources and

� The authors are with the Software Innovation Center, NTT Corporation,
Musashino-shi 180-8585, Tokyo, Japan. E-mail: {yamato.yoji, nishizawa.
yukihisa, nagao.shinji, s.kenichi}@lab.ntt.co.jp.

Manuscript received 18 Feb. 2015; revised 9 Aug. 2015; accepted 4 Sept. 2015.
Date of publication 25 Sept. 2015; date of current version 6 June 2018.
Recommended for acceptance by B. Schulze.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TCC.2015.2481392

572 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2018

2168-7161 � 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:

calls OpenStack APIs to remove invalid virtual resources
and re-build virtual resources on specified multiple physi-
cal servers. The virtual resource arrangement scheduler
also manages both Pacemaker and Libvirt notifications and
restores VMs while preventing data destroy in case of con-
current failure. Specifically, the virtual resource arrange-
ment scheduler prevents concurrent restoration processes
by stopping the former process or ignoring the latter notifi-
cation based on timings of physical server and VM failure
notifications.

We implemented the proposed method and showed its
effectiveness in restoring all virtual resources within a short
time. The implementation uses OpenStack, Pacemaker and
Libvirt but our method can be applicable to other similar
platforms or tools such as CloudStack only changing APIs or
configurations. Our method is novel because it can quickly
restore not only VMs but also other type virtual resources
such as LRs or virtual networks with a uniformmethod.

The rest of the paper is organized as follows. In Section2,
we clarify problems of current restoration technologies. In
Section 3, we propose a method that involves a virtual
resource arrangement scheduler to restore virtual resources.
We evaluate the performance of the proposed method in
Section 4 and discuss related work in Section 5. Finally, we
summarize the paper in Section 6.

2 PROBLEMS OF CURRENT TECHNOLOGIES

2.1 OpenStack Functions and High Availability
Discussion

We first review the architecture of OpenStack [4]. Open-
Stack consists of function blocks that manage logical/virtual
resources and a function block that provides single sign-on
authentication among other function blocks. Fig. 1 shows
the architecture of OpenStack.

Neutron controls virtual networks, and Open Virtual
Switch (OVS) [12] and other software switches can be used
as a virtual switch. Nova controls VMs, and Kernel-based
Virtual Machine (KVM) [13], Xen [14], and others can be
used as a hypervisor of a VM. Cinder manages block sto-
rages and can attach a logical volume to a VM like a local
disk volume. Swift manages object storages and Glance
manages Images. Keystone is a base that performs single
sign-on authentications among these function blocks. The
functions of OpenStack are used through Representational
State Transfer (REST) APIs. There is also a Web GUI called
Horizon for using OpenStack functions.

In OpenStack community, there are discussions of high
availability of virtual resources. Kilo which is the latest ver-
sion of OpenStack can configure various HA setting such as
Active-Active and Active-Standby. However, discussions
are scattered for each virtual resource type in the commu-
nity. OpenStack Kilo provides Virtual Router Redundancy
Protocol (VRRP) solution for router redundancy. On the
other hand, Nova provides evacuate API which re-builds a
VM of failed node.

OpenStack community regards core service indepen-
dency as important to enhance development speed. There-
fore, there is no uniform method for plural types virtual
resources restorations. On the other hand, cloud providers
who provide VMs, LRs, virtual networks, logical load

balancers and logical volumes would like to operate as
simple as possible, and would not like to configure different
setting for each virtual resource such as VRRP or evacuate
API which makes their operations complex.

2.2 Problems with HA Clustering Fail-Over

There is a HA clustering method which uses HA cluster
software, such as Pacemaker, to restore virtual resources
when physical servers on which virtual resources are
deployed are down. An HA cluster consists of one or more
Active nodes and zero or more Standby nodes, and when
an Active node is down, activated Standby node or other
Active node takes over failed node resources. Currently,
some cloud providers adopt Active-Standby setting of HA
cluster for redundancy and the others adopt other settings
such as Active-Active. For example, IDC Frontier provides
automatic HA of Active-Standby setting [15] and NTT
Communications cloudn [8] also adopted HA of Active-
Standby setting until the authors developed this paper’s
HA method.

In Active-Standby setting on OpenStack case, when a
physical server on which LRs are deployed is down, a
Standby node is activated and takes over. More specifi-
cally, a Neutron agent re-builds all LRs to be deployed on
an activated server using the OpenStack database (DB)
information. The re-build time is proportional to the num-
ber of LRs to be deployed because LR re-build needs
much computing resources. This is the same as a VM case
in which the Nova re-build time is proportional to the
number of VMs. We believe this is a problem because as
the number of virtual resources to be restored increases,
service down time increases. In our experiments, the res-
toration time of 30 LRs took more than 60 minutes using
Pacemaker fail-over (we explain the performance results
in Section 4).

Regarding to physical server trouble frequency, we
explain an example. Our public IaaS services [8] have more
than several thousand users and one hundred physical serv-
ers. Some troubles are serious which lead virtual resources
down and the others are slight which do not lead virtual
resources down. For example, only one fan problem of
physical server is slight because there are about four fans
for physical server. During one year operation of our cloud
services, number of serious troubles of physical servers is
two or three and number of slight troubles of physical serv-
ers is several.

server networkstorage

hyper
visor

block
storage

object
storage

switch router FW

Cinder Swift NeutronNova, Glance

Horizon

Keystone

REST API IaaS layer
(OpenStack)

Hardware
layer

Virtualization
layer

CPU ar-
chitecture

Fig. 1. Architecture of OpenStack [4].

YAMATO ET AL.: FAST AND RELIABLE RESTORATION METHOD OF VIRTUAL RESOURCES ON OPENSTACK 573

2.3 Problems with VM Restoration by VM Alive
Monitoring

There is a method for monitoring VM availability by using
Ping or other methods and restoring the VM when it is
down because the impact of VM failure is serious for users.
However, data may be destroyed by VM double mounts on
one storage depending on the timing of failures because res-
toration methods of physical server and VM failure are
independent. For example, data may be destroyed in which
VM restoration by VM monitoring is done just before failed
node termination of physical server fail-over. This is an
inevitable problem because there is no uniform manage-
ment function of the VM restoration state.

