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Abstract—Through virtualization, multiple virtual machines (VMs) can coexist and operate on one physical machine. When

virtual machines compete for memory, the performances of applications deteriorate, especially those of memory-intensive

applications. In this study, we aim to optimize memory control techniques using a balloon driver for server consolidation. Our

contribution is three-fold: (1) We design and implement an automatic control system for memory based on a Xen balloon driver.

To avoid interference with VM monitor operation, our system works in user mode; therefore, the system is easily applied in

practice. (2) We design an adaptive global-scheduling algorithm to regulate memory. This algorithm is based on a dynamic

baseline, which can adjust memory allocation according to the memory used by the VMs. (3) We evaluate our optimized

solution in a real environment with 10 VMs and well-known benchmarks (DaCapo and Phoronix Test Suites). Experiments

confirm that our system can improve the performance of memory-intensive and disk-intensive applications by up to 500 and

300 percent, respectively. This toolkit has been released for free download as a GNU General Public License v3 software.

Index Terms—Virtual machine, server consolidation, memory control, global-scheduling
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1 INTRODUCTION

VIRTUALIZATION has resurged as a result of cloud com-
puting [1]. More and more applications are deployed

into virtual machines (VMs) to multiplex a physical server.
Although the resources of these VMs (such as CPU and
memory) are isolated through virtual machine monitor
(VMM) subsystems [2], [3], automatic control systems can
reallocate the limited resources of the consolidated server
dynamically, which can reduce the running time of applica-
tions and maximize resource utilization.

Automatic control systems for CPU devices have been
widely researched [4], [5], [6], but time sharing for memory
devices remains an open issue [7]. Normally, memory is
statically allocated to each VM when the machine is booted,
and memory size does not vary throughout the life cycle of
the VM. When memory size requests exceed total physical
memory, memory competition overhead increases exponen-
tially, thus degrading the performances of applications. The
automatic control of physical memory in virtualization is
a bottleneck that increasingly limits the efficiency of the
overall system.

Unlike in previous research, current studies on memory
control in VMs face a minimum of three new challenges in
the context of server consolidation:

1) Tools for automatic memory control at the applica-
tion level require further investigation. To activate
underlying mechanisms and to generate low-level
interfaces, Xen [8], VMware [9], and KVM [10] have
implemented page sharing, virtual hotplugs, and balloon
drivers in the VMM. However, these mechanisms
and interfaces only focus on the underlying methods
in kernelmode to resize thememory for an individual
VM. They cannot specify which VM needs to
reclaim/release its memory or how many pages it
should take/give in a global perspective. Therefore,
high-level tools in user mode are necessary to auto-
matically collect memory usage from VMs, make
global decisions and regulate their memory.

2) Memory scheduling algorithms need to be more
adaptive to different scenarios, regardless of when
the global memory is sufficient or insufficient. Each VM
can submit a memory value, called committed memory,
which will be used in the future. The memory state is
sufficient if the sum of the committed memories of all
VMs is smaller than the available memory of the
physical machine. Otherwise, the memory state is
insufficient. Our previous work [11] focused only on
the sufficient state. Memory scheduling algorithms
must be in a sufficient state, and self-ballooningwas not
observed with a global perspective. To dynamically
allocate memory, Heo et al. [12] used control theory,
but it is effective only in the sufficient state. Zhao et al.
[13] proposed a quick approximation algorithm to
prevent total page misses from reaching a local mini-
mum. To avoid this local minimum and to attain opti-
mal performance, additional algorithms should thus
be developed for general global scheduling.

3) The scale at which previous evaluations are per-
formed is not coherent with the VM consolidation
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ratios used by large vendors. Although few cloud
computing companies (Amazon EC2 [14] et al.) are
willing to disclose the number of VMs they can host
on a physical server, we conservatively estimate that
one server contains at least 10 or 12 VMs [15], [16].
However, previous experiments are limited to a
maximum of two or four VMs. These experiments
also adopt workloads that are synthetic and traces-
driven. Therefore, more tests should be conducted
with additional VMs and real benchmarks.

In this study, we devise a lightweight framework based
on the Xen balloon driver to control memory in the consoli-
dation of multiple VMs. Our system is implemented in user
space that does not interfere with VMM operation. For this
framework, we propose a global-scheduling algorithm that
runs on Domain0. This algorithm solves linear equations to
obtain the global solution and adapts to sufficient and insuffi-
cient states using dynamic baselines. Real-world bench-
marks are adopted as workloads in our experiments, and
10 VMs are utilized.

The rest of this paper is organized as follows. In Section 2,
we provide an overview of our memory control system and
its implementation. We describe the memory scheduling
algorithm in Section 3. The experimental results are pre-
sented in Section 4. We discuss related studies in Section 5.
Finally, we give concluding remarks and suggestions for
future research in Section 6.

2 SYSTEM OVERVIEW

In this section, we first review the principle of memory bal-
looning in Xen. We then propose our automatic memory
control system based on the Xen balloon driver.

2.1 Background of Xen Balloon Driver

The ballooning mechanism aims to overcommit memory. In
this process, physical memory can be allocated to all active
domains, although the amount allocated is more than theto-
tal physical memory in the system. In 2002, Waldspurger
[20] first introduced the “ballooning” mechanism for the
VMware ESX Server. In 2003, Xen also implemented this
mechanism to allocate memory from one domain to others
[19]. As a result, memory from idle VMs or from domains

that use less memory can be committed to newly created
VMs or to domains requiring additional memory.

