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Abstract—The increasingly wide application of Cloud Computing enables the consolidation of tens of thousands of applications in

shared infrastructures. Thus, meeting the QoS requirements of so many diverse applications in such shared resource environments

has become a real challenge, especially since the characteristics and workload of applications differ widely and may change over time.

This paper presents an experimental system that can exploit a variety of online QoS aware adaptive task allocation schemes, and three

such schemes are designed and compared. These are a measurement driven algorithm that uses reinforcement learning, secondly a

“sensible” allocation algorithm that assigns tasks to sub-systems that are observed to provide a lower response time, and then an

algorithm that splits the task arrival stream into sub-streams at rates computed from the hosts’ processing capabilities. All of these

schemes are compared via measurements among themselves and with a simple round-robin scheduler, on two experimental test-beds

with homogenous and heterogenous hosts having different processing capacities.

Index Terms—Cognitive packet network, random neural network, reinforcement learning, sensible decision algorithm, task allocation,

cloud computing, task scheduling, Round Robin
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1 INTRODUCTION

CLOUD computing enables elasticity and scalability of
computing resources such as networks, servers, storage,

applications, and services, which constitute a shared pool,
providing on-demand services at the level of infrastructure,
platform and software [1]. This makes it realistic to deliver
computing services in a manner similar to utilities such
as water and electricity where service providers take the
responsibility of constructing IT infrastructure and end-
users make use of the services through the Internet in a pay-
as-you-gomanner. This convenient and cost-effective way of
access to services boosts the application of Cloud computing,
which spans many domains including scientific, health care,
government, banking, social networks, and commerce [2].

An increasing number of applications from the general
public or enterprise users are running in the Cloud, generat-
ing a diverse set of workloads in terms of resource demands,
performance requirements and task execution [3]. For exam-
ple, multi-tier web applications composed of several compo-
nents which are commonly deployed on different nodes [4]
impose varied stress on the respective node, and create inter-
actions across components. Tasks being executed in a cloud
environment may be of very different types, such as Web
requests that demand fast response and produce loads that
vary significantly over time [5], and scientific applications
that are computation intensive and may undergo several
phases with varied workload profiles [6], and MapReduce
tasks can be composed of different tasks of various sizes and
resource requirements [5]. Furthermore, Cloud Computing
enables highly heterogeneous workloads to be served on a

shared IT infrastructure leading to inevitable interference
between co-located workloads [7], while end users require
assurance of the quality and reliability of the execution of the
tasks that they submit. Therefore, the cloud service provider
must dispatch incoming tasks to servers with consideration
for the quality of service (QoS) and cost within a diverse and
complex workload environment. Also, energy consumption
remains a major issue that can be mitigated through judi-
cious energy-aware scheduling [8].

Thus the present paper focuses primarily ondesigning and
evaluating adaptive schemes that exploit on-line measure-
ment and take decisions with low computational overhead
for fast on-line decision making. This work can be relevant to
Cloud service providers that use the SaaS model where
customers pay for the services, while the service provider sets
up the VMs where the required software components are
installed to deal with the service requests from the customer.

Our experimental evaluations are conducted on a mul-
tiple host test-bed, running with low to high loads that
are achieved by varying the types and arrival rates of
tasks. To conduct these experiments with greater ease, we
have also designed and implemented a portable software
module, the Task Allocation Platform (TAP), that is Linux
based and easily installed on a Linux based machine.
TAP will dynamically allocate user tasks to the available
machines, with or without making use of on-line meas-
urements of the resulting performance, and adapt to
changes in workload and on-going performance of the
Cloud environment, while optimising goals such as cloud
provider’s profit while maintaining service level agree-
ments (SLAs). TAP is flexible in that it can easily support
distinct static or dynamic allocation schemes. It collects
measurements on the test-bed, both to report on perfor-
mance evaluation and also (for certain allocation algo-
rithms) to exploit measurements for adaptive decisions.

Thus in this paper we will report on the performance
observed with two well known static allocation algo-
rithms (Round-Robin and a probabilistic “equal loading”
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scheme), and three dynamic algorithms that are described
in Section 3.1.

2 PRIOR WORK

Extensive research in this challenging area includes work on
static algorithms [9], [10], [11] which are simple without
excessive overhead; but they are only suitable for stable envi-
ronments, and cannot easily adapt to dynamic changes in the
cloud. Dynamic algorithms [12], [13], [14], [15] take into con-
sideration different application characteristics and workload
profiles both prior to, and during, run-time; however their
complexity can result in computational overhead that may
cause performance degradation when implemented in a real
system. Thus, many dynamic and adaptive schemes have
only been evaluated through simulations [16] rather than in
practical experiments, while few have been tested in real
environments but with low task arrival rates [3].

Much work on task assignment in the cloud is based on a
detailed representation of tasks to be executed with a rather
simplistic representation of the hosts or processing sub-sys-
tems, leading to an evaluation based on simulation experi-
ments rather than measurements on a real system. In [17] an
application composed of many tasks is represented by a
directed acyclic graph (DAG) where tasks, inter-task depen-
dency, computation cost, and inter-task communication
cost are represented; two performance-effective and low-
complexity algorithms rank the tasks to assign them to
a processor in a heterogeneous environment. Related work
is presented in [18], [19], while optimisation algorithms
based on genetic algorithms [20], ant colony optimisation
(ACO) [21], Particle Swarm optimisation [22], Random Neu-
ral Network (RNN) optimisation [23], and auction-based
mechanisms [24] have also been studied in this context,
with potential applications to workload scheduling in the
cloud [25]. In [26], workload models which reflect the
diversity of users and tasks in a cloud production environ-
ment are obtained from a large number of tasks and users
over a one month period, and exploited for evaluation in a
simulated CloudSim framework.

