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Abstract—The on-demand provisions of cloud services create a service market, where users can dynamically select services based

on such attractive criteria as price and quality. An intuitive model of a service market is a reverse auction. In the first price auction,

however, a service that is cheaper and provides better quality is not necessarily selected. This causes undesirable outcomes both for

users and service providers. A possible solution is the Vickrey-Clarke-Groves (VCG) mechanism, where the dominant strategy for a

service provider is to report the true cost of his service. In spite of this desirable property, implementing the VCG mechanism for

service composition suffers from computational cost. The calculation of payments to service providers based on the VCG mecha-

nism requires iterative service selection, even though each service selection can be NP-hard. Approximation algorithms cannot be

applied because approximate solutions do not assure the desirable property of the VCG mechanism. Thus, we model VCG payments

for service markets and propose a dynamic programming (DP)-based algorithm for service selection and VCG payment calculation.

Our proposed algorithm solves service selection in quasi-polynomial time and gives an exact solution. Moreover, we extend it and

focus on the iterative service selection process for VCG payment calculation to improve its performance. Our series of experiments

show that our proposed algorithm solves practical scale service composition.

Index Terms—Service composition, service selection, dynamic programming, VCG mechanism

Ç

1 INTRODUCTION

IN the cloud computing era, the elasticity of cloud environ-
ments has introduced significant benefits to both SaaS ser-

vice providers and users who build service-oriented
architecture (SOA) systems by combining services. SaaS ser-
vice providers are freed from managing computational
resources by operating their services on IaaS platforms.
Since we focus on SaaS services in this paper, we hereinafter
refer to them as a “service.” Users can immediately start
using them based on their needs. This creates a service mar-
ket, where users can dynamically select services from a
number of functionally equivalent candidates based on their
non-functional properties including price and quality. On
the other hand, in such a service market, the elasticity of
cloud environments allows service providers to dynami-
cally set the prices and the quality of their services, both of
which are expected to be determined by their autonomous
agents. The users also ask their autonomous agents to pur-
chase services because there are too many functionally
equivalent services to manually manage.

An SOA system designer often defines an abstract busi-
ness logic that combines services based on their functional
properties. Once the service interfaces are standardized in
the service market, executable services can be bound for

invocation at runtime based on the non-functional proper-
ties of the services. The user’s autonomous agent is expected
to find a combination of services that satisfy the overall
requirements for the composite service based on the price
and the quality of the services.

The most intuitive service market model is a reverse
auction, where service providers offer their services at a
certain price and quality and users select a combination of
them and pay the proposed price. However, how service
providers price their services is not trivial. If the model is a
(sealed) first price auction, a service provider has no domi-
nant strategy unless it knows the prices of its competitors’
services. The service provider earns profit only if he suc-
cessfully sets his service’s price cheaper than the others
and his service is selected. If he fails to do so, he loses
profit even when the actual cost of his service is cheaper
and its quality is better than his competitors. Although the
best price for the service provider is one that is slightly
lower than the others, such information is impossible to
know. This leads to undesirable outcomes for both users
and service providers.

A possible approach to the above problem is the Vickrey-
Clarke-Groves (VCG) mechanism [1], [2], [3]. Payments
based on it guarantee that desirable properties include
strategy-proofness. If a mechanism is strategy-proof, the dom-
inant strategy for service providers is to report the true
value of their service. In the context of service composition,
the “true value” corresponds to the service’s cost: the mini-
mum value they need to receive.

On the other side of the coin, the VCG-based mechanism
suffers from computational complexity. Given a set of can-
didate services, the computational cost to find a combina-
tion of services that minimizes the overall price of the
composite services under a certain constraint on quality.
Moreover, the VCG mechanism runs service selection N þ 1
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times when a user selectsN services for a composite service.
Although there are polynomial algorithms that find approx-
imate solutions, they do not assure strategy-proofness. This
makes implementing a strategy-proof mechanism more
computationally expensive. A previous work applied VCG-
based payments to cloud service selection as a combinato-
rial reverse auction. Mihailescu and Teo showed strategy-
proof selection designed for dynamic pricing [4]. But they
focus on maximizing the utility of users and service pro-
viders. The computational complexity for service selection
(winner determination) based on their model is polynomial
due to its simplicity.

In this paper, we first show strategy-proof pricing based
on the idea of the VCG mechanism. Then we propose a
dynamic programming (DP)-based approach that imple-
ments service selection and calculates the payments. This
approach’s computational complexity is quasi-polynomial
when it gives an exact solution. We also propose an
extended approach to reduce the computational complexity.
Our DP-based approach records the process of the service
selection. Since calculation of the VCG payments requires
that service selection be iteratively performed excluding
one service provider, the extended approach uses the record
of the process as a cache and greatly reduces the computa-
tional complexity in the iterative service selection.