Regarding to VM failure frequency, we also explain an
example. During one year operation of our public IaaS serv-
ices [8], number of VM problems which need VM restarts
such as runaway of OS is more than several ten. Memory
exhaustion by invalid script, malware, attacks and so on is
one of major reason of VM troubles. In one year operation,
we did not encounter double failure of “failure of physical
server” and “failure of VM which cause is not physical
server failure” at the same time. Currently, we do not have
many users because we have started OpenStack cloud serv-
ices since 2013. However, we think double failure possibili-
ties are increased when cloud providers have more users
and physical servers in the future.

3 PROPOSAL OF FAST AND RELIABLE

RESTORATION METHOD USING VIRTUAL

RESOURCE ARRANGEMENT SCHEDULER

From Section 2, these three items are general problems in
cloud computing. There is no uniform method for plural
types virtual resources restorations. Restoration using HA
clustering software requires a long time to restore all virtual
resources. Data may be destroyed due to VM double
mounts in case of concurrent failures of physical server and
VM. Therefore, we propose a uniform method for plural
types virtual resources that involves clearing, re-building
virtual resources fast on multiple physical servers, and pre-
venting data destroy by uniform management of virtual
resource failures.

We previously developed a virtual resource arrangement
scheduler [16], which determined a physical server for vir-
tual resource deployment based on business requirements
and called IaaS platform APIs to build a virtual resource
with specified physical sever when a new virtual resource
creation was ordered. Based on such business requirements,
there is a variety type of resource arrangement logic, and
[16] can change scheduling logic. For example, one provider
would like to fill one physical server with as many virtual
resources as possible for reducing maintenance costs of
used servers, and another provider would like to distribute
as many resources as possible for enhancing user virtual
resource performance.

Our proposed method is composed of a modified virtual
resource arrangement scheduler, clustering software such
as Pacemaker, a monitoring module of VM control module
such as Libvirt, and IaaS platform such as OpenStack. The
aim to create a virtual resource arrangement scheduler out-
side IaaS platform is to provide a uniform fast restoration

method for plural types virtual resources not only VMs but
also LRs, virtual networks, logical load balancers and so on.
A uniform restoration method makes operations and config-
urations of cloud providers simple, minimizes bug possibil-
ities and reduces operation costs. As described in Section 2,
a restoring method of each type virtual resource is dis-
cussed apart in OpenStack community and there is no uni-
form method including other IaaS platform communities.
Our method idea also can be applied to other IaaS software
such as CloudStack or other HA clustering software because
our method basic idea is independent on them.

Fig. 2 illustrates the behaviors of proposed method and a
current fail-over method of Active-Standby setting when a
physical server is down. In the current method of Active-
Standby setting, HA clustering software fails over an Active
node to a Standby node and the Standby node re-builds vir-
tual resources based on the IaaS platform DB. However, the
proposed method configures a cluster with only Active
nodes. a) When a physical server fails, Pacemaker detects
the failure but does not fail-over and sends a failure notifi-
cation to the virtual resource arrangement scheduler. b) The
virtual resource arrangement scheduler determines multiple
physical servers to deploy virtual resources, which are
down. c) The virtual resource arrangement scheduler calls
IaaS platform APIs to remove invalid virtual resources and
re-build virtual resources with specified physical servers. d)
IaaS platform removes invalid virtual resources and creates
virtual resources on the specified physical servers.

Meanwhile, a VM monitoring module such as Libvirt
monitoring also detects VM failure with the proposed
method. a) When a VM fails, a monitoring module detects
the failure and sends a notification to the virtual resource

Virtual
Resources

Logical Node

LR21 PS-N 2 => PS-N 1

LR22 PS-N 2 => PS-N 3

LR23 PS-N 2 => PS-N 1

LR24 PS-N 2 => PS-N 3

LR25 PS-N 2 => PS-N 1

LR26 PS-N 2 => PS-N 3

IaaS platform
controller

Virtual
Resources

Logical Node

LR21 PS-N 2

LR22 PS-N 2

LR23 PS-N 2

Current method (Active-Standby setting)
LR: Logical Router
PS-N: Physical
Server for Network

ACT (PS-N 2) SBY ACT (PS-N 2)ACT (PS-N 1)

b) rebuild
resources

a) Fail over

LR11 LR12 LR13

Failure

LR14 LR15 LR16

LR21 LR22 LR23

LR24 LR25 LR26

LR21 LR22 LR23

LR24 LR25 LR26

ACT(PS-N2) ACT (PS-N3)ACT (PS-N1)

Failure

d)d) rebuild
resources

a) failure
notification

LR11 LR12 LR13

LR14 LR15 LR16

LR31 LR32 LR33

LR34 LR35 LR36

LR21 LR22 LR23

LR24 LR25 LR26

62RL42RL22RL52RL32RL12RL

IaaS platform
controller

c) call APIs to
rebuild virtual
resources

b) re-arrange
virtual resources

Proposed method

Virtual resource
arrangement scheduler

=>

Fig. 2. Overview of proposed and current methods.

574 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2018

arrangement scheduler. b) The virtual resource arrange-
ment scheduler determines a physical server to deploy a
failed VM. c) The virtual resource arrangement scheduler
calls IaaS plaform APIs to delete a VM instance and build a
new VM instance on the specified physical server. d) IaaS
platform deletes and creates a VM instance.

Because both c) and d) are normal usages of IaaS plat-
form, we explain the details of a) and b) in the following sec-
tions. Note that the virtual resource arrangement scheduler
must use different APIs of IaaS platform based on virtual
resource types and failure types. For example, if a VM fails,
the virtual resource arrangement scheduler calls the VM
instance deletion and VM instance creation APIs. If a VM
physical server fails, the virtual resource arrangement
scheduler calls the VM clear API to unbind the VM and stor-
age relationship from the IaaS platform DB, because a failed
physical server cannot process VM instance deletion, then
calls the VM instance creation API.

Here, we describe a redundant policy of a virtual
resource arrangement scheduler itself. We prepare two
active virtual resource arrangement schedulers as described
in Fig. 2. Each virtual resource arrangement scheduler
retains VM and physical server information in the resource
management DB (see Fig. 6). If one virtual resource arrange-
ment scheduler is down, the other takes over the restoration
process using the DB information.

IaaS platform examples are OpenStack, CloudStack and
others, HA clustering software examples are Pacemaker,
HP ServiceGuard and others. Hereafter, we explain our
method using OpenStack and Pacemaker but basic idea is
same for other software.