Other work has used experiments on real test-beds rather
than simulations [5] where the characteristics of the typical
heterogeneous workloads: parallel batch tasks, web servers,
search engines, andMapReduce tasks, result in resource pro-
visioning in a manner that reduces costs for the cloud itself.
Another cost-effective resource provisioning system dedi-
cated to MapReduce tasks [27] uses global resource optimi-
sation. Hardware platform heterogeneity and co-scheduled
workload interference are highlighted in [3], where robust
analytical methods and collaborative filtering techniques are
used to classify incoming workloads in terms of heterogene-
ity and interference before being greedily scheduled in a
manner that achieves interference minimisation and server
utilization maximization. The system is evaluated with a
wide range of workload scenarios on both a small scale com-
puter cluster and a large-scale Cloud environment applying
Amazon EC2 to show its scalability and low computation
overhead. However, the arrival rate of incoming workload is
low and thus the system performance under saturation state
is not examined. Furthermore, the contention for processor
cache, memory controller and memory bus incurred by col-
locatedworkloads are studied in [28].

Early research that considers the important role of servers
in delivering QoS in the Internet can be found in [29], where
an architecture is proposed which provides web request clas-
sification, admission control, and scheduling with several pri-
ority policies to support distinct QoS requirements for
different classes of users formulti-tierweb applications. How-
ever, the scheduling approach is static and in [4], an adaptive
feed-back driven resource control system is developed to
dynamically provision resource sharing formulti-tier applica-
tions in order to achieve both high resource utilization and
application-level QoS. A two-tiered on-demand resource allo-
cation mechanism is presented in [30] with local allocation
within a server and global allocation based on each local one,
so as to achieve better resource utilization and dynamically
adjust according to time-varying capacity demands. Energy
consumption in computation, data storage and communica-
tions is also a challenge in the cloud. A model for server per-
formance and power consumption is derived in [31] with the
potential to predict power usage in terms of workload inten-
sity. In [8], the authors examine the selection of system load
that provides the best trade-off between energy consumption
andQoS. A heterogeneity-aware dynamic capacity provision-
ing scheme for cloud data centers is proposed in [32], which
classifies workloads based on the heterogeneity of both work-
load and machine hardware and dynamically adjusts the
number of machines so as to optimise overall energy con-
sumption and scheduling delay.

3 OVERVIEW OF THIS PAPER

The present paper uses experiments to investigate adaptive
dynamic allocation algorithms that take decisions based on
on-line and up-to-date measurements, and make fast online
decisions to achieve desirable QoS levels [33]. The TAP that
we have designed to this effect is a practical system imple-
mented as a Linux kernel module which can be easily
installed and loaded on any PC with the Linux OS.

TAP runs on a given host, and embeds measurement
agents into each host in a cloud to observe the system’s state.
These observations are then collected by “smart packets”
(SPs) that TAP sends at regular intervals into the system in a
manner which favours the search of those sub-systems
which are of the greatest interest because they may be used
more frequently or because they could provide better perfor-
mance. The remainder of the paper is organized as follows.

The task allocation algorithms, including three novel
approaches, are discussed in Section 3.1. TAP, the task allo-
cation platform that we have designed, is discussed in
Section 4, where the dynamic algorithms are introduced.
Section 4.1 discusses all the three measurement based allo-
cation schemes, including a mathematical model based
scheme presented in Section 4.1.1, the Sensible Algorithm in
Section 4.1.2, and the scheme that uses the RNN with rein-
forcement learning (RL) in Section 5.

The experimental results are introduced in Section 6, and
first comparison of the different allocation schemes is pre-
sented in Section 7. In Section 7.2 we present further experi-
mental results when the hosts being used have distinctly
different processing speeds.

In Section 8 we introduce a “contradictory” performance
metric based on the economic cost, as perceived by the
cloud platform, of executing tasks: this cost includes the
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penalty that the cloudwould have to pay to the end user when
a SLA is violated, as well as the intrinsic economic cost of
using faster or slower hosts. This same cost function is used
for task allocation in view ofminimising the overall cost to the
cloud service, and it is then measured and reported for both
the Sensible and the RNNbased algorithms.

Finally, Section 9 draws our main conclusions and dis-
cusses directions for future research.

3.1 The Task Allocation Algorithms that Are
Investigated

In this paper we design, implement in TAP and then experi-
ment with several allocation algorithms:

� a) round robin allocation of incoming tasks to dis-
tinct hosts,

� b) a scheme that simply dispatches tasks with equal
probability among hosts,

� c) an allocation scheme that uses measurements of
the execution times (ETs) of tasks at hosts to allocate
tasks probabilistically, where the probabilities are
chosen via a mathematical model prediction so as to
minimise the average response time (RT) for all tasks,

� d) a Random Neural Network (RNN) [34], [35] based
scheme that uses reinforcement learning with a
numerically defined goal function that is updated
with measurements brought back to TAP by SPs, and

� e) an on-line greedy adaptive algorithm we call
“sensible routing” [36] that selects probabilistically
the host whose measured QoS is the best.

To the best of our knowledge, the approaches (d) and (e)
have not been used before for task allocation in Cloud or
other multi-server environments, though related ideas were
suggested for selecting packet routes in multi-hop packet
networks [37]. On the other hand, (a) and (b) are well
known algorithms that are useful as benchmarks, and a
scheme similar to (c) has been proposed in [8] for imple-
menting trade-offs between energy consumption and qual-
ity-of-service in multiple-server computer systems.

We evaluate these schemes under varied task arrival rate
via experiments on two test-beds: a cluster composed of hosts
with similar processing speeds, and another one with where
the hosts have significantly distinct processing capacities.
The experimental results are then analysed and reported.

4 TASK ALLOCATION PLATFORM AND TEST-BED

TAP carries out online monitoring and measurement con-
stantly in order to keep track of the state of the Cloud
system, including resource utilisation (CPU, memory, and
I/O), system load, application-level QoS requirements, such
as task response time and bandwidth, as well as energy con-
sumption, and possibly also (in future versions of TAP) sys-
tem security and economic cost. With knowledge learned
from these observations, the system can employ the QoS
driven task allocation algorithms that we have designed, to
make online decisions to achieve the best possible QoS as
specified by the tasks’ owners, while adapting to conditions
that vary over time.