Virtual memory in Xen decouples the virtual address
space from the physical address space. The virtual memory
in VMs and the physical memory in the actual machine are
divided into pages and frames, respectively. The pages are
addressed by their Guest Physical Frame Numbers, or GPFNs.
The frames are addressed by their Machine Frame Numbers,
or MFNs. Every VM has a physical to machine translation
table, which maps the GPFNs toMFNs.

The Xen balloon driver resides in the domain but is con-
trolled by the hypervisor [21]. Fig. 1 depicts its working pro-
cess of inflation and deflation, with two VMs (VM1 and
VM2) as examples. The left side of Fig. 1 represents the ini-
tial page allocation of the VMs. The right side represents the
remapped page allocation.

To inflate the balloon, first, the hypervisor sends an infla-
tion request to the balloon driver in VM1 (phase �1 ). Then,
the balloon driver requests free pages from its Guest OS
(phase �2 ). After acquiring the pages, it records their corre-
sponding GPFNs (phase �3 ). It then notifies the hypervisor
to replace the MFNs behind these GPFNs with “invalid
entry”. Finally, the hypervisor puts these reclaimed MFNs
on its own free list, which is given to VM2 (phase�4 ).

To deflate the balloon, the balloon driver in VM2 receives
a deflation request from the hypervisor (phase �5 ). Then,
the balloon driver releases pages to its Guest OS (phase �6 ).
If the Guest OS is allowed to increase its page numbers and if
free frames are available (phase�7 ), the hypervisor will allo-
cate MFNs behind the GPFNs to increase the pages used by
the Guest OS in VM2 (phase�8 ).

Note that from VM1’s perspective, the ballooned pages
appear to still be in use by its balloon driver. In fact, the
frames behind these pages have been reclaimed by the hyper-
visor and remapped to the ballooned pages in VM2.

2.2 Our Automatic Memory Control System

Fig. 2 shows our automatic memory control system based
on Xen. This toolkit has been released for free download on
GitHub [17] under a GNU general public license (GPL) v3.

� Domain: A domain is a VM that is operating on a sys-
tem. On boot, the Xen hypervisor activates the first

Fig. 1. Mechanism of the Xen balloon driver.
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domain (Domain0), on which a Guest OS runs.
Through Xen control tools, Domain0 is privileged to
access the hardware and to manage other domains.
These other domains are referred to as DomainUs
and are unprivileged; they can thus run on any
Guest OS that has been ported to Xen [18, 19].

� Balloon: The Xen balloon driver is the basis of and
supports our system of automatic memory control
technically. We can thus focus on efficiently allocat-
ing the memory pages across various domains.

� XenStore: This is a hierarchical namespace shared
between domains, which stores the running informa-
tion of domains [22]. It also provides primitives to
either read or write a key, enumerates a directory,
and generates notifications when a key changes
value. XenStore is categorized into three branches:

/vm—stores configuration information about
domains;

/local/domain—stores information regarding the
domain in the local node. Its key (<domid>/mem-
ory/target) contains the target page number of the
domain;

/tool—stores information for various tools.
XenStore can be accessed by virtual input/output

(I/O) drivers using the in-kernel application pro-
gramming interface (API) XenBus.

� proc: A process file system is a virtual file system in
the Guest OS layer that contains dynamic informa-
tion related to kernel and system processes [25]. The
directory /proc/meminfo stores the memory informa-
tion. MemTotal is the total page number, MemFree is
the size of unallocated pages, Buffers denotes the
buffer size for files, and Cached is the size of the pages
used by caches. The total free pages of the system
includes MemFree, Cached, and Buffers. SwapTotal is
the total size of swap memory, and SwapFree is the
size of the free swap memory.

� Libxenctrl: This is a C interface that can be called by
libraries or applications in the domains to interact
with the hypervisor. In this study, the following
interfaces are the most relevant: xc_interface_open()
and xc_interface_close() open and close a file handler
named xc_handle, which is a /proc/xen/privcmd driver
and used when applications want to make a hyper-
call; xc_domain_setmaxmem() can set the maximal
GPFNs of DomainUs; and xc_domain_set_pod_target()
can set the target GPFNs of DomainUs.

� Database: The database is hosted by Domain0 and
functions in the application layer, which stores page
information from DomainUs. Database contains the
following records: 1) the target GPFNs of the domain,
which are rooted in the /local/domain/<domid>/
memory/target of XenStore; 2) the total GPFNs of the
domain, which is derived from /proc/meminfo/Mem-
Total; 3) the maximal GPFNs of used memory Mem-
Used, which is calculated as follows:

MemUsed ¼MemTotal�MemFree

� Cached�Buffers

where MemTotal, MemFree, Cached, and Buffers are
obtained from /proc/meminfo.

� Client: This collects memory information from
DomainUs and periodically passes this information
over to the Database. It is hosted by DomainUs and
functions in the application layer. Memory and swap
space information are gathered from the proc of
DomainUs. These data are stored in Database with
the APIs of XenStore. Client also collects the total and
freeMFNs of the physical machine.

� Server: As the core of the system, it acquires memory
information from Database. It resides in Domain0
and functions in the application layer. The schedul-
ing algorithm of Server then determines the domain
that requires additional pages, as well as the domain
that provides these extra pages. The scheduling algo-
rithm also calculates the optimal target pages for allo-
cation to each domain. Finally, we invoke the API
xc_domain_set_pod_target() in Libxenctrl to reset the
target memory of the domains. According to the sys-
tem state, different scheduling algorithms in Server
may be utilized. These algorithms are discussed in
detail in Section 3.

3 MEMORY SCHEDULING ALGORITHM

We have developed two scheduling algorithms for the
Server: self-scheduling and global-scheduling. The self-schedul-
ing algorithm was introduced and extensively verified in
our previous study [11]. We focus on the global-scheduling
algorithm in this section.