3.1 Failure Detection, Notification and Server
Termination

With our method, physical server failure is detected by
Pacemaker and a failed VM is detected by a Libvirt monitor-
ing module.

This is because Pacemaker has a reliable failure-detection
mechanism and has a solution to the split brain problem
(node isolation problem). A Heartbeat packet is communi-
cated by multicast and every node in a cluster can detect
other nodes’ statuses, and an isolated status can be detected
using a Quorum mechanism, which determines the node
status from the majority nodes data in a cluster.

In the OpenStack community, KVM is the most used
hypervisor and Libvirt is used for the VM control library.
Thus, we use a Libvirt monitoring method to detect VM
failure.

3.1.1 Failure Detection and Notification by Pacemaker

All nodes have other nodes statuses of a cluster in the
cluster information base (CIB). Pacemaker confirms the
status of installed node through resource agents (RAs)
and notifies the other nodes of the status by Heartbeat
packets. Through this procedure, each node can detect
other nodes’ statuses. If a Heartbeat packet from a certain
node is continuously lost, other nodes judge that the
node is down. Therefore, causes of detections are not
only physical server down but also network switch down
or others failures.

Fig. 3 shows a failure-detection and notification mecha-
nism (for example, an OpenStack node for failed LRs). We
deploy a notification RA and notification process on each
node to send a failure notification to a virtual resource
arrangement scheduler. When Pacemaker detects a failure
of installed node, a notification is sent by a notification RA.
Meanwhile, a notification process checks the CIB periodi-
cally and sends a failure notification when it finds another
node failure in the CIB. To determine other node failures,
the Quorum mechanism of majority is used. This Quorum
mechanism is accurate when few nodes are down. How-
ever, if more than half the nodes of a cluster are down, a
failure notification is not sent, and operators need to manu-
ally restore virtual resources.

Before sending a notification, a notification process also
checks if the failed node is completely stopped ((See, 2)
below). Both notifications are repeated several times for
redundancy until a virtual resource arrangement scheduler
replies with an acknowledgment (ACK).

Note that Pacemaker and Libvirt monitoring modules are
monitored by normal server and process monitoring sys-
tems. If Pacemaker or Libvirt monitoring modules are
down, operators need to restore them. And it should be also
noted that there may be a false detection such as heartbeat
packets continuously lost because of network congestions.
In this case, a virtual resource arrangement scheduler starts
to restore as same as normal failure. To reduce false detec-
tions, cloud providers need to tune appropriate Pacemaker
configurations during their operations.

3.1.2 Stop Failed Server Completely by Using

STONITH

Pacemaker sometimes fails node termination. If a VM
remains on the failed node after failure notification, data
may be destroyed because an existing VM and a restored
VM access one storage area. To completely terminate a
failed node, we use the STONITH module of Pacemaker.
This module completely stops failed nodes via intelligent
platform management interface (IPMI).

Majority nodes of Quorum mechanism trigger STONITH
to prevent incomplete terminations. Note that we need to
quickly remove failed nodes from a small cluster because
Quorum judges a majority by nodes number in a cluster. If
the number of nodes is small (for example 2 or 3), remained

Custer
Info
Base

(6) check
HA clustering
software

Cluster
Info
Base

HA clustering software
(4) Node status
communication (Heartbeat)

(3) Failu re notification
of itself

(2) stop
(5) Node
status

(7) Failure notification
of other node

failure

(1) monitor

Cluster
Info
Base

HA clustering
software

ACK
ACK ACK

Receive and start restoration Ignore

(6) check

(5) Node
status

(7) Failure notification
of other node

Ignore
Virtual resource arrangement scheduler

RA RA RA Notifi-
cation
RA

Notifi-
cation
Process

Notifi-
cation
Process

Notifi-
cation
Process

RA: Resource Agent

Fig. 3. Failure detection and notification mechanism.

YAMATO ET AL.: FAST AND RELIABLE RESTORATION METHOD OF VIRTUAL RESOURCES ON OPENSTACK 575

normal nodes do not keep majority number in a cluster
when one more node fails.

3.1.3 VM Failure Detection and Notification by Libvirt

Monitoring

Virtual resources may fail not only physical servers down
but also process failures. In particular, a failed VM directly
leads to service failure and greatly impacts users.

Therefore, not only Pacemaker node monitoring but also
VM monitoring using Libvirt is needed. We developed a
Libvirt monitoring module that obtains an event from Lib-
virt, detects a failed VM, and sends a notification to a virtual
resource arrangement scheduler. Libvirt can detect not only
VM failure but also Guest OS shutdown and Host OS shut-
down of a VM.

3.2 Rebuild Virtual Resources by Using Virtual
Resource Arrangement Scheduler

A virtual resource arrangement scheduler manages the
statuses and use of physical servers to deploy virtual
resources based on business requirements. We define
three types of physical server status; “Active”, “Spare”,
and “Failure/Maintenance”. Virtual resources can be
newly deployed on Active or Spare servers. A Spare
server is used after all Active servers are filled. Spaces
for virtual resource deployments are defined to each
physical server according to its specifications. We also
manage three types of space; “Empty”, “Occupied”, and
“Buffer for failure”.

When a virtual resource arrangement scheduler is
down, it takes some time for a load balancer to separate
from the failed virtual resource arrangement scheduler.
Therefore, a failure notification is repeated several times
until either virtual resource arrangement scheduler
replies with an ACK.

Virtual resource arrangement schedulers are monitored
by normal server and process monitoring systems and oper-
ators will restore them when they are alerted that a server is
down.

3.2.1 Resource Arrangement Logic during Normal

Operation

Fig. 4 shows the virtual resource arrangement logic of nor-
mal operation. This is an example of business logic to distrib-
ute as many virtual resources as possible for load balance.
When a virtual resource is deployed, the Empty space of the

selected server is consumed. Of course, VMmemory size dif-
fers based on VM flavor which is a VM specification setting
and the consumed amount of resources differs for each VM.
For simplification, the same amount of space is consumed
for each virtual resource in Fig. 4. A virtual resource arrange-
ment scheduler arranges a virtual resource based on the
order of spaces in Fig. 4 to equalize the Empty spaces of
Active servers and to keep load balance. The Buffer for fail-
ure spaces are not used during normal operation. After a vir-
tual resource arrangement scheduler fills space #8 in Fig. 4, it
begins selecting a Spare server.