Fig. 1 shows TAP’s building blocks. The controller, which
is the intellectual center of the system, accommodates the

online task allocation algorithms, which work alongside the
learning algorithm, with the potential to adaptively opti-
mise the use of the cloud infrastructure. TAP penetrates
into the cloud infrastructure by deploying measurement
agents to conduct online observations that are relevant to
the QoS requirements of end users, and send back the meas-
urements to the controller. Three types of packets are used
[37] for communications between the components of the
system: smart packets for discovery and measurement,
dumb packets (DPs) for carrying task requests or tasks, and
acknowledgement packets (ACKs) that carry back the infor-
mation that has been discovered by SPs. In this section, we
present in detail the mechanisms that are implemented in
the platform and the algorithms that are used.

SPs are first sent at random to the various hosts in order
to obtain some initial information and inform the measure-
ment agents in the hosts to activate the requested measure-
ment. The task allocation algorithm in TAP learns from the
information carried back by the ACKs and makes adap-
tively optimised decisions which are used to direct the sub-
sequent SPs. Thus, the SPs collect online measurements in
an efficient manner and pay more attention to the part of
the cloud where better QoS can be offered, visiting the
worse performing parts less frequently.

The incoming tasks or task requests are encapsulated into
the DPs, and exploit the decisions explored by SPs to select
the host/Cloud sub-system that will execute the task. Once a
task (request) arrives at a host in the cloud, its monitoring is
started by the measurement agent which records the trace of
the task execution until it is completed and deposits the
records into amailboxwhich is located in the kernel memory
of the host. When an SP arrives at this host, it collects the
measurements in the mailbox and generates an ACK which
carries the measurements, and travels back to the controller
where themeasurement data is extracted and used for subse-
quent decisions of the task allocation algorithm. As soon as a
task completes its execution, the agent also produces an
ACK heading back to the controller with all the recorded
data, such as the task arrival time at the Cloud, the time at
which the task started running and the time at which the
task execution completed. When the ACK of the DP reaches
the controller, the task response time at the controller is esti-
mated by taking the difference between the current arrival
time at the node and the time at which the corresponding
task arrives at the controller which is used by the algorithm
when the task response time is required to beminimised.

Fig. 1. System Architecture showing the Task Allocation Platform, which
is hosted by a specific computer that receives and dispatches jobs, and
which interacts with the measurement system (at the right) which is
installed on each host machine that executes jobs. The TAP communi-
cates with each of the measurement systems at the hosts using SPs,
DPs and ACKs as indicated in the text of the paper.
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4.1 Probabilistic Task Allocation Schemes

The schemes (b), (c), and (e) described in Section 3.1 are
examples of probabilistic task allocation schemes. In these
schemes, when a task arrives from some user or source out-
side the Cloud system, TAP decides to allocate it to some
host i among the N possible hosts with probability pi so that
at decision time when the task must be allocated:

� TAP first calculates pi for each of the hosts i,
� Then TAP uses these probabilities to actually select

the host that will receive the task.

In the case of (b) we obviously have pi ¼ 1=N .
Probabilistic schemes have the advantage that a host which

is being preferred because, say it is providing better service, is
not systematically overloaded by repeated allocation since the
QoS it offers is only used probabilistically to make a task allo-
cation. In other words, the chance that a given server receives
two successive tasks is very small as compared to the case
where successive tasks are allocated to distinct servers.

In addition to (b), we experiment with two distinct
schemes to calculate pi, Model Based Allocation (c) and Sen-
sible Routing (e).

4.1.1 Model Based Task Allocation

Model Based Allocation (c) uses a mathematical model to
predict the estimated performance at a host in order to
make a randomised task allocation. This has been used in
earlier work concerning task allocation schemes that help
reduce the overall energy consumed in a system [8]. In this
approach, if Wið�; piÞ is the relevant QoS metric obtained
for host i by allocating a randomised fraction pi of tasks to
host i when the overall arrival rate of tasks to TAP is �, then
the allocation probabilities p1; . . . ; pN are chosen so as to
minimise the overall average QoS metric:

W ¼
XN
i¼1

piWið�; piÞ: (1)

At first glance, since each host i is a multiple-core machine
with Ci cores, a simple mathematical model that can be
used to compute, say the QoS metric “response time”
Wið�; piÞ that host i provides, assuming that there are
no main memory limitations and no interference among
processors (for instance for memory or disk access), is the
M=M=Ci queueing model [38], i.e. with Poisson arrivals,
exponential service times, and Ci servers. Of course,
both the Poisson arrival and the exponential service

time assumptions are simplifications of reality, and more
detailed and precise models are also possible for instance
using diffusion approximations [39] but would require
greater computational effort and more measurement data.

However, a set of simple experiments we have con-
ducted show that the M=M=K model for each host would
not correspond to reality. Indeed, in Fig. 2 we report the
measured completion rate of tasks on a host (y-axis) relative
to the execution time for a single task running by itself, as
a function of the number of simultaneously running tasks
(x-axis). These measurements were conducted on a single
host (Host 1), and for a single task running on the system,
the average task processing time was 64:1ms.

If this were a perfectly running ideal parallel processing
system, we could observe something close to a linear
increase in the completion rate of tasks (red dots) when the
number of simultaneously running tasks increases, until the
number of cores in the machine C1 have been reached.
However the measurements shown in Fig. 2 indicate (blue
dots) a significant increase in completion rate as the number
of tasks goes from 1 to 2, but then the rate remains constant,
which reveals that there may be significant interference
between tasks due to competition for resources. Indeed,
if we call gðlÞ the average completion rate per task,
we observed the following values for giðlÞ=gið1Þ for
l ¼ 2; . . . ; 10 computed to two decimal digits: 0:67; 0:48; 0:34;
0:29; 0:23; 0:20; 0:17; 0:15; 0:13. From this data, a linear
regression estimate was then computed for the average

execution timemðiÞ�1 when there are l tasks running simulta-
neously, as shown on Fig. 3, yielding a quasi-linear increase.
As a result we can quite accurately use the estimate
l:gðlÞ=gð1Þ � 1:386. Based on this measured data, we model
the distribution of the number of tasks in a host server i as a
randomwalk on the non-negative integers, where:

� l ¼ 0 represents the empty host (i.e. with zero tasks
at the host),

� The transition rate from any state l � 0 to state lþ 1
is the arrival rate of tasks to the host �i,

� The transition rate from state 1 to state 0 is the

mið1Þ ¼ T�1i where Ti is the average execution time
of a task (by itself) on the host,

� The transition rate from state lþ 1 to state l if l � 1 is
quasi constant given by mi0 � ðl:gðlÞ=gð1ÞÞmið1Þ,

� The arrival rate of tasks to Host i is �i ¼ pmi � where
pmi is the probability with which TAP using the
model based algorithm assigns tasks to Host i, and �
is the overall arrival rate of tasks to TAP.