The self-scheduling algorithm is applied if the free frames
in the physical machine can satisfy the total pages requested
by all VMs. In this case, the self-scheduling algorithm can
directly map MFNs to GPFNs through the balloon driver for
each domain. It also deploys a driver in the hypervisor,
which monitors available frames in the physical machine
and will trigger the global-scheduling algorithm when the
available frames run out.

The global-scheduling algorithm is utilized if the physical
machine lacks free frames and cannot meet the total pages
requested by all VMs. In this case, VMs compete for mem-
ory. The global-scheduling algorithm is used to overcommit
memory globally.

3.1 Global-Scheduling Algorithm

Table 1 summarizes the key notations that facilitate the dis-
cussion of this algorithm.

Fig. 2. Our automatic memory control system.
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The global-scheduling algorithm is given as follows:

Algorithm 1. Global-Scheduling Algorithm

Input: N, n, Ni, Ai

Output: Nti
1. while true do
2. A Null
3. for 1 � i � n do
4. Ni xs_read (/local/domain/VMi/mem/total);
5. Fi xs_read (/local/domain/VMi/mem/free);
6. Ai ¼ Ni � Fi;
7. AppendTo(A, Ai);
8. end
9. t calculating_idle_memory_tax(A, f);
10. for 1 � i � n do
11. Nti solve_linear_equation(Ni, Ai, t);
12. xs_write(Nti, /local/domain/VMi/mem/target);
13. xc_domain_set_pod_target(VMi, Nti);
14. end
15. sleep(interval);
16. end

The global-scheduling algorithm is used in the Server pro-
gram of Domain0. In this algorithm, two sub-procedures,
calculating_idle_memory_tax() and solve_linear_equation(), are
essential. First, the total and free memory sizes for each VM
are acquired using XenStore. Second, the parameter t (idle
memory tax) is computed using the function calculating_
idle_memory_tax(). By solving the linear equations, we calcu-
late the target memory (Nti) allocated to each VM. Finally,
the target memory for each VM is sent to the balloon driver
using Libxenctrl interfaces to reallocate the memory pages.

3.2 Idle Memory Tax

Idle memory tax (t) is adopted from economic theory. It lev-
ies a high tax for idle memory on a VM that does not maxi-
mize its memory. Our system can force a VM under a high
tax to pass memory pages to a VM under a lower tax.

In economic theory, shares represent the resource-
rights owned by a client in proportional-share [20]; a cli-
ent can obtain resources based on its shares. To allocate
space-shared resources in terms of proportional share,
both randomized and deterministic algorithms are gener-
ated. If a client requests additional resources, the dynamic
algorithm for min-funding revocation determines the cli-
ent with the fewest shares and reallocates its resources
[20], [24], and [25].

In practice, a VM with many shares acquires much mem-
ory, much of which is idle. However, VMs with few shares
have insufficient memory. To overcome this limitation,
Waldspurger implemented a tax for idle memory in the
VMware ESX Server [20]. This tax reclaims memory pages
from a VM that does not maximize its memory and specifies
the maximal fraction of idle pages that may be reclaimed
from a VM. Min-funding revocation is extended for an
adjusted ratio of shares-per-page. For a client with S shares
and an allocation of P pages, of which a fraction Q are active,
the adjusted ratio of shares-per-page r is:

r ¼ S

PðQþ kð1�QÞÞ ;

where the cost of idle pages is k ¼ 1=ð1� tÞ for a given tax
rate t (0 � t < 1). On one side, t ¼ 0 specifies the pure allo-
cation based on shares. On the other side, t � 1 specifies
that the idle pages of all VMs can be reclaimed and allocated
equally.

Supposing that in each VM, S ¼ 1, P ¼ Ni, and that the
proportion of active sections in total memory is Qi ¼ Ai=Ni,
the shares-per-page riof each VM is:

ri ¼
1

Ai þ kðNi �AiÞ
¼ 1

Ai þ 1
1�t ðNi �AiÞ

¼ 1� t

Ni � t �Ai
:

(1)

3.3 Calculating Target Memory by Solving Linear
Equations

Our system aims to guarantee identical shares-per-page ri
for all VMs. We regard shares-per-page as the price of idle
memory. In economics, price increases when supply cannot
meet demand; we can thus reduce prices by increasing sup-
ply. If the price of idle memory is high in VMs with insuffi-
cient resources, we reduce it by allocating additional
memory pages. In contrast, if the price is low for VMs with
abundant idle pages, we can reclaim memory pages from
these VMs and reallocate them to other VMs. We can bal-
ance the allocation of memory pages by balancing the price
of idle memory pages. As a result, the prices of idle memory
pages in all domains remain equal.

Based on Equation (1), we can derive the following
equation:

8i; j 2 ð1:::nÞ; i 6¼ j :
1� t

Nti � t �Ai
¼ 1� t

Ntj � t �Aj
:

The linear equations are then expressed as follows:

Nt1 � t �A1 ¼ Nt2 � t �A2

Nt1 � t �A1 ¼ Nt3 � t �A3

:::
:::

Nt1 � t �A1 ¼ Ntn � t �An

N ¼Pn
i¼1 Nti

8>>>>>><
>>>>>>:

: (2)

TABLE 1
Summary of Key Notations

n Number of VMs

N Total memory of n VMs
f Reserved free memory of VMs
Ni Total memory of the ith VM, 1 � i � n
Nti Target memory allocated to the ith VM, 1 � i � n
Fi Free memory of the ith VM, 1 � i � n
Ai Used memory of the ith VM, which equals to