3.2.2 Resource Arrangement Logic during Physical

Server Failure

A virtual resource arrangement scheduler starts virtual
resource re-arrangement and replies with an ACK when it
receives the first failure notification. However, regarding
the VM case, to prevent data destroy by VM double mounts,
a resource arrangement scheduler starts the re-arrangement
process after it receives a notification guaranteeing the
physical server will be completely stopped by STONITH.
After a virtual resource re-arrangement process starts, the
virtual resource arrangement scheduler only replies with an
ACK for the same failure notifications and does not start
resource re-arrangement again.

Fig. 5 shows the virtual resource re-arrangement logic of
a failed physical server. Physical server #4 failed in Fig. 5. A
virtual resource arrangement scheduler selects as many
available physical servers as possible to re-build virtual
resources in parallel on many servers. For example, let us
consider the second virtual resource deployment in Figs. 4
and 5. In Fig. 4, the second virtual resource is deployed on
physical server #3 for load balance. In Fig. 5, however, the
second virtual resource is deployed on physical server #1 to
process restoration as much parallel as possible.

During failure restoration, the Buffer for failure spaces
are also used to share restoration processes among many
servers. However, a Spare server is not used until all Active
servers are filled including the Buffer for failure spaces
(after space #16 in Fig. 5 is filled).

Therefore, we can quickly restore virtual resources by
separating re-build processes in many active servers using
the Buffer for failure spaces. Because fast restoration is high
priority during failure, the restoration scheduling logic dif-
fers from normal scheduling logic.

5

4

1

2

9

103 8

6

7

11

Physical server
#1 (Active)

Physical server
#2 (Active)

Physical server
#3 (Active)

Physical server
#6 (Spare)

Physical server
#4 (Active)

Physical server
#5 (Active)

Occupied

Empty

Buffer for failure

Spaces on
physical
server

Fig. 4. Virtual resource arrangement logic during normal operation.

9

1
5

17
182

20
2115

16

10
13

6
12

19

3

11
14

7

4

8

Physical server
#1 (Active)

Physical server
#2 (Active)

Physical server
#3 (Active)

Physical server
#5 (Active)

Physical server
#4 (Failure)

Occupied

Empty

Buffer for failure

Spaces on
physical
server

Physical server
#6 (Spare)

Fig. 5. Virtual resource re-arrangement logic during server failure.

576 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2018

In practical use, HA cluster size is not so high because
of Heartbeat monitoring costs. However, a virtual
resource arrangement scheduler can arrange virtual
resources beyond a cluster, so we can re-build virtual
resources on more than cluster size servers at restoration
time. Also Pacemaker cluster does not require a Standby
node with the proposed method, we can use physical
servers effectively.

3.2.3 VM Restoration for VM Failure

When a virtual resource arrangement scheduler receives a
VM failure notification from a Libvrit monitoring module, it
replies with an ACK, determines a physical server based on
normal operation scheduling logic, deletes the VM instance,
and creates a new VM instance by OpenStack API.

3.2.4 Discussion of Limitations of Distributed

Restoration

Our proposed method aim is to restore virtual resources fast
by rearranging virtual resources on as many physical serv-
ers as possible, thus virtual resources optimum location
such as performance tuning is not considered. There are
two methods to achieve optimum arrangement considering
performances or other conditions.

The first method is that migrating virtual resources to
optimum physical servers after restoring all virtual resour-
ces. Because OpenStack provides live migration functions,
we can migrate VMs with no down time.

The other method is that rebuilding virtual resources
based on not only separating logic but also optimum
arrangement logic during restoration process. This
method adds logic of rebuilding which consider plural
conditions. For example, when OS of VM needs license,
cloud providers would like to aggregate same OS VMs
on one physical server to reduce license cost. We previ-
ously developed VM arrangement server which imple-
mented logic to select an appropriate physical server

considering software license and physical server CPU/
RAM balance [16]. The logic of [16] also can be applied
to a restoration process.

3.3 Conflicts Due to Physical Server and VM Failure

Regarding VM restoration, data may be destroyed due to
VM double mounts depending on the timing of VM and
physical server failures. Therefore, the virtual resource
arrangement scheduler manages failure notifications from
Pacemaker and Libvirt monitoring modules uniformly and
restricts concurrent restoration processes to prevent data
destroy. Table 1 lists the conflict patterns of the failure noti-
fication and restore polices of the virtual resource arrange-
ment scheduler.

Our method does not put the second notification in a
queue. The objectives with our method are not only to reli-
ably restore VMs but also to reduce VM down time. There-
fore, we need to avoid long waiting time or more than one
restoration.

For example, let us consider the fifth case in Table 1, in
which the first notification is VM failure and the second
notification is physical server failure. In this case, because
the VM deletion process is run on the failed physical
server, the deletion process is not completed and the VM
instance creation process is not started until deletion
request time out. Therefore, when a physical server fail-
ure notification is received after a VM failure notification,
our virtual resource arrangement scheduler stops the res-
toration process of the first notification and starts the res-
toration process of the second notification; thus, we can
prevent a long time out.

Based on the policies in Table 1, the virtual resource
arrangement scheduler manages the VM restoration state
uniformly and stops the first notification restoration or
ignores the second notification by taking into account the
current states of VM restoration. This can prevent data
destroy and long waiting; therefore, we can quickly and
reliably restore VMs.

TABLE 1
Restoration Policies of Failure Conflictions

First notification Second notification timing restoration policy

physical server
failure

physical
server failure

During VM clear for failed physical
server

Keep first restoration process and ignore second
notification because of same notification.

During VM create on other physical
servers
(Double failures of physical server)

Stop first restoration process and start second
notification restoration for new failure.

VM failure During VM clear for failed physical
server

Because VM clear is done for stopped physical
server, it must not happen VM failure notifica-
tion. Keep first restoration process in case of
much delayed VM failure. notification.

During VM create on other physical
servers

Stop first restoration process of the VM and start
second notification restoration for new failure.

VM failure physical server During VM instance delete on the
physical server

Stop first restoration process because it may fail
and start second notification restoration.

During VM instance create on a phys-
ical server

Stop first restoration process of the VM and start
second notification restoration for new failure.