Fig. 2. The ideal service rate provided by the perfect multiple core
system (red), compared to the measured task completion rate on Host 1
(blue), plotted against the number of tasks running simultaneously on
the host (x-axis).

Fig. 3. Measurement of the effective task execution time per task on
Host 1, versus the number of simultaneously running tasks on the host
(x-axis).
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The probability that there are l tasks at Host i in steady-
state is then:

pið1Þ ¼ pið0Þ �i

mið1Þ
; piðlÞ ¼ �i

mi0

� �l�1
pið1Þ; l > 1;

pið0Þ ¼
1� �i

mi0

1þ �i
mi0�mið1Þ
mi0mið1Þ

:

Using Little’s formula [38] the overall average response
times that we wish to minimise, by choosing the pmi for a
given � is:

Wm ¼
XN
i¼1

pmi
mið1Þ

pið0Þ
ð1� �i

mi0
Þ2 : (2)

The appropriate values of the pmi for a given system and a
given arrival rate � can be then obtained numerically.

To illustrate this approach for the specific service time
data regarding the three hosts that we use, in Fig. 4 we
show the variation of the average task response time with
different combinations of ½�1; �2; �3�, when � ¼ 20 tasks=sec.

4.1.2 Sensible Routing

The Sensible Decision Algorithm (e) uses a weighted
average of Gi of the goal function that we wish to mini-
mise, which is estimated from on-going measurements at
each host i, and updated each time t that TAP receives a
measurement that can be used to update the goal func-
tion. Specifically, when the goal function is the response

time, its most recently measured value at time t, Gt
i, is

received at TAP for host i, and the nth update of Gi is
computed:

Gi  ð1� aÞGi þ aGt
i; (3)

where the parameter 0 � a � 1 is used to vary the weight
given to the most recent measurement as compared to past
values. Based on updating this value for each host i, the
probability psi that will be used to allocate a task to host i is:

pSi ¼
1
GiPN
j¼1

1
Gj

; 1 � i � N: (4)

If TAP allocates a task with this approach, it will use the
most recent value of the pSi which is available. Note that all
of the Gi values for different i will not be equally “fresh”,

though the probing via SPs from TAP to the hosts proceeds
at the same rate for all the hosts.

5 RANDOM NEURAL NETWORK TASK ALLOCATION

WITH REINFORCEMENT LEARNING

The Random Neural Network has been used in static
resource allocation as a “smart oracle” for allocating several
resources to a set of tasks so as to minimise task execution
times [35]. This earlier approach was based on first comput-
ing algorithmically a large set of optimum resource-to-task
allocations, and then storing them in the RNN weights
through a gradient descent learning algorithm. In order to
select the best allocation, the trained RNN is then given an
input which represents the set of available tasks, and it out-
puts the best known allocation.

This earlier work differs completely from the approach
used in this paper which is based on on-line search, similar
to the search by autonomous robots [40], [41], [42] with rein-
forcement learning [43] with real-time measurements. The
RNN has also been used for packet routing [44]; in that
work, an RNN placed at each router to select the next hop
for probe (or smart) packets which explore routes and col-
lect quality of service information. Thus the probes are
routed to explore the better paths in the network, and bring
back the data they collect to each source router. End users
then examine the data available at the source nodes, and
select the best current paths from the data collected by the
by the probes. This approach, where the RNNs serve to
route the probes (but not the user traffic) also differs from
the approach in this paper, where an RNN is used to decide,
for a given task, which server should be used.

In the present work, a RNN is used to select between N
hosts to which a task will be allocated, using its N neurons
in a fully connected form [23]. Each neuron i is character-
ised by an integer kiðtÞ � 0 which is its “level of excitation”,
where t represents time, and each neuron is connected to
other neurons both via excitatory and inhibitory weights.
Furthermore, for the specific application for TAP, each neu-
ron is identified with a particular host, i.e. neuron i is identi-
fied with the decision to assign a task to host i. The
theoretical underpinning of the RNN [45] is a theorem that
states that, at the equilibrium state, the probabilities:

qi ¼ lim
t!1Prob½kiðtÞ > 0�; (5)

are uniquely obtained from the expression:

qi ¼
LðiÞ þPN

j¼1 qjw
þðj; iÞ

rðiÞ þ �ðiÞ þPN
j¼1 qjw�ðj; iÞ

; (6)

where the wþðj; iÞ and w�ðj; iÞ are the excitatory and inhibi-
tory weights from neuron j to neuron i with wþði; iÞ ¼
w�ði; iÞ ¼ 0. LðiÞ and �ðiÞ are the inputs of external excit-
atory and inhibitory signals to neuron i, while:

rðiÞ ¼
XN
j¼1
½wþði; jÞ þ w�ði; jÞ�: (7)

In the present case, a distinct RNN is set up within TAP
to cover each distinct goal function G. However, these

Fig. 4. Variation of the overall average task response time predicted by
the infinite server model, with different combinations of ½�1; �2; �3�, when
� ¼ �1 þ �2 þ �3 is set to 20 tasks per second.
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different RNNs need not be created in advance and stored
at TAP indefinitely, but instead created when they are actu-
ally needed. Thus we will have a distinct RNN that is used
to decide about allocations made on the basis of minimising
economic cost (as when the end users pay a monetary price
for the work they receive), or minimising task response
time, or minimising task execution time, and so on.

A given RNN is initialised by setting wþði; jÞ ¼
w�ði; jÞ ¼ 1=2ðN � 1Þ, so that rðiÞ ¼ 1 for all i, and
LðiÞ ¼ 0:25þ 0:5�ðiÞ. In particular we can choose �ðiÞ ¼ 0
so that all LðiÞ ¼ 0:25. This of course results in qi ¼ 0:5
for all i.