(Ni � Fi), 1 � i � n
A {Ai j i ¼ 1. . . . n}
�A �A ¼ 1

n

Pn
i¼1 Ai
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We simplify Equation (2) as follows:

Nt1 þ � � � þNtn ¼ N

Nt1 �Nt2 ¼ t � ðA1 �A2Þ
Nt1 �Nt3 ¼ t � ðA1 �A3Þ
� � �
Nt1 �Ntn ¼ t � ðA1 �AnÞ
N ¼Pn

i¼1 Nti

8>>>>>>>><
>>>>>>>>:

: (3)

Finally, Equation (3) can be simplified as follows:

AAX ¼ BB

whereAA ¼

1 1 1 � � � 1

1 �1 0 � � � 0

1 0 �1 � � � 0

� � � � � � � � �
1 0 0 � � � �1

0
BBBBBB@

1
CCCCCCA
; XX ¼

Nt1

Nt2

Nt3

::::

Ntn

0
BBBBBB@

1
CCCCCCA
;

BB ¼

N

tðA1 �A2Þ
tðA1 �A3Þ

::::

tðA1 �AnÞ

0
BBBBBB@

1
CCCCCCA
:

(4)

Coefficient matrix A is ranked n, and the rank of a full
rank matrix is equal to that of its augmented matrix. The
unique solution provided by Equation (4) can be expressed
as follows:

XX ¼

N
n þ t � ðA1 � �AÞ
N
n þ t � ðA2 � �AÞ
N
n þ t � ðA3 � �AÞ
::::
N
n þ t � ðAn � �AÞ

0
BBBBBB@

1
CCCCCCA
;

where �A ¼ 1
n

Pn
i¼1 Ai

Finally, we obtain the following solution:

8i 2 ð1:::nÞ : Nti ¼ N

n
þ t � ðAi � �AÞ: (5)

The time complexity of the global-scheduling algorithm is
determined by solving the linear equations. The complexity
of constructing linear equations is denoted by O(n), and the
process of solving these linear equations is represented by
O(n2). Finally, the time complexity of the algorithm is
denoted by O(n3).

3.4 Calculating Idle Memory Tax Based on the
Dynamic Baseline

The selection of the value of idle memory tax (t) is key to
our system. In this section, we derive the function of idle
memory tax based on a dynamic baseline.

Equation (5) determines the target memory of VMs. The
target free memory (Fti) after reallocation should corre-
spond to the difference between target memory (Nti) and
currently used memory (Ai). To avoid swap space usage

and to ensure the effectiveness of each VM, the target free
memory should be greater than zero. In practice, the OS
uses swap space as long as its free memory is below a spe-
cific threshold �0. As a result, the solution of Equation (5)
should guarantee that:

8i 2 ð1:::nÞ : Fti ¼ Nti �Ai 	 �0 > 0:

We then replace Nti with Equation (5):

1

n
� t � �A� ð1� tÞ �maxðAÞ 	 �0:

The dynamic t is expressed as follows:

t ¼
�0þmaxðAÞ�1=n

maxðAÞ� �A
maxðAÞ 6¼ �A

0 maxðAÞ ¼ �A

(
;

where �0 ¼ f=N , f is the minimal free memory reserved, and
N is the total memory of the VMs.

Fig. 3 compares the curves of static and dynamic t, which
vary with the currently used memory Ai. The curves indi-
cate that only part of static t (e.g., t ¼ 0:75 or 1.0) is above
the dynamic baseline tb (tb denotes the baseline when
�0 ¼ 0 and t denotes the curve when �0 > 0), except when
t ¼ 0. For example, the value of t ¼ 0:75 is lower than that
of tb after the two curves t ¼ 0:75 and tb intersect, thus
resulting in a target free memory that is less than zero. In
this process, swap space is used. If t is statically set to zero,
Equation (5) equalizes all of the target memory values.
Therefore, memory balance is unaffected.

Fig. 3 also shows three advantages of the dynamic t:

� Reducing the overload of the scheduling system. The
value of t is set to 0.0 when the memory used is small
and does not use swap space. Our system is thus
degraded so that it need not be regulated; as a result,
scheduling system overload is reduced.

� Reserving the free memory. To improve the perfor-
mance of VMs, dynamic t can reserve some available
memory. When the current free memory of VMs is

Fig. 3. Comparison of static and dynamic tcurves.
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below the reserved value, our system reclaims more
memory pages from other VMs.

� Dropping the memory uniformly. The value of t is set to
1.0 when the total available memory cannot satisfy
the requests of all VMs. With this setting, all VMs
can share the remaining memory available. The
available memories of all VMs drop uniformly.

4 EVALUATION

4.1 Experimental Setting

To evaluate our system, we have adopted three types of
benchmarks, as described below:

� Mono [26] is a micro kernel benchmark, which is
designed to verify the effectiveness and accuracy of
our system. It shows the memory changes by report-
ing the total, used, and free memory of regulated VMs
over the entire time line. It operates in two phases.
Given a memory range of low to high (low < high),
Mono initially applies a low amount of memory pages
in the first phase and then gradually increases the
memory requests to high. During the second phase, it
monotonically releases the memory pages in a range
of high to low.

� DaCapo (version 9.12) [27] is a Java benchmark suite
used to manage memory and design computer archi-
tecture. It consists of a set of 14 open-source, real-
world applications with non-trivial memory loads.
For our tests, we select 13 applications among them,
including CPU- (avrora, fop, jython, lusearch, pmd, sun-
flow, tomcat, and xalan), memory- (h2, tradebeans, and
tradesoap), and disk-intensive (eclipse and luindex)
applications. The batik application is not stable in our
platform. It crashes for each run and no correspond-
ing data can be recorded.