The rest of this paper is organized as follows. In Section 2,
we explain the assumption regarding stakeholders in this
paper, the fundamental model of service composition, and a
VCG-based mechanism based on the model. Next we
describe our DP-based algorithm for the VCG payment cal-
culation in Section 3. In Section 4, we show some experi-
mental results about computational cost, the success ratio of
service composition, and utility of users and service pro-
viders. After introducing related works in Section 5, we con-
clude this paper in Section 6.

2 MODEL

In this section, we explain our assumption regarding stake-
holders and the fundamental model of service composition.
Then we apply the VCG mechanism idea to our model by
formalizing VCG payments and the procedure to calculate
them following our model.

2.1 Stakeholders

In this paper, we focus on the composition of various func-
tions that are available as services and on “SaaS” services
that work as software components, not on PaaS or IaaS. This
is why we refer to SaaS services and their providers as
“services” and “service providers,” respectively. In addition,
we assume services are operated on scalable IaaS platforms.
Thus, services can manage as many requests as received
because the dynamic changes of the requirements for
computational resources are handled by the IaaS platforms.
Since the service providers are different from the IaaS plat-
form providers, the former are not concerned with the
capacity of the computational resources.

Fig. 1 illustrates the relationships among the stakehold-
ers. On each IaaS platform, many service providers offer
their services. The user chooses services that may be oper-
ated on several different IaaS platforms. Our scope in this

paper includes only the service providers, the user, and
their deals. Therefore, we do not discuss the operation of
the IaaS platform, which aims for computational resource
management based on the amount of requests.

Our assumption is natural in the cloud computing era.
One well-known service in the real world is Instagram,1

which is operated on Amazon EC2, a scalable IaaS platform.
Various functions of Instagram are provided as APIs. Appli-
cation developers can easily combine APIs with those of
other services as a composite service.

2.2 Service Composition

We assume a composite service is designed based on
abstract services, which only define the interface. An execut-
able service is called a concrete service, which is bound to the
abstract service at the runtime. We assume that many con-
crete services are available in a service market and can be
bound to abstract services. A service provider offers a con-
crete service at a particular price and quality. A user of a
composite service sets the maximum price and the mini-
mum quality of the overall composite service as constraints
and selects a combination that satisfies them.

Unfortunately, no big, open service market exists in the
real world. However, more and more services are becoming
available on the web. For example, the statistics of Program-
mableWeb2 show that the number of web services is still
increasing. Approximately 10,000 services are registered
on ProgrammableWeb. Another example is the Language
Grid [5], which is a platform for language services, such as
machine translators and dictionaries. Since some standard-
ized interfaces are defined for it, service providers can make
their services composable by wrapping language processing
programs based on the interfaces. On the other hand, the
trend to monetize services continues to increase and a wide
variety of business models have emerged. For example, the
GoogleTranslate API used to be free, but now users need to
pay based on the amount to be translated. Following that
trend, such other translation APIs as J-Server and WEB-
Transer have introduced similar business models. As shown
by these examples, service markets are becoming real.

Fig. 2 shows an example of service composition. This is a
typical example of a combination of SaaS services. A com-
posite service is represented as a workflow that contains
three abstract services. An abstract service corresponds to a

Fig. 1. Stakeholders of service composition.

1. http://instagram.com/.
2. http://www.programmableweb.com/.
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service cluster, which is a collection of bindable concrete
services. In this example, two concrete services are available
in each service cluster. Concrete services in the same service
cluster are functionally equivalent, but they have different
non-functional properties. In a machine translation cluster,
for instance, the cost of GoogleTranslate is much lower than
JServer but the latter’s translation quality surpasses the for-
mer’s. In this paper, we focus on price and overall quality
representing such non-functional properties as throughput
and availability. In Fig. 2, a pair of values around a concrete
service represents its price and quality.

2.3 Formalization

We denote the jth service in the ith service cluster as si;j. We
also denote the price and the quality of si;j as pi;j and qi;j,
respectively. Given N service clusters, the price of the over-
all composite service is defined as the sum of the prices of

selected services
PN

i ai;jpi;ji , where ai;j represents the ser-

vice selection. In this paper, we define ai;j as ai;j 2 f0; 1g
because we assume a user selects only one concrete service
for an abstract service. We also assume a user has aggregate
function fðfai;jg; fqi;jgÞ, which takes the selected services
and quality values and returns the composite service’s over-
all quality. The aggregate function’s objective is to represent
the structure of the user’s preference and criteria about
quality, which can be much more complex than price. The
user determines maximum price P and minimum quality Q
as constraints to minimize the total price under the given
constraints. If any combination of concrete services fails to
satisfy the constraints, the service composition fails.