TAP will then use the qi; i ¼ 1; . . . ; N to make allocations
so that a task is assigned to the host i that corresponds to
the highest value of qi. Initially, any one of the hosts will be
chosen with equal probability. However with successive
updates of the weights, this will change so that TAP selects
the “better” hosts which provide a smaller value of G.

When TAP receives a value Gt
i of the goal function that

was measured at time t at host i, and 1
Gt
i

is the “reward”, so

that the RNN weights are updated as follows:

� We first update a decision threshold Tl as

T  aT þ ð1� aÞ 1
Gt

i

; (8)

where 0 < a < 1 is a parameter used to vary the rel-
ative importance of “past history”.

� Then, if Gt
i < T , it is considered that the advice pro-

vided by the RNN in the past was successful and
TAP updates the weights as follows:

wþðj; iÞ  wþðj; iÞ þ 1

Gt
i

w�ðj; kÞ  w�ðj; kÞ þ 1

Gt
iðN � 2Þ ; if k 6¼ i:

� else if Gt
i > T

wþðj; kÞ  ;wþðj; kÞ þ 1

Gt
iðN � 2Þ ; if k 6¼ i

w�ðj; iÞ  w�ði; jÞ þ 1

Gt
i

:

� We compute r	ðiÞ ¼PN
k¼1½wþði; kÞ þ w�ði; kÞ� for all i

and renormalise all weights so that their values do
not grow indefinitely:

wþði; kÞ  rðiÞ
r	ðiÞw

þði; kÞ; w�ði; kÞ  rðiÞ
r	ðiÞw

�ði; kÞ: (9)

After the weights are updated, the qi are computed using
(6) with the new weights. Since this algorithm will tend to
increase the probability qi of those neurons which corre-
spond to hosts that yield a smaller value of Gi, each time
TAP assigns a task to a host, it uses the host i that corre-
sponds to the largest qi.

In order to make sure that TAP tries out other alternates
and does not miss out on better options, a fraction f of the
decisions are made in round robin fashion: thus we are sure

that all hosts will be tried out in succession for f 
 100% of
the decisions, and the resulting goal function values will
also be collected and updated. In the experiments that we
describe below, f was taken to be 0:1, i.e. 10 percent. We
have actually evaluated this percentage experimentally and
found 10 percent to provide the best value in the setting of
our experiments, but depending on the size of the system
this percentage may vary.

Note also that this algorithm can be modified to a proba-
bilistic “sensible” version [36] with:

pRNN�S
i ¼ qiPN

j¼1 qj
: (10)

6 EXPERIMENTS

We conduct our experiments on a hardware test-bed com-
posed of four nodes that each offer computation, storage
and I/O. One node is dedicated to supporting the decision
algorithms implemented in TAP, and the other three nodes
are used as hosts running task, as shown in Fig. 5, with each
having a different processing power so that we may observe
significant execution time differences for a given task. Since
TAP takes decisions based on online measurements, even
when there are no incoming tasks, the system maintains
awareness of the state of the cloud by sending SPs periodi-
cally. End users are allowed to declare the QoS require-
ments related to the tasks they submit, which is then
translated into one or more QoS metrics which constitute a
function called the “goal function” in our system. In this
way, the QoS requirements are transformed into a goal
function to be minimised, e.g., the minimisation of the task
response time. The goal function determines which system
parameters need to be measured and how task allocation
will be optimised. TAP is implemented as a Linux kernel
module which can be easily installed and loaded on any PC
with Linux OS. The three hosts (with 2.8, 2.4, and 3.0 GHz,
respectively, dual-core CPU respectively) are used for task
execution, while a separate host (2.8 GHz dual-core CPU)
supports the controller.

In these experiments we use a small scale test-bed so that
we may easily load, and saturate, the system and evaluate

Fig. 5. Schematic description of the task allocation test-bed. Jobs arrive
at the controller machine for dispatching to the hosts. The TAP software
is installed at the controller and takes the dispatching decisions. TAP
takes decisions based on data it gathers from each of the measurement
systems (at the right) which are installed on each host machine that exe-
cutes jobs.
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the algorithms in both high, medium and low load condi-
tions. However, TAP is scalable because most SPs are sent
to to those hosts which are providing better performance,
so that there is no “flooding” of SPs across the system.

A synthetic benchmark is generated with task profiles
indicated by using the fields ftask ID;QoS requirement;
task Sizeg, which are packetised into an IP packet and sent
to the controller. The task request generator uses this infor-
mation to forward task requests to TAP. In order to vary
the load, in addition to using tasks with distinct CPU and
I/O needs, the average time between successive task initiali-
sations is varied, and these times are either of fixed duration
(denoted by CR in the figures), or follow a Poisson process
denoted by EXP .

The first set of experiments we report were run with
tasks that were defined as a “prime number generator with
an upper bound B on the prime number being generated”.
Thus the choice of B allowed us to vary both the execution
time and the memory requirements of the task. We did not
actually “transfer” the tasks from the task controller to the
host, but rather installed the task in advance on the host,
and the allocation decision by TAP just resulted in arrival of
a message from TAP to activate the task with specific value
of B on that particular host. The measurement agent resi-
dent on that host then monitored the task execution and
recorded its measurements into the mailbox. Both the tasks
and the measurement agent run in the user’s memory space,
while the module that receives the SPs and task requests
carried by DPs, collects measurements from the mailbox,
and generates ACKs with the collected measurements runs
in the kernel space of memory as shown in Fig. 5, so that
interference between the user program and the system
aspects are avoided at least within the memory.

The two QoS goals that were considered were (i) the min-
imisation of either the execution time (denoted by ET in the
figures) on the host, and (ii) the minimisation of the
response time (denoted by RT in the figures) at TAP, where
RT includes the message sent to activate the task at a host
and the time it takes for an ACK to provide information
back to TAP, where both the ET and the RT are provided to
TAP from the host to the controller.

We first used TAP with the RNN algorithm with Rein-
forcement Learning as described above, and TAP with the
sensible decision algorithm, and compared their perfor-
mance. The RNN based TAP was experimented with both
(i) and (ii), whereas the sensible decision based TAP only
used (ii) the task response time at the controller.