� Phoronix Test Suite (version 4.8.6; PTS) [28] is an
automated platform for open-source testing and
benchmarking. It contains more than 130 test pro-
files and 60 test suites. These tests range from tra-
ditional CPU, memory, and disk computing to
emerging graphics processing unit, mobile device,
and cloud computing. PTS is a multi-platform that
is easy-to-use, with extensible architecture and
support. It is not necessary to run all 130 test pro-
files to verify our system because some profiles
share similar memory usage behaviors. We select
seven representative memory-consuming applica-
tions that cover small- (John-the-ripper, scimark2,
and System-libxml2), medium- (pgbench), and large-
scale (apache, compile-linux-kernel, and compress-
7zip). John-the-ripper and scimark2 contain three
(blowfish, traditional DES, and MD5) and five (Com-
posite Monte Carlo, FFT, Sparse Matrix Multiply,
Dense LU Matrix Factorization, and Jacobi Successive
Over-Relaxation) subtests, respectively.

In our tests, a 64-core server that contains four 16-core
AMD Opteron 6272 processors is utilized. Its CPU fre-
quency is 2,100 MHz, its cache size is 2,048 KB, and its mem-
ory size is 128 GB. The OS used is Ubuntu 12.04 LTS 64-bit,
whose kernel is Linux 3.2.0-29-generic.

A Type-1 Xen hypervisor (version 4.1.2) is deployed in
the server with full virtualization (HVM). The Guest OS in
all of the VMs is the Ubuntu Server 12.10 without the X-win-
dow system. Its kernel is Linux Ubuntu 3.5.0-17-generic. To
prevent CPU contentions when multiple VMs are running,
each VM is assigned a dedicated CPU core. By default, all
VMs are initially allocated 512 MB to 1 GB memory without
losing generality. The total memory size accessed by all of
the VMs is restricted to 5 GB.

Our memory control system is implemented in C,
including Server, Database, and Client. Server and Database
are deployed in Domain0, whereas Client is implemented
in DomainUs. An interval of 1 s is set for Client to collect
memory information. An interval of 2 s is set for Server
to balance the memory. To maintain the operations of
Server and Client in real-time, the system call nice()
enhances their priority. This system call reduces the
latency of information collection and memory control.

Although Server checks the memory information stored
in Database every 2 s, the memory need not be rescheduled
each time. If we regulate the memory for small changes,
memory is quickly fragmented. As a result, Server need not
reschedule until the change in memory change is over
10 MB. To calculate idle memory tax and enhance perfor-
mance, the minimal free memory reserved f is set within the
range of 100 to 150 MB.

4.2 Validation of Two VMs Using Mono Benchmark

We aim to verify whether our system can successfully regu-
late the memory of VMs.

Each VM is configured with a total and a reserved free
memory (f) of 512 and 100 MB, respectively. Server runs
on Domain0, whereas Clients and balloon drivers operate
on both VMs. VM1 runs the micro kernel benchmark
Mono, which gradually increases the memory from 50 to
500 MB before monotonically lowering it from 500 to
50 MB. VM2 is idle.

Fig. 4 shows that the memory changes in VM1 and
VM2 undergo three phases. The total memory of VM1
remains unchanged when Mono increases the memory,
although the sum of used and free memories does not
exceed the initial total memory of 512 MB. In the first
phase, idle memory tax t ¼ 0, and the balloon driver does
not need to regulate the memory between VMs. When the
memory used in VM1 exceeds 512 MB, our system then
reclaims the free memory from VM2 and allocates it to
VM1. As a result, the total memory of VM1 increases
while that of VM2 decreases. Mono releases memory in
the third phase, and the total memory sizes of both VMs
gradually equalize.

This result confirms that our memory control system can
effectively balance memory automatically.

4.3 Validation of 5 VMs Using the DaCapo
Benchmark Suite

We investigate five VMs to verify whether our system can
reduce the running time of the DaCapo benchmark suite.

Five VMs are configured with 1 GB of initial available
memory and 150 MB of reserved free memory (f). DaCapo
runs on only one VM with a workload that allows for an
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additional 800 MB of memory. The other four VMs are
idle. When the VM that is running DaCapo is out of mem-
ory, our system reclaims memory from the other VMs.

Fig. 5 displays the running times of 13 applications from
the DaCapo benchmark suite when our system of automatic
memory control is either “on” or “off.” A logarithmic y-axis
is used to reduce a wide scale to a more manageable size.
We also provide median confidence intervals for each
plotted value by running the test for 20 times. The median
confidence interval is represented by a box and whisker
chart. The top and the bottom of the box indicate a 75 and
25 percent percentile running time, respectively, and a line
in the middle of the box indicates the median.

When our system is “off”, the running time (median
value) of the h2 application is more than six times longer
than when the system is “on.” Similarly, the running times
of the eclipse, tradebeans, and tradesoap applications are two
or three times longer. The running times of the fop, jython,
pmd, and tomcat applications are also slightly longer. How-
ever, the running times of the avrora, luindex, lusearch, sun-
flow, and xalan applications are slightly shorter, but the
decrease is no more than 8 percent. Note that most of the
applications displaying significant performance differences
are either memory- or disk-intensive.

Additionally, when our system is “off”, the differences
between the upper and lower fences are nearly triple (h2
application). When our system is “on”, their running
times remain stable and the differences are no more than
15 percent (h2 application).