VM failure During VM instance delete on the
physical server

Keep first restoration process and ignore second
notification because of same notification.

During VM instance create on a phys-
ical server

Stop first restoration process of the VM and start
second notification restoration for new failure.

YAMATO ET AL.: FAST AND RELIABLE RESTORATION METHOD OF VIRTUAL RESOURCES ON OPENSTACK 577

4 IMPLEMENTATION AND PERFORMANCE

EVALUATION OF PROPOSED METHOD

In this section, we discuss the implementation of the pro-
posed method and evaluate its effectiveness through perfor-
mance measurements for LR and VM restorations.

4.1 Implementation of Proposed Method

We implemented our virtual resource arrangement scheduler
onUbuntu 12.04OS andApache Tomcat 6.0 by Java language
JDK1.6.0 and Python 2.7.3. We deployed the virtual resource
arrangement scheduler on OpenStack, notification RA/pro-
cess on Pacemaker, and a Libvirt monitoringmodule.

We implemented on these tools but note that our method
can be applicable to other similar platforms and tools.
Regarding to cloud platforms, not only OpenStack but also
virtual resource management platforms such as CloudStack
[5] or Eucalyptus [6] can be used by only changing resource
management APIs to be called. Also regarding to cluster
software, not only Pacemaker and Heartbeat but also clus-
tering software with resource and cluster management
functions such as Lifekeeper or Corosync can be used by
only setting configurations to detect node failures and send
notifications. Libvirt itself is common control library of VMs
and can be used for many hypervisors such as KVM [13],
Xen [14] and VMware ESX.

Fig. 6 shows the function blocks of the virtual resource
arrangement scheduler and other related components.

The virtual resource arrangement scheduler has three
outer interfaces, OpenStack compatible API, OpenStack
communication process, and a notification handle process.
It manages requests, virtual resources, and physical server
information in the resource management DB.

Users request creating virtual resources via an Open-
Stack-compatible API, and these requests are put into a
request data table in the resource management DB. Then, a
virtual resource management function selects a physical
server to deploy and passes a request to the OpenStack com-
munication process.

The OpenStack communication process calls OpenStack
APIs to control virtual resources. It also confirms the com-
pletion of the OpenStack API process and reflects virtual
resource states to the resource management DB.

The notification handle process receives failure notifi-
cations of Pacemaker detection or Libvirt monitoring. It
reflects failure information to the resource management
DB. Then, a virtual resource management function
selects a physical server to re-build and passes the
restoration requests to the OpenStack communication
process.

Pacemaker is installed on physical servers to detect
server failures, and Libvirt monitoring modules are
installed on OpenStack Nodes for Hypervisor to detect VM
failures. Pacemaker on each node communicates other
nodes Pacemaker by Heartbeat packets.

The virtual resource management function narrows
down the candidates of physical servers to deploy using the
physical server state (Spare, Active or Failure/Maintenance)
and remained capacity (Empty, Occupied or Buffer for fail-
ure) for requested virtual resources. For selecting a physical
server for VM creation, the virtual resource management
function also uses the software information of the VM to
reduce software licensing costs. We previously described
the physical server selection logic of normal operation in
detail [16].

Using this implementation, we confirmed the feasibility
of the proposed method regarding failure detection, notifi-
cation from Pacemaker or a Libvirt monitoring module, and
restoration of virtual resources. We also confirmed that our
implementation prevented data destroy when both physical
servers and VMs were down.

4.2 Performance Measurement Conditions of LR
Restoration

4.2.1 Comparison Method

We compared the proposed method and the current high
available methods of Pacemaker Active-Standby setting and
Active-Active setting.

4.2.2 Details of Experiments

We prepared four physical servers (four-Active) for LRs and
virtual Layer2 networks (L2s), and one of these servers first
accommodated all LRs and L2s. We emulated a failure of
the physical server and restored LRs/L2s on the other three
physical servers. The Empty spaces of the three servers
were sufficient. We also prepared two virtual resource
arrangement schedulers (two-Active). The number of con-
current processes of each virtual resource arrangement
scheduler was 4 or 10.

4.2.3 Settings of Experiment Tenant and Virtual

Networks

An experiment tenant has one LR and eight L2s, and each
L2 has one VM. An LR interconnects the Internet.

4.2.4 Experimental Patterns

The numbers of experimental tenants were 1, 15, and 30.

OpenStack communication process

Resource
management DB

virtual resource management function

OpenStack compatible API

Users

Notification handle process

Physical
server data

Request
data

Virtual

Physical
server dataa

Request
data

Virtual

virtual resource
arrangement scheduler

OpenStack

Nova

Neutron

OpenStackAPI

OpenStack DB

OST-N
Pacemaker

LRLR

Libvirt

OST-H
Pacemaker

OVS

VMVM
Libvirt

OST-H
Pacemaker

OVS

VMVM

Pacemaker

LRLR

OST-N

Failure
notification OST-N: OpenStack Node

for Network

API call

OST-H: OpenStack Node
for HyperVisor

LR: logical router

VM: virtual machine

OVS: open virtual switch

Virtual resource request

Fig. 6. Function blocks of virtual resource arrangement scheduler and
other related components.

578 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2018

4.2.5 Experimental Method

Table 2 shows experimental methods of LR restoration. To
simulate network usage, the background traffic was applied
during the restoration experiments. We calculated the LR
down time by unavailable time of VM Ping.

4.3 Performance Measurement Conditions of VM
Restoration

4.3.1 Comparison Method

We compared the proposed method and the method with
[16]’s logic to reduce license cost after restoration.

4.3.2 Details of Experiments

We prepared 16 physical servers (two Pacemaker clusters of
eight Active servers) for VMs. One of these servers first
accommodated all VMs. We emulated a failure of the physi-
cal server and restored VMs to the other physical servers.
The Empty spaces of the remaining servers were sufficient,
but we set some physical servers statuses to “Maintenance”
so as not to arrange VMs on them based on the following
experimental patterns. We also prepared two virtual
resource arrangement schedulers (two-Active), and the
number of concurrent processes of each virtual resource
arrangement scheduler was 4 or 8.

4.3.3 Experimental Patterns

- The numbers of VMs deployed on a failed physical
server were 1, 10, 20, and 40.

- The number of physical servers used for restoration
were 1, 2, 4, and 15.