The goal and constraints are formally defined as follows.
Since ai;j is 1 or 0, this problem is 1-0 integer programming:

min:
XN
i

ai;jpi;ji (1)

XN
i

ai;jpi;ji � P (2)

fðq1;j1 ; . . . ; qN;jN Þ � Q (3)

8i;
X
j

ai;j � 0 (4)

8i;
X
j

aij ¼ 1: (5)

The applicability of the formalization depends on the
application. If an input to a service can be divided into any
fragment size that can be processed by different services to
return the same results, we define ai;j as a real number
between 0 and 1. In this case, this problem is defined by lin-
ear programming and the computational complexity is
much less than the 1-0 integer programming. In general,
unfortunately, the services provided by different service
providers return different results. In the above example, dif-
ferent translation services return different translation
results. If we divide a document into sentences and translate
them using different translation services, the overall results
may be inconsistent. This is why we formalize service com-
position as 1-0 integer programming.

The symbols for formalization including those used in
the latter sections are summarized in Table 1.

2.4 VCG-Based Mechanism

If a user selects services and determines payment as a
first price reverse auction, results of the service selection
can be unstable. We show two example scenarios to
describe this problem.

In the first scenario, assume two services, sA and sB. A
pair of ðcost; qualityÞ of sA is ð10; 5Þ and that of sB is ð12; 5Þ.
The service providers of these services need to determine a
price that exceeds the cost of the service to make a profit.
However, if they set a higher price than the others, they lose
any chance to make a profit. Assume the provider of sA sets
its price to 14, and the provider of sB sets its price to 13.
Under this result, the user selects sB, although the cost of sA
is cheaper. In other words, the provider of sA loses any pos-
sible profit due to a pricing failure.

In the second scenario, assume again two services, sA
and sB. The pair of ðcost; qualityÞ of sA is ð10; 6Þ and sB is
ð12; 5Þ. Even though the provider of sA sets its price to 14
and the provider of sB sets its price to 13, the budget for the
service cluster is 13.5 due to the selection’s result at another
service cluster. Here, the user also selects sB, although sA
provides both better cost and quality.

Such undesirable results reflect that service providers
must determine the price of their services by only relying

Fig. 2. Example of service composition.
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on the expectation of the pricing of other service providers.
However, the prices of services change frequently based on
requests from users and the cost of computational resour-
ces. This makes it difficult for service providers to manually
determine prices based on the prices of competitor services.

To solve this problem, we apply the idea of the VCG
mechanism. In combinatorial auctions, for instance, it
ensures strategy-proofness, where a buyer’s dominant strat-
egy is to report her true value. In the context of service com-
position, the following differences exist with typical VCG
auctions. First, our model is a reverse auction. Service pro-
viders report the cost of their services as true values. Sec-
ond, unlimited capacity of services can be provided because
they are deployed on scalable IaaS platforms. Third, serv-
ices are selected from a particular number of service clus-
ters. A service in a service cluster cannot be an alternative of
other services in a different service cluster. As a result,
excluding service sij from service cluster i in Algorithm 1
may completely change the service selection in different ser-
vice clusters.

One of our goals is to propose a strategy-proof mecha-
nism for our service composition regardless of the above
differences. We define the payments to service provider si;j
as follows:

paymenti;j ¼
X

si0 ;j0 2W 0�i;j
pi0;j0 �

X
si0 ;j0 2W�i;j

pi0;j0 (6)

W ,W�i;j, andW 0
�i;j are defined as follows:

� W . Set of selected services
� W�i;j. Set of selected service except for si;j
� W 0

�i;j. Set of services that would be selected if si;j
were not available.

Below we show that the payment defined by formula (6)
is strategy-proof.

Theorem. The payment defined in (6) is strategy-proof.

Proof.When a service provider of si;j sets a price that exceeds
its true cost, there are two possible cases. One, the service
is not selected because the price and the profit of the ser-
vice are zero. Another is the case where the service is
selected. But neither

P
si0 ;j0 2W 0�i;j pi

0;j0 nor
P

si0 ;j0 2W�i;j pi0;j0

are affected by the price of si;j. Therefore, si;j does not
bring a profit. Note that the service providers are rational
and do not provide their services if their payment is lower
than the cost. Therefore, they do not set a price that is
lower than their true cost. As a result, a false report of a
service’s cost does not increase the profits of service
providers. tu

Algorithm 1. RunVCG(S, P , Q)

1: S: set of available services fsi;jg
2: P : max price of composite service
3: Q: min quality of composite service
4: W  Select(S, P , Q)
5: ifW is not found then
6: return Failure of service composition
7: end if
8: for all si;j 2W do
9: W 0