The short running time for most applications during sys-
tem activation is attributed to the fact that our system does
not use swap space. Fig. 6 exhibits swap space usage with
or without memory control by the VM running DaCapo.
When the memory control is “off”, nearly 500 MB of swap
space is used. However, no swap space is used when our
memory control is “on”. Additionally, for the same reason,
when our system is “on”, the applications do not suffer fre-
quent access to the swap space, their running time thus can
remain stable and the confidence intervals are narrow.
Instead, when our system is “off”, the applications show
huge performance fluctuations because of frequent swap
space accesses. Note that the running times of the avrora,
luindex, lusearch, sunflow, and xalan applications for the “off”
case are slightly shorter than the “on” case. The reason for
this is two-fold: 1) these applications are all CPU-intensive,
which are not very sensitive to memory fluctuations but
compete for CPU cycles; 2) when our system remaps pages
to other VMs, the balloon driver and the hypervisor will
take up some CPU cycles to reclaim GPFNs, scrub them by
filling with zeros for security reasons, detach the MFNs
behind these GPFNs, and associate the MFNs with the
GPFNs in new VMs.

In terms of memory allocation, Fig. 7 indicates that when
VM1 (which runs DaCapo) is out of memory, our system can
reclaim memory from the other VMs. Given that the initial
memory sizes of the other idle VMs are equal, the reclaimed
memory size is similar and their curves overlap.

Fig. 4. Automatic control of memory in two VMs using the Mono
benchmark.

Fig. 5. Comparison of the running time of the DaCapo benchmark suite
when the memory control system is either “off”or “on”.

Fig. 6. Comparison of swap space usage by the DaCapo benchmark
suite when the memory control system is either “off” or “on”.
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Therefore, we verify that our system can shorten the
running times of applications with heavy workloads by
reclaiming memory from other VMs and avoiding swap
space usage.

4.4 Validation of 10 VMs Using Hybrid PTS and
DaCapo Benchmarks

We examine 10 VMs to verify whether our system can
shorten the running times of hybrid benchmarks com-
posed of PTS and DaCapo.

When DaCapo was tested on five VMs previously, only
one VM was in operation. In this test, we deploy different
applications in all 10 VMs. DaCapo is a Java benchmark
suite, whereas the benchmarks in PTS can be implemented
in various applications. Moreover, PTS is convenient for
test set-ups and result analysis. Therefore, we combine PTS
with the DaCapo test suite in 10 VMs to verify the general
scalability of our system.

We select three memory-intensive applications from
DaCapo, namely, h2, tradebeans, and tradesoap, as well as
seven memory-consuming applications from PTS, namely,
apache, compile-linux-kernel, pgbench, John-the-ripper, scimark2,
System-libxml2, and compress-7zip. These benchmarks cover
memory-, CPU-, and disk-intensive applications, and their
memory requests vary. Each benchmark runs on one
domain, and each domain independently occupies one core.
Table 2 depicts the details and distributions on 10 VMs.

Each of the 10 VMs is configured with 512 MB of initial
available memory and 100 MB of reserved free memory (f).
We run the tests 20 times and average the scores regardless
of the activation of memory control. Table 3 displays the
final scores of the benchmarks.

The benchmark John-the-ripper contains three subtests
(blowfish, traditional DES, and MD5) whereas scimark2 has
six (Composite, Monte Carlo, FFT, Sparse Matrix Multiply,
Dense LU Matrix Factorization, and Jacobi Successive Over-
Relaxation). The scores of John-the-ripper and scimark2 can
thus be normalized as the geometric means of their subtests.

Fig. 8 compares the final scores (the higher score and
the better performance) of these benchmarks with or
without memory control. The score of the h2 application

Fig. 7. Allocation of memory among five VMs when the memory control
system is “on”.

TABLE 2
Information on and Distributions of Hybrid PTS and DaCapo

Benchmarks on 10 VMs

ID Name Type Unit

VM1 apache cpu request/s
VM2 h2 mem ms
VM3 compile-linux-kernel cpu s
VM4 tradebeans mem ms
VM5 pgbench disk transaction/s
VM6 tradesoap mem ms
VM7 John-the-ripper cpu real C/S
VM8 scimark2 cpu Mflops
VM9 System-libxml2 cpu ms
VM10 compress-7zip cpu/mem MIPS

TABLE 3
Average Scores of Hybrid PTS and DaCapo Benchmarks on
10 VMs when the Memory Control System is either “off” or “on”

Fig. 8. Comparison of the scores of PTS & DaCapo hybrid benchmarks
when memory control system is “off” or “on”.
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is more than five times higher when the system is “on”
than when it is “off.” Similarly, the score of pgbench is also
nearly three times higher when the system is “on”. Other
memory-intensive applications (e.g., tradesoap and com-
press-7zip) likewise obtain higher scores. The scores of the
John-the-ripper and scimark2 are just slightly higher. How-
ever, the scores of apache, compile-linux-kernel, tradebean,
and System-libxml2 drop by approximately 10 percent
when the system is “on”.

Fig. 9 shows swap space usage when the memory control
is either “off” (dotted lines) or “on” (solid lines).

Figs. 9a, 9c, and 9i show that the swap space usage for the
benchmarks apache, compile-linux-kernel, and System-libxml2
is small (no more than 4 MB) when the system is “off”.
Apache benchmarks the HTTP server, compile-linux-kernel
measures the time to build the Linux 3.1 kernel, and System-
libxml2 records the time to parse a random XML file.
Because they are all CPU-intensive applications and not
sensitive to the memory size, their performance does not
improve when our system is “on”. The extra overload
incurred by page remapping and cleaning slightly degrades
their performance.