In addition, according to the analytical model based
approach was with (ii) task response time computed in
terms of the task arrival rate and the system service rate,
and then used to determine the optimum values of �1, �2, �3

corresponding to the three hosts subject to � ¼ �1 þ �2 þ �3,
with an aim to minimise the overall task response time of
the system as in (2), and then conducted experiments with
task allocation probabilities to the three hosts selected so as
to result in the arrival streams to the three hosts having the
rates recommended by the analytical solution.

We also compared two static allocation schemes: Round
Robin where successive tasks are sent to each host of the
cluster in turn, and an equally probable allocation where a
task is dispatched to each host with equal probability 0:33.

All these experiments were repeated for a range of aver-
age task arrival rates � equal to 1; 2; 4; 8; 12; 16; 20; 25; 30; 40
tasks/sec, in order to evaluate performance under load
conditions that vary from light to heavy load, including
saturation. Each experiment lasted 5 mins so as to achieve a
stable state.

7 COMPARISON OF THE DIFFERENT ALGORITHMS

We first compared the two approaches, the RNN and the
Sensible Algorithm, based on the measured average task
response time observed at the controller, the average task
response time at the host and the average task execution
time. We see that the three metrics exhibit the same trend as
shown in Fig. 6.

At low task arrival rates less than 8/s, the RNN with RL
performs better as shown in Fig. 6d, and it is even clearer
with constant task arrival rates. However, as the average
task arrival rates grows, the sensible decision algorithm out-
performs the RNN, as in Fig. 6c. Also the RNN algorithm
with online measurement of the task execution time always
performs better than the RNN with the metric of task
response time. However, the sensible decision is always
best under high task arrival rates, as shown in Fig. 6c .

To understand these experimental results, we note that in
these experiments, we use CPU intensive tasks, and each of
them experiences a longer execution time than when they
are executed separately due to the competition for the same
physical resource, namely the CPU. Indeed, the hosts are
multi-core machines running Linux with a multitasking
capability so that multiple tasks will run together and inter-
fere with each other as shown in Fig. 3. It can be found that,
for example, if four tasks running in parallel, the average
execution/response time per task increases two times. That
is to say, the fluctuation of the execution time that the tasks
experienced under varied number of tasks in the system is
quite significant. Since the RNN with RL will send the tasks
to the best performing hosts, it will tend to overload them,
contrary to the Sensible Algorithm which dispatches tasks
probabilistically and therefore tends to spread the load in a
better manner.

When RNN used the task execution time as the QoS crite-
rion, Fig. 7a shows that it dispatched the majority of tasks
correctly to Host 3which provided the shortest service time.
The other two hosts accommodated some tasks because the
RNN algorithm was programmed to make 10 percent of its
decisions at random with equal probability. Here, the sensi-
ble decision algorithm performed worse because it makes
task allocation decision with a probability that is inversely
proportional to the task response time/execution time,
instead of exactly following the best QoS as the RNN. As
shown in Fig. 7b, the proportion of the tasks allocated with
the sensible decision algorithm coincides with the propor-
tion of the respective speeds of the three hosts.

On the other hand, the Sensible Algorithm benefits from
the fact that it does not overload the “best” hosts as shown
in Fig. 6c where the tasks may sometimes arrive to a host at
rate that is higher than the host’s average processing rate,
leading to overload or saturation of the host. In Fig. 6 we
also see that the RNN based algorithm, that uses the task
execution time measured at the hosts as the QoS goal,
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outperforms the RNN with online measurement of the task
response time, because the execution time can be a more

accurate predictor of overall performance when the commu-
nication times between the hosts and TAP fluctuate signifi-
cantly. However at high task arrival rates, the Sensible
Algorithm again performed better.

7.1 Comparison with the Model Based and Static
Allocation Schemes

Fig. 8 shows the average task execution time for the RNN
and the Sensible Algorithm, in comparison with the model
based scheme, as well as the Round Robin and Equally
Probable allocation. The model based scheme performed
better than the RNN when the task arrival rate was low,
and better than the Sensible Algorithm at high arrival rates.
However, the model based scheme can be viewed as an
“ideal benchmark” since it relies on full information: it
assumes knowledge of the arrival rate, it supposes that
arrivals are Poisson, and it assumes knowledge of the task
service rates at each host, while the RNN based scheme just
observes the most recent measurement of the goal function.

As expected the equally probable allocation scheme per-
formed worse. In this case where all servers are roughly
equivalent in speed, Round Robin always outperformed the
Sensible Algorithm, because it distributes work in a manner
that does not overload any of the servers. These results are
summarised in Fig. 8a. However the observed results
change when the hosts have distinct performance character-
istics as shown below.

7.2 Performance Measurements When Hosts Have
Distinct Processing Rates

As a last step, we evaluate the algorithms that we have con-
sidered, in a situation where each hosts provides signifi-
cantly different performance. To strongly differentiate the
hosts, we introduce a background load on each host which

Fig. 6. Comparison of TAP operating with either the “RNN with reinforce-
ment learning”, or the “Sensible Algorithm” task allocation schemes. The
metrics used for comparison are the resulting job execution time and job
response time which are shown in the y-axis. Note that the Goal Func-
tion being optimised for each of the schemes, as shown in the legend for
each curve, is the Response Time or the execution time. We vary the
rate at which jobs arrive (x-axis). Results are shown both for constant
job inter-arrival times (CR), and for Poisson arrivals (EXP ).

Fig. 7. The Proportion of task allocations to the three hosts with the RNN
and the Sensible Algorithm for different task arrival rates.

40 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 6, NO. 1, JANUARY-MARCH 2018



runs constantly and independently of the tasks that TAP
allocates to the hosts. This is in fact a realistic situation since
in a cloud, multiple sources of tasks may share the same set
of hosts without knowing what their precise workload may
be, except for external observations of their performance.

Thus we were emulate three hosts i ¼ 1; 2; 3 with rela-
tive processing speeds of 2 : 4 : 1, respectively. The results
of these experiments are summarised in Fig. 9. We see that
TAP with both the RNN and the Sensible Algorithm bene-
fits from the ability of these two schemes to measure the
performance differences between the hosts, and dispatch
tasks to the hosts which offer a better performance, whereas
the two static allocation schemes (Round Robin and the allo-
cation of tasks with equal probabilities) lead to worse per-
formance as a whole.