4.3.4 Experimental Method

Table 3 shows experimental methods of VM restoration.

4.4 Performance Measurement Environments

Fig. 7 shows the performance measurement environments,
and Table 4 shows servers specifications and usages. We
omitted maintenance servers such as syslog or backup serv-
ers in Fig. 7. Servers are connected with Gigabit Ethernet
via Layer-2 switches and Layer-3 switches.

4.5 Performance Measurement Results

Fig. 8 shows the time of each LR re-build when the num-
ber of tenants was 30 and that of concurrent processes of
each virtual resource arrangement scheduler was 4.
When a failure notification was received, LRs re-builds
were done on three physical servers. Because the number
of concurrent processes of each virtual resource arrange-
ment scheduler was 4, a maximum of eight (¼ 4�2) LRs
were created in parallel. One LR re-build took from 1 to
8 minutes (5 minutes on average), and all LR restoration
completed about 11 minutes after the first failure
notification.

Fig. 9 shows the total process time versus the number of
tenants of the proposed method (number of concurrent pro-
cesses was 4 and 10) and the current methods. Both (a) and
(b) show the same data. Fig. 9b shows that there was a slight
difference between the 4 and 10 concurrent processes. The
total restoration times took 1 minute for 1 tenant, 5 minutes
for 15 tenants and 11 minutes for 30 tenants.

For one LR restoration, the proposed method’s process
time was 1/2 that of the current method. This is because the
proposed method does not require fail-over or change-over
of an HA cluster and only calls OpenStack APIs to re-build
virtual resources. Fig. 9a shows that the total process time
of the proposed method was 1/6 that of the current meth-
ods for 15 and 30 tenants. Restoration times of current high
available methods of Active-Active setting and Active-
Standby Setting are not so much changed. Active-Active set-
ting can reduce cluster change-over time about 1 minute but

TABLE 2
Experimental Method of LR Restoration

Experiment steps

1. Ping packets were sent to all VMs
2. Background traffic was applied to the VMs
3. A physical server failure was occurred
4. After virtual resources restoration, background traffic was stopped
5. Communications with VMs by the same IP addresses were confirmed

Background traffic � 10 Mbps UDP traffic to five VMs from the Internet
� Ping traffic to five VMs every 0.5 sec from the Internet
� Ping traffic to five VMs every 0.5 sec from internal NWs

Measured time � The NAT address down time using the Ping results from the Internet
� The NAPT address down time using the Ping results from internal NWs

TABLE 3
Experimental Method of VM Restoration

Experiment steps

1. Ping packets were sent to all VMs
2. A physical server failure was occurred
3. VMs were restored by the virtual resource arrangement scheduler
4. Communications with VMs by the same IP addresses were confirmed

Measured time � Each processing time; VM clear, wait, instance creation, post process
� Total restoration time of all VMs; from failure notification to completion of last VM instance creation

YAMATO ET AL.: FAST AND RELIABLE RESTORATION METHOD OF VIRTUAL RESOURCES ON OPENSTACK 579

a LR restoration method is as same as Active-Standby set-
ting, all LR restoration time is only improved about 1 min-
ute. The proposed method restored virtual resources on the
three physical servers in these experiments and the process
time decreased to 1/6 (¼ 1/2�1/3) of current methods.

In the LR restoration experiments, the number of concur-
rent processes did not affect total process time because three
servers were used for restoration. When more servers can be
used for restoration, the number of concurrent processes is
affected and tuning based on number of servers is
necessary.

Fig. 10 shows the time of each VM restoration when a
physical server with 40 VMs was down. Two servers were
used for restoration, and the number of concurrent process
of each virtual resource arrangement scheduler was 4.
When a notification was received, the OpenStack VM clear
API was called and the VM instance creation API was called
to restore VMs on the two physical servers. Because the
number of concurrent processes of each virtual resource
arrangement scheduler was 4, a maximum of eight (¼ 4�2)
VMs could be created in parallel. Fig. 10 also indicates that
OpenStack VM clear processes are queued and progressed
sequentially and each VM instance creation started after
completion of VM clear. Though one VM clear process takes
less than 1 minute and one VM instance creation takes about
2 minute, all VM restorations take about 8-9 minutes from
the first failure notification due to the sequential VM clear
process.

Fig. 11a shows the total restoration time versus the num-
ber of servers used for restoration (for 40 VMs deployed on
a failed physical server). Fig. 11b shows the total restoration
time versus the number of VMs on a failed physical server
(for two servers used for restoration). The number of con-
current process of each virtual resource arrangement sched-
uler was 4.

TABLE 4
Servers Specifications and Usages

legend

DMZ-load balancer KVM

Glance application server

ldirectord

KVM

Glance application server

glance-api apache

nova-novncproxy

glance-api apache

nova-novncproxy

Internal-
load balancer

ldirectord

KVM

Virtual resource
arrangement

scheduler

OpenStack API server

Cinder scheduler

keystone

glance-registrynova-api

Nova-scheduler

CinderAPI

KVM

Virtual resource
arrangement

scheduler

Openstack API server

NFS
Storage

for Glance OST-H (OpenStack
node for Hypervisor)

OVS

nova-compute
iSCSI

Storage

DB (OpenStack&virtual
resources arrange scheduler)

RabbitMQ

consoleauth MySQL

Neutron

OST-N (OpenStack
node for Network)

OVS

neutron-linuxbridge-agent

Neutron-L3-Agent

Neutron-DHCP-Agent

Physical Server

Virtual Server

Module

Internet segment Control segment

KVM

User terminal

Operator terminal

apache

tomcat

API Web GUI

OpenStack
comm

process

OST-V (OpenStack
node for Volume)

Cinder volume

Cinder scheduler

keystone

nova-api

Nova-scheduler

CinderAPI

glance-registry

apache

tomcat

API Web GUI

OpenStack
comm

process

Fig. 7. Performance measurement environments.

580 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2018

Fig. 11a shows that the total restoration time of proposed
method was about 14 minutes for one restoration server
and 8-9 minutes of two restoration servers. This is because
VM instance creations require many physical server com-
puter resources and the distributed restoration method can
reduce the load of each physical server and the total restora-
tion time. However, the total restoration times of four and
15 restoration servers were almost the same as that of two
restoration servers. In VM restoration, a virtual resource
arrangement scheduler calls the VM clear API to prevent
double mounts, but VM clearances are processed sequen-
tially in OpenStack; thus, VM clearances become a bottle-
neck of VM restoration.