Figs. 9b, 9f, and 9j show that the swap space usage for the
benchmarks h2, tradesoap, and compress-7zip is large and up
to 250, 100, and 150 MB, respectively, when the system is
“off”. The benchmark h2 accesses the memory frequently by
using a JDBCbench-like in-memory database to simulate
many banking transactions. Tradesoap uses h2 as the under-
lying database to benchmark the daytrader via a SOAP to a
Geronimo backmend. Compress-7zip measures the file com-
pression with p7zip to test the processor and memory. These
benchmarks are all memory-intensive applications and fre-
quently access the swap space with huge fluctuations.
When the memory control is activated, the swap space
usage quickly decreases to approximately 25 MB. Therefore,
their performance is greatly improved.

Fig. 9d shows the swap space usage for the tradebean
benchmark. Tradebean is also memory-intensive, which uses
h2 as the database to benchmark the daytrader via a Java-
Beans to a Geronimo backend. However, at most of the
time, its swap space usage is approximately 20 MB and
keeps stable except the initial phase. As mentioned in
Section 3.3, the Guest OS uses swap space as long as its free
memory is below a specific threshold �0. In this test, the
value of �0 happens to be between 15 and 20 MB, which
means that enough free memory is still available. As a
result, when our system is “on”, its performance improve-
ment is not obvious because of the stable and small swap
space usage below the threshold �0.

Fig. 9e shows that pgbench occupies surprisingly less
swap space than expected, compared to its triple perfor-
mance improvement. It runs the same sequence of SQL
commands in multiple concurrent database sessions on
PostgreSQL. It is an I/O-intensive, mostly-on-disk bench-
mark, uses disk caches for caching data, and rarely relies
on swap space usage to avoid double paging. Addition-
ally, VMs frequently access the swap space when they are
out of memory. Hence, many I/O operations are intensi-
fied. These functions interfere with the normal I/O opera-
tions of pgbench, thus seriously affecting its performance.

When our system is “on”, swap space usage decreases
and pgbench performance improves, thus suggesting that
frequent swap space requests seriously affect the per-
formances of disk-intensive applications when the system
is out of memory.

Figs. 9g and 9h show that the swap space usage for John-
the-ripper and scimark2 is nearly zero no matter when our
system is “on” or “off”. John-the-ripper is a password cracker,
and scimark2 is for scientific and numerical computing and
includes Fast Fourier Transform, Jacobi Successive Over-
relaxation, Monte Carlo, Sparse Matrix Multiply, and dense
LU matrix factorization benchmarks. Both are CPU-inten-
sive applications. Therefore, our system can not help to
improve their performance by ballooning pages.

In summary, our system is scalable and can greatly
enhance the performance of memory- and disk-intensive
applications.

4.5 Costs of Automatic Memory Control System

We aim to verify the costs of our memory control system
incurred by remapping and scrubbing pages.

Each of 10 VMs is configured with 12 GB of initial avail-
able memory and 300 MB of reserved free memory (f). On
one VM, we deploy a CPU-intensive benchmark (sunflow)
or a memory-intensive one (h2) together with a special tool
we developed, which can continue claiming memory at
adjustable rates. The other nine VMs are idle.

This test occurs in the following way: First, we run sun-
flow or h2 in the target VM while our tool, resides in the
same VM, sends requests to boost page exchanges by modi-
fying the key /local/domain/<domid>/memory/free_mem in
Xenstore. The rates of the requests are 0 MB (“off” case),
50 MB, 100 MB, 150 MB, 200 MB, 300 MB, 400 MB, 600 MB,
800 MB, 1 GB and 1.2 GB per second. Then, the server in
Domain0 is triggered at the corresponding rate to reclaim
pages from the other nine VMs. Finally, the running time of
sunflow or h2 at different rates is recorded to compare with
the running time when our system is off (0 MB). We use
median confidence intervals for the running time at differ-
ent rates by running the test for 20 times.

Fig. 10a shows that the running time of sunflow increases
with the memory allocation rate. For example, its running
time with 600 MB allocation rate is nearly 1.5 times as high
as with 0 MB. When the allocation rate is up to 1.2 GB, its
running time is nearly 2 times as high as with 0 MB. This
means that our system incurs extra costs for the CPU-inten-
sive application because of page remapping and scrubbing.
However, the median line of the running time at different
rates is linear, and the slope is relatively small.

Fig 10b shows that the the median line of the h2 running
time is also linear and has the same slope as that of sunflow.
The overload for the memory-intensive application is the
same as that for the CPU-intensive one. Additionally, the
confidence intervals for both applications increase with the
memory allocation rates. This means that if we use higher
rates to exchange the pages, more fluctuations are intro-
duced for the applications.

In summary, the overloads of our memory control sys-
tem linearly increase with the memory allocation rates. In
terms of memory-intensive applications, their performance
improvement by balancing the memory and avoiding the
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swap space usage, can outperform the performance degra-
dation, which is caused by remapping and scrubbing pages
if we carefully control the memory allocation rate.

5 RELATED WORK

Memory control has been extensively studied in the context
of VMMs. Modern VMMs save memory using these four

Fig. 9. Comparison of swap space usage by hybrid PTS and DaCapo benchmarks when the memory control system is either “off” or “on”.
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main techniques: page sharing, virtual hotplug, live migration,
and balloon driver.

Page sharing. Memory can be saved by periodically
detecting and sharing the pages of all guest VMs with iden-
tical and/or similar content. Cellular Disco [29] first pro-
posed this technique by exchanging pages between the
physical memory and the disk partition of guest VMs.
Sugerman et al. [30] and Waldspurger [20] implemented the
process of virtual memory exchange with page sharing in
the VMWare Workstation and ESX Server. Waldspurger
[20] further developed page sharing based on the compari-
son of page content with consistent hashing. Gupta et al.
[31] integrated page sharing, compression, and patching to
utilize more virtual memory. In our system, the page sharing
method is applied orthogonally. Performance thus deterio-
rates when the scanning of similar pages to and from the
disk at a high rate uses increased memory from the CPU
and the paging guest.