The performance of the RNN-based scheme clearly stands
out among the others as shown in Fig. 9b, confirming that a
system such as TAP equipped with the RNN can provide a
very useful fine-grainedQoS-aware task allocation algorithm.

7.3 Multiple QoS Classes

In this section, we will study the effectiveness of TAP when
there is greater diversity both in the types of tasks, and in the
type ofQoS criteria and the SLA that they request. To evaluate
the allocation algorithms with two different classes of tasks,
we used a web browsing workload generated with HTTPerf
which is a well-knownweb server performance tool.

The first class corresponds to HTTP requests retrieve files
from a web server, such as the Apache 2 HTTP server,
whereby I/O bound workload is generated on the web
server with very little CPU consumption, and the load on the
I/O subsystem can be varied with the size of the retrieved

files. In our TAP test-bed, the Apache server is deployed on
each host in the cluster. HTTPerf generates HTTP requests at
a rate that can be specified, while TAP receives the requests
and dispatches them to theweb servers.

On the other hand, the web services which require a
large amount of computation, mainly generate CPU load,
are represented by CPU intensive tasks generated by the
prime number generator.

In this case we compare the RNN based algorithms with
the Sensible Algorithm, both using the Goal of minimising
the response time. We also compare them to Round-Robin
scheduling. The hosts themselves are stressed differently in
terms of CPU and I/O in the cluster to provide different het-
erogeneous environments. The workload is generated so as
to arrive at TAP following a Poisson process with different
average rates of one, two, three, four tasks/sec.

The different performance levels offered by the hosts is
implemented by introducing a background load which
stresses I/O differently on each host, resulting in relative
processing speeds of 6 : 2 : 1 for Hosts 1; 2; 3 with regard
to I/O bound services, while a background load which
stresses CPU distinctly on each host, resulting in the relative
processing speed of 2 : 3 : 6 (corresponding to Hosts 1; 2; 3)
is used for the CPU bound case.

The results in Fig. 10 show that the RNN based algorithm
performs better; the reason may be that it is able to detect
the best possible host for the task based on its QoS require-
ment by effective learning from its historical performance
experience and make more accurate decisions (compared
with Sensible) which dispatch I/O bound tasks to the hosts
where I/O is less stressed and dispatch CPU intensive tasks

Fig. 8. The average task execution time experienced under varied task
arrival rates and different task allocation schemes when the three hosts
have similar performance. Fig. 9. Average execution time experienced in a cluster composed of

hosts with non-uniform processing capacities.
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to the hosts which provide better CPU capacity. During the
experiments, we reduced the background load in terms of
both CPU and I/O stress on Host 2 to the lowest level as
compared with Hosts 1; 3. It was found that the RNN
based algorithm was able to detect the changes and dispatch
the majority of subsequent tasks of both types to Host 2,
nevertheless allowing the host where the CPU is heavily
stressed to provide good performance to I/O bound tasks.
More generally, we also observde that Round-Robin
provided worse performance than the two other algorithms.

8 CONTRADICTORY QOS REQUIREMENTS

Workloads are often characterised differently in terms of
their resource and performance requirements. For example,
for an online financial management and accounting soft-
ware providing SaaS services, the web browsing workloads
which retrieve large files from web servers generate I/O
bound workload, while accounting and financial reporting
applications may need a large amount of computation and
require high CPU capacity. Thus, in this section we discuss
how we may support multiple tasks with multiple QoS
requirements for different QoS classes.

However, distinct QoS classes may also generate differ-
ent levels of income for the Cloud service, and will also
have different running costs on different hosts. In addition,
they will have distinct service level agreements, and the
violation of the SLAs will often have different financial
consequences.

Thus we can consider a QoS Goal which includes two contra-
dictory economic requirements: if we allocate a task to a fast

processor, the cost will be higher since a more expensive resource
is being used, however the resulting response time will be better
resulting in fewer SLA violations and hence a lower penalty (and
hence cost to the user). Obviously we have the opposite effect
when we allocate a task to a slower machine, resulting in a lower
economic cost for hosting the task, but in a higher resulting cost
in terms of penalties for the cloud due to SLA violations.

Formalising these two contradictory aspects, consider a
set of host servers, and different classes of tasks, so that:

� Let the amount paid by the user of a class j task to
the cloud service be Ij when the SLA is respected.

� Also, let us assume that if a task of QoS class j is allo-
cated to a hostm which is of typeMi, where the type
of host includes aspects such as its memory capacity,
its I/O devices, and speed, and the services offered
by its software, will result in a cost to the cloud ser-
vice of Cij.

� However, if the SLA is not respected there will also
be some penalty to be paid by the cloud service to
the user, and this penalty must then be deducted
from the income that the cloud service was expecting
to receive. For instance, the penalty will be zero if the
response time T of the task is below the SLA upper
limit Tj;1 > 0 for class j tasks. More generally, the
penalty is cjl if Tj;l�1 � T < kTj;l, where Tj0 ¼ 0 and
cj0 ¼ 0 (no penalty).

Using standard notation, let 1½X� is the function that takes
the value 1 if X is true, and 0 otherwise. Then the net income
obtained by the cloud service for running a task of type j,
after deducing the host operating cost and the eventual pen-
alty for SLA violations, can be written as:

I	j ¼ Ij � Cij1½m¼Mi�

�
Xn
l¼1
fcjl1½Tj;l�T <Tj;lþ1�g þ cj;nþ11½T�kTj;nþ1�:

(11)

Obviously, the cloud server would like to maximise I	j , while
Ij is fixed in advance as part of the service agreement.

Thus in this section we consider task allocation based on
a Goal function that will allocate a machine Mi to a task of
class j so as to minimise the net cost function:

Cj ¼ Cij1½m¼Mi� þ
Xn
l¼1
fcjl1½Tj;l�T <Tj;lþ1g

þ cj;nþ11½T�kTj;nþ1�:

(12)

Fig. 11 shows an example of the penalty function, which is
the second term in (12), for two distinct classes of tasks,
where the x-axis is the value of the response time T .