�i;j Select(S�i;j, P , Q)
10: ifW 0

�i;j is not found then
11: return Failure of service composition
12: end if
13: paymenti;j  P

si0j0 2W 0�i;j pi
0j0 �

P
si0;j0 2W�i;j pi0;j0

14: end for
15: U  P �PN

i ai;jpi;ji
16: if U < 0 then
17: return Failure of service composition
18: end if
19: return paymentsi;j s.t. 8i; j si;j 2W

Since we assume the proposed price set by the service
providers equals their cost, we define the utility of the ser-
vice providers as follows:

ui;j ¼ paymenti;j � pi;j (7)

P is the maximum total price determined by the user.
Considering this to be the user’s budget for the service com-
position, we define the user’s utility as follows:

U ¼ P �
XN
i

ai;jpi;ji ; (8)

TABLE 1
Formalization Symbols

Symbol Description

P maximum price
Q minimum quality
S set of available services
si;j jth service in ith service cluster
pi;j price of sij
qi;j quality of sij
N number of service clusters
m number of services in a service cluster
d discretization parameter
ai;j flag that shows whether si;j is selected.

If selected ai;j is 1, otherwise 0.
fðfai;jg; fqi;jgÞ quality aggregate function
W set of services selected from S satisfying

constraints P and Q.
W�i;j set of selected services except for si;j
W 0
�i;j set of services that would be selected

if si;j were not available.
ui;j utlity of sij’s provider
U user’s utility
M matrix used for DP, whose row corresponds

to a selection at a service cluster and whose
column corresponds to a certain quality value.

ec;q element ofM that corresponds to a subsolution
of service selection

bsc;q subsolution of service selection, which
contains services from clusters 1 to c and
achieves the cheapest price at quality q.

bpc;q price realized by bsc;q
ASc;q set of all subsolutions expanded from all

bsc�1;q and sc;j, all services in service cluster c.
APc;q set of price values given by ASc;q.
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ui;j > 0 always holds as shown below

ui;j ¼ paymenti;j � pi;j

¼
X

si0 ;j0 2W 0�i;j
pi0;j0 �

X
si0 ;j0 2W�i;j

pi0;j0 � pi;j

>
X

si0 ;j0 2W
pi0;j0 �

X
si0 ;j0 2W�i;j

pi0;j0 � pi;j

¼
X

si0 ;j0 2W�i;j
pi0;j0 þ pi;j

0
@

1
A

�
X

si0 ;j0 2W�i;j
pi0;j0 � pi;j

¼ 0:

Note that
P

si0 ;j0 2W pi0;j0 <
P

si0 ;j0 2W 0�i;j pi
0;j0 because W is

cheaper combination of services than W�i;j.
On the other hand, U can be a negative value based on

the above definition. Because a rational user does not accept
negative utility, service composition fails in such a case.
This shows that additional payments may cause failure of
the service composition in exchange for strategy-proofness.
We discuss this issue in Section 4.

The procedure, which includes service selection and
VCG payment calculation, is shown in Algorithm 1:

The Select procedure returns a combination of services
that satisfy the constraints on price P and quality Q. If no
combination is found, Select returns a failure of the service
composition. Given service clusters N , Select is performed
N times to exclude each service si;j from S to calculate the
VCG payments. Once Select fails, the service composition
fails. S�i;j, which is used by Select (line 9), is a set of services
given by excluding si;j from S. After determining the pay-
ments to all service providers, the procedure calculates U to
check if the user’s utility is positive. As mentioned above,
the composition fails if the user’s utility is negative.

It is well-known that the computational complexity of
the winner determination in auctions is NP-hard when an
exact solution is needed. One of the most intuitive
approaches is backtrack and branch-and-bound. Suppose
the computational complexity of Select in line 4 is OðmNÞ,
given N service clusters that have m services. Similarly,
the computational complexity of Select in line 9 is Oððm�
1Þ �mN�1Þ. Since lines 8-14 are iterated N times, the

computational complexity of the whole process is OðmNþ
Nððm� 1Þ �mN�1ÞÞ ’ OðNmNÞ. This is serious when we
apply Algorithm 1 to a large-scale problem.

Another problem is that the desirable properties of VCG
mechanisms can be negated by such malicious behaviors as
shill biding. Such behaviors usually appear under the set-
tings of combinatorial auctions. In combinatorial auction,
for example, a buyer can submit a bid on a bundle of multi-
ple goods. However, in Internet auction, the buyer can split
a bid as if different buyers submitted the split bids. This
problem is called false-name bids, which is one of the most
well-known problems of the VCG mechanism in Internet
auction. In [6], the authors showed that the buyer can gain
utility by the false-name bids. Most of the malicious

behaviors including false-name bids appear only in combi-
natorial auction, where the sum of values of separated bids
and the value of a bid on the bundle can be different. In our
model, however, we do not introduce