Virtual hotplug. A virtual hotplug either enhances or
reduces memory by deceiving the interfaces of memory
management in the Guest OS. This hotplug mimics the
inclusion of a physical memory module that is dual in-
line. First, a new memory address group is conveyed to
the kernel. The kernel then enables the new memory.
Schopp et al. [21], [32] researched the principles and
implementations of the virtual hotplug in-depth and ana-
lyzed the advantages and disadvantages of the virtual
hotplug and of balloon drivers. The virtual hotplug comple-
ments our approach; the hotplug to add memory has

already been integrated into the mainline kernels. As a
result, the kernels can utilize additional memory that has
not been used to boot them. However, the hotplug to
remove memory is separated from the mainline because
this hotplug often fails to remove entire sections.

Live migration. To avoid application performance degra-
dation, live virtual machine migration can move a running vir-
tual machine between different physical machines without
disconnecting the client or application [34]. Live migration is
complementary to our system at different scopes of a data
center. Our system aims to solve the memory competition
on a consolidated server when some VMs are idle or use
less memory, although some VMs are lack of free memory.
However, in a heavily consolidated server where all of the
VMs are highly utilized, our system cannot improve appli-
cation performance, while live migration can move some
VMs to other physical machines and reduce the memory
burden of the current server.

Balloon driver. The research on the memory control sys-
tem based on the Xen balloon driver is most relevant to
our study. Zhao et al. [26] proposed a Xen-based memory
balancer (MEB) that can predict memory requirements
by monitoring memory usage. Memory is then periodi-
cally reallocated using this balloon driver. However, our
system has three significant advantages over MEB. First,
MEB modifies the VMM kernel to intercept memory
access and monitor memory usage. This process generates
heavy additional overloads and deteriorates VMM perfor-
mance. However, our system is lightweight and can be
completely incorporated into user space without interfer-
ing with VMM operation. Second, MEB uses a quick
approximation algorithm to prevent total page misses
from reaching a local minimum. Our system determines
the optimal allocation of global memory by introducing
dynamic baselines and solving linear equations. Finally,
MEB verifies the effectiveness of the algorithm using lim-
ited resources, e.g., two and four VMs, whereas our sys-
tem can scale up to 10 VMs.

Heo et al. [12] used control theory to dynamically allocate
memory on Xen VMs. This system is also lightweight and is
implemented in user space, as with our system. However,
Heo’s system is more limited than our system in two ways.
First, feedback can be controlled effectively only if the phys-
ical memory can accommodate all of the memory requests.
Our system can determine the allocation by solving linear
equations with the dynamic baseline, which fits both suffi-
cient and insufficient physical memory. Moreover, the exper-
imental setup of Heo’s system is more specific than that of
ours. Our system uses real benchmarks, e.g., DaCapo and
PTS, on 10 VMs, whereas Heo’s system loads two VMs with
synthetic and traces-driven work. Users are most concerned
with the running times of the benchmarks, although these
benchmarks merely record response time and throughput
as metrics in operation.

Recent studies [33] utilized application-level ballooning
(ALB) on Xen VMs. However, the concept of “application-
level” in ALB as presented by these studies is quite different
from our definition. In the literature, ALB extends the exist-
ing ballooning technique to applications that manage their
own memory in consolidated VMs. It must modify both the
Linux kernel and the Xen balloon driver. However, our

Fig. 10. Comparison of running time for CPU-intensive and memory-
intensive applications at different memory allocation rates.
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ALB operates in user space without altering kernel compo-
nents and interfering with VMM operation.

6 CONCLUSION

In this study, we devise a system for automatic memory
control based on the balloon driver in Xen VMs.
Researchers can download our toolkit, which is under a
GNU GPL v3 license, for free. Our system aims to opti-
mize the running times of applications in consolidated
environments by overbooking and/or balancing the
memory pages of Xen VMs. Unlike traditional methods,
such as MEB, our system is lightweight and can be
completely integrated into user space without interfering
with VMM operation. We also design a global-scheduling
algorithm based on the dynamic baseline to determine
the optimal allocation of memory globally. We evaluate
our optimized solution to memory allocation using real
workloads (DaCapo and PTS) that run across 10 VMs.
Some key findings are listed below:

� Our system significantly improves the performances
of memory-intensive applications. For example, the
running time of the h2 application is reduced to a
quarter of its original time.

� Our system significantly enhances the performances
of disk-intensive applications by limiting the swap
space usage of applications in other VMs. For exam-
ple, the running time of the pgbench application is
decreased to one-third of its original time.

� Our system is scalable and suitable for various appli-
cations. In our experiments on the system, the num-
ber of VMs is extended from two or five to 10. The
system can also accommodate pure memory-, mem-
ory-intensive, and CPU-intensive applications, as
well as a combination of memory-, CPU-, and disk-
intensive applications.

� Our global-scheduling algorithm is adaptive. The
dynamic baseline of this algorithm can limit schedul-
ing system overload, balance the free memory, and
lower memory uniformly.

� Our system also hints at the use of the task dis-
patcher to balance resource usage in cloud environ-
ments with multiple physical machines; when
the cloud dispatcher schedules tasks for physical
machines, it should deploy different types of appli-
cations to VMs on one physical machine. Specifically,
a maximum of one disk-intensive application should
be released along with disk- or memory-intensive
applications. However, automatic memory control
should be activated if many memory-intensive appli-
cations are run on one physical machine.

In addition to memory devices, we plan to extend our
system to CPU and I/O devices in the future.
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