From Fig. 11a, when we use [14]’s logic, because same OS
VMs are arranged to a same physical server, restoration
time is not so much changed from one physical server case
of proposed method. The Proposed method can improve
restoration time when there are plural active physical serv-
ers compared to [14]’s logic. Therefore, cloud providers
need to select an appropriate restoration method based on
their service policies whether cloud providers prioritize res-
toration time or operation effectiveness after restoration.

Fig. 11b indicates that the total restoration time increases
when the number of VMs on a failed physical server
increases. One VM takes about 3 minutes and 40 VM take
about 8-9 minutes. This is because many VM clear and
instance creation processes are needed for many VMs resto-
rations. However, note that the total restoration times are
not proportional to the number of restored VMs because
VM instance creation can be processed in parallel.

In the VM restoration experiments, we set the number of
concurrent processes to 4 or 8. When one server was used

for restoration, eight concurrent processes exhibited rela-
tively fast restoration because the number of parallel VM
instance creation processes on a restored physical server
was changed. However, when two or more servers were
used for restoration, the number of concurrent processes
did not affect the total process time much because VM clear
is a bottleneck. We think that tuning the number of concur-
rent processes is not required for VM restoration.

Through restoration performance measurements, we
confirmed fast restorations for both LR and VM cases by
distributed restoration and showed the effectiveness of our
proposed method. However, in the VM case, the OpenStack
VM clear process becomes a bottleneck for fast restoration
when there are more than three physical servers for restora-
tion. The VM clear process needs to be enhanced on the
OpenStack side. We plan to discuss this with the OpenStack
community.

5 RELATED WORKS

There have been studies of resource allocations on shared
hosting or VPS hosting for effective use of physical server
resources [17], [18]. Our proposed method re-arranges vir-
tual resources on OpenStack when physical servers are
down. Because validity checks of VM deployment with soft-
ware license have different requirements from shared host-
ing, new arrangement logic is needed. Corradi et al.
investigated VM consolidation on OpenStack and consoli-
dated VMs while keeping the Service Level Agreement
(SLA) of VMs [19]. The difference is that we considered
reducing the down time of virtual resources to meet busi-
ness requirements for high-availability services.

0:00:00 0:02:00 0:04:00 0:06:00 0:08:00 0:10:00

LR-0100
LR-0300
LR-0500
LR-0700
LR-0900
LR-1100
LR-1300
LR-1500
LR-1700
LR-1900
LR-2100
LR-2300
LR-2500
LR-2700
LR-2900

concurrent process of each virtual resource arrange scheduler = 4
Remained active OST-N number = 3

Fig. 8. Logical router restoration time when number of tenants was 30.

Fig. 9. Comparison of all logical routers restoration time of proposed
method and current high available methods.

Fig. 10. VM restoration time when 40 VMs were restored to two physical
servers.

(b)(a)

Fig. 11. All virtual machines restoration time of proposed method and the
logic to reduce license cost [14]. (a) when number of servers used for
restoration were changed, (b) when number of restored VMs were
changed.

YAMATO ET AL.: FAST AND RELIABLE RESTORATION METHOD OF VIRTUAL RESOURCES ON OPENSTACK 581

Mane constructed a high-availability system on Open-
Stack [20] using Pacemaker and Corosync. Frincu and Cra-
ciun achieved high-availability applications on multi-cloud
environments [21]. Our proposed method is faster than that
of [20] which uses Pacemaker fail-over because our method
can distribute virtual resources on multiple servers beyond
Pacemaker cluster when a physical server is down. Wuhib
et al. investigated dynamic resource allocations onOpenStack
[22]. Similarly, our method also involves resource manage-
ment technology on OpenStack but it reduces the restoration
time of OpenStack virtual resources for high-availability IaaS
services. Virt-manager [23] is a tool of Libvirt information
management which can detect a failed VM, and programs
may restore using failed information. However, VM double
mounts may occur when physical servers and VMs are con-
currently down. Ourmethod prevents VMdoublemunts.

Ghosh et al. quantified the availability of IaaS cloud
[24]. They solved a large-scale IaaS model using an inter-
acting Markov chain approach. They mainly considered
physical server state changes (hot, warm, and cold), not
how to reduce the down time of virtual resources on
failed physical servers. Our goal was to reduce the mean
time to recovery (MTTR) by distributed restoration and
enhance total system availability. Morshedlou and Mey-
bodi evaluated the impact of SLA violations for two
types of users [25]. They also proposed proactive virtual
resource allocations so as not to decrease user satisfac-
tions based on users’ characteristics. Our method tries to
restore all virtual resources with equal priority. We think
the method of [25] can be used to determine which vir-
tual resource needs to be restored with high priority for
enhancing user satisfaction. Thus, this method and our
proposed one are complementary.

We also proposed our restoration method to OpenStack
community in OpenStack Summits [26]. Our method pro-
vides a uniform way to restore plural type virtual resources
fast and reliable. And our method also can be applied to
other IaaS software. Currently, OpenStack community is
discussing how to build high available virtual resources
continuously.

6 CONCLUSION

We proposed a fast and reliable restoration method of vir-
tual resources when physical servers or VMs are down for
production IaaS services on OpenStack. With the proposed
method, Pacemaker detects physical server failure and does
not fail over but sends a failure notification to a virtual
resource arrangement scheduler. The virtual resource
arrangement scheduler determines physical servers that
have enough resources for virtual resources, calls Open-
Stack APIs, and removes invalid virtual resources and re-
builds virtual resources on selected physical servers. The
virtual resource arrangement scheduler also restores a VM
by using a Libvirt monitoring module while preventing VM
double mounts when both physical servers and VMs are
down. We implemented the proposed method on Open-
Stack and measured its restoration performance.

We confirmed that the LR restoration time of the pro-
posed method was 1/2 that of the current method when
one server was used for restoration and only 1/6 when

three servers were used for restoration. This is because the
proposed method can restore virtual resources on distrib-
uted multiple physical servers beyond the HA cluster. For
VM restoration, we compared four cases when one, two,
four, and 15 servers were used for restoration. We con-
firmed that the restoration time of two restoration servers
was 60 percent that of one restoration server but almost the
same as that of four and 15 restoration servers. This is
because the VM clearance to unbind storage is processed
sequentially on OpenStack and becomes a bottleneck.