Fig. 10. Average response time experienced by CPU intensive services
and I/O bound services in a heterogeneous cluster. We compare Round-
Robin with RNNbasedReinforcement Learning and the Sensible Algorith.

Fig. 11. The penalty function for tasks belonging to Class 1 (left) and
Class 2 (right), versus the task response time on the x-axis.
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8.1 Experiments with Conflicting QoS Objectives

We illustrate the preceding discussion with experiments
involving tasks of two classeswith distinct QoS requirements,
and we emulate a heterogeneous host environment where
there is a fast host, a slow host and amedium speed host. This
is done by stressing the CPU of each host differently, resulting
in the speed-up factor of 1 : 2 : 4 for Host 1; 2; 3.

We conducted experiments using (12) as the Goal, with
two classes of CPU intensive tasks and the two different pen-
alty functions of Fig. 11 regarding response time. The RNN
based algorithm is comparedwith the Sensible Algorithm.

With regard to the terms in (12), we have M1 ¼ 1;000,
M2 ¼ 2;000 andM3 ¼ 4;000 coinciding with our assumption
that the faster machines cost more, and the tasks either are
“short” with an execution time of 56ms, or “long” with an
execution time of 190ms as measured on the fastest host.
Tasks were generated following independent and exponen-
tially distributed inter-task intervals (Poisson arrivals), and
four experiments with distinct task arrival rates of 1; 2; 3; 4
tasks/secwere run separately for each class of tasks.

Fig. 12a shows that the RNN algorithm is able to do bet-
ter in reducing the average response time in the case of the
shorter tasks, while the Sensible Algorithm is more effective
with regard to average response time for the longer tasks as
seen in Fig. 12b, though the RNN based algorithm manages
to remain, at least on average below the 1;000 penalty thresh-
old . However we also see that the RNN does better in
reducing the overall cost plus SLA violation penalty (indi-
cated as the Total Penalty in the y-axis) as shown in Fig. 12c.

We also conduct a separate set of measurements in order
to estimate the standard deviation of the response times, and
the maximum observed response times as shown in Fig. 13.
In these cases, each measurement point that we report is
based on five experimental runs with Poisson arrivals, for
each of the two classes of tasks, with each experiment lasting
20minutes in order to generate ample statistical data. In this
setting, we again compare the RNN based algorithm with
Reinforcement Learning to the Sensible Algorithm, still
using the Goal functionwith the cost defined in (12).

In most of the observed data, we see that the RNN-based
algorithm can achieve better performance in terms of reduc-
ing the standard deviation of the response times leading to
more dependable results, and also to maximum response
times that lead to a smaller penalty, as expected from the pre-
vious data. The exception to this general observation is when
tasks arrive at the highest rate of 4 tasks/sec. In this case, it
appears that the RNN based algorithm is not receiving timely
data via the ACKs, leading to a level of performance that is
worse thanwhat is achieved by the Sensible Algorithm.

9 CONCLUSIONS AND FUTURE WORK

In this paper we have first reviewed the area of task alloca-
tion to cloud servers, and then presented TAP, an experi-
mental task allocation platform which can incorporate a
variety of different algorithms to dispatch tasks to hosts in
the cloud operating in SaaS mode, before reporting on
numerous experiments that have used TAP to compare a
variety of task allocation algorithms under different operat-
ing conditions and with different optimisation criteria.

We consider simple static allocations schemes, such as
Round Robin, and a probabilistic allocation which distributes

load evenly. We also study a model driven algorithm which
uses model based estimates of response time to select distinct
allocation rates to different hosts. Two measurement driven
adaptive on-line algorithms are also considered: the RNN
based algorithm with Reinforcement Leaning, and the Sensi-
ble Algorithm that bring intelligence to bear from observa-
tions andmake judicious allocation decisions.

Numerous experiments with different task profile, and
optimisation objectives were considered, with two different
sets of host machines: one composed of hosts with similar
processing speeds, and another one with hosts having dif-
ferent speeds due to distinct background loads at each host.

Experiments showed Round Robin is effective when the
processing rates and loads at each of the hosts are very
similar. However when the hosts are quite distinct, the
RNN based algorithm with Reinforcement-Learning offered
fine-grained QoS-aware task allocation algorithm for accu-
rate decisions, provided that online measurements are
frequently updated. We found that the Sensible Algorithm

Fig. 12. The average value of the measured total cost for the two classes
of tasks, when allocation is based on the Goal function that includes both
the economic cost and the penalty as in (12).
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offers a robust QoS-aware scheme with the potential to per-
form better under heavier load. The fixed arrival rate
scheme, with full information of arrival rates and service

rates, outperformed both the RNN and “sensible” approach
due to the fact that it employs the solution of an analytical
model to minimise task response time under known
mathematical assumptions. However such assumptions
will not usually be known or valid in practice; thus it is
useful as a benchmark but cannot be recommended in prac-
tical situations.

In future work we will investigate the use of more sophis-
ticated mathematical models such as diffusions approxima-
tions [39] to build an on-line measurement andmodel driven
allocation algorithm that exploiting measurements of the
arrival and service statistics at each of the hosts in order to
estimate the task allocation probabilities. Although we
expect that such an approach will have its limits due to the
increase of the data that it will need, it may offer a better pre-
dictor for more accurate task allocations, and especially it
could be used to benchmark other approaches. We would
also like to study the cloud system we have described when
a given set of hosts is used by multiple task allocation sys-
tems operating with heterogenous input streams (such as
web services, mobile services and compute intensive appli-
cations), to see which schemes are the most robust and resil-
ient. One aspect we have not discussed is the order in which
tasks are executed, for instance time-stamp order [46]:
although this may not be important in some applications, in
others which are updated some global system state (such as
a bank account), the order in which operations are carried
out is critical, and tasks which are related by time-stamp
orderwould have to be carried out in that order to avoid hav-
ing to reprocess them if that order is violated. Another direc-
tion we wish to undertake is the study of the robustness
of allocation schemes for cloud services in the presence of
network and service attacks [47] that are designed to
disrupt normal operations. Another interesting direction for
research will be to study how techniques that are similar to
the ones we have developed in this paper, may be exploited
in the context of Grid Computing [48].
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