In the future, we will propose a method for reducing the
VM clearance time to the OpenStack community. We will
also modify our virtual resource arrangement scheduler for
Kilo which is the latest version of OpenStack and improve
the software quality of the virtual resource arrangement
scheduler to provide reliable carrier IaaS services based on
OpenStack.

ACKNOWLEDGMENTS

The authors thank Hiroshi Sakai and Hikaru Suzuki who
are managers of this work.

REFERENCES

[1] P. Mell and T. Grance. (2011, Sep.). The NIST definition of cloud
computing. Nat. Inst. Standards Technol., pp. 800–145. [Online].
Available: http://csrc.nist.gov/publications/nistpubs/800–145/
SP800–145.pdf

[2] Amazon Elastic Compute Cloud web site [Online]. Available:
http://aws.amazon.com/ec2/, 2015.

[3] Rackspace public cloud powered by OpenStack web site [Online].
Available: http://www.rackspace.com/cloud/, 2015.

[4] OpenStack web site [Online]. Available: http://www.openstack.
org/, 2015.

[5] CloudStack web site [Online]. Available: http://CloudStack.
apache.org/, 2015.

[6] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L.
Youseff, and D. Zagorodnov, “The eucalyptus open-source cloud-
computing system,” in Proc. 9th IEEE/ACM Int. Symp. Cluster Com-
put. Grid (CCGrid ’09), May 2009, pp. 124–131.

[7] Y. Yamato, S. Katsuragi, S. Nagao, and N. Miura, “Software main-
tenance evaluation of agile software development method based
on openstack,” IEICE Trans. Inform. Syst., vol. E98-D, pp. 1377–
1380, Jul. 2015.

[8] NTT Communications public cloud cloudn web site [Online].
Available: https://www.ntt.com/cloudn_e/, 2015.

[9] OpenStack virtual network HA bluprints web site [Online]. Avail-
able: https://blueprints.launchpad.net/neutron/þspec/l3-high-
availability, 2015.

[10] Pacemaker web site [Online]. Available: http://www.linux-ha.
org/wiki/Pacemaker/, 2015.

[11] Libvirt web site [Online]. Available: http://libvirt.org/, 2015.
[12] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S.

Shenker, “Extending networking into the virtualization layer,” in
Proc. 8th ACMWorkshop Hot Topics Netw., Oct. 2009.

[13] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori “KVM:
The linux virtual machine monitor,” in Proc. Ottawa Linux Symp.,
Jul. 2007, pp. 225–230.

[14] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in Proc. 19th ACM Symp. Operat. Syst. Principles,
Oct. 2003, pp. 164–177.

[15] IDC Frontier cloud service web site [Online]. Available: http://
www.idcf.jp/english/cloud/, 2015.

[16] Y. Yamato, Y. Nishizawa, M. Muroi, and K. Tanaka,
“Development of resource management server for carrier IaaS
services based on OpenStack,” J. Inform. Process., vol. 23, no. 1,
pp. 58–66, Jan. 2015.

[17] B. Urgaonkar, P. Shenoy, and T. Roscoe, “Resource overbooking
and application profiling in shared hosting platforms,” in Proc.
Symp. Operat. Syst. Des. Implementation, 2002, pp. 239–254.

582 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2018

[18] X. Liu, X. Zhu, P. Padala, Z. Wang, and S. Singhal, “Optimal
multivariate control for differentiated services on a shared
hosting platform,” in Proc. IEEE Conf. Decision Control, 2007,
pp. 3792–3799.

[19] A. Corradi, M. Fanelli, and L. Foschini, “VM consolidation: A real
case based on OpenStack Cloud,” Future Gener. Comput. Syst.,
vol. 32, pp. 118–127, Jun. 2012.

[20] D. Mane, “Building a high availability - OpenStack,” Int. J. Eng.
Res. Appl., vol. 3, no. 4, pp. 269–277, Jul. 2013.

[21] M. E. Frincu and C. Craciun, “Multi-objective meta-heuristics for
scheduling applications with high availability requirements and
cost constraints in multi-cloud environments,” in Proc. 4th IEEE
Int. Conf. Utility Cloud Comput., Dec. 2011, pp. 267–274.

[22] F. Wuhib, R. Stadler, and H. Lindgren, “Dynamic resource alloca-
tion with management objectives—implementation for an Open-
Stack cloud,” in Proc. 8th Int. Conf. Netw. Service Manag. Workshop
Syst. Virtualiztion Manag., Oct. 2012, pp. 309–315.

[23] Virt-manager web site [Online]. Available: http://www.virt-man-
ager.org/, 2015.

[24] R. Ghosh, F. Longo, F. Frattini, S. Russo, and K.S. Trivedi,
“Scalable analytics for IaaS cloud availability,” IEEE Trans. Cloud
Comput., vol. 2, no. 1, pp. 57–70, Apr. 2014.

[25] H. Morshedlou and M. R. Meybodi, “Decreasing impact of SLA
violations: A proactive resource allocation approach for cloud
computing environments,” IEEE Trans. Cloud Comput., vol. 2,
no. 2, pp. 156–167, Jul. 2014.

[26] T. Watanabe, “VM high availability without modifying VM
settings,” in Proc. OpenStack Summit Atlanta, May 2014.

Yoji Yamato was born in Tokyo, Japan, in 1977.
He received the BS and MS degrees in physics
and the PhD degree in general systems studies
from the University of Tokyo, Japan, in 2000,
2002, and 2009, respectively. He joined NTT Cor-
poration, Japan, in 2002. He has been engaged
there in developmental research of the cloud com-
puting platform, peer-to-peer computing, and ser-
vice delivery platform. He is currently a senior
research engineer in the NTT Software Innovation
Center. He is amember of the IEEE and IEICE.

Yukihisa Nishizawa is a senior research engi-
neer in the NTT Software Innovation Center,
Japan.

Shinji Nagao is a senior research engineer in the
NTT Software Innovation Center, Japan.

Kenichi Sato is a senior research engineer,
supervisor in the NTT Software Innovation
Center, Japan.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

YAMATO ET AL.: FAST AND RELIABLE RESTORATION METHOD OF VIRTUAL RESOURCES ON OPENSTACK 583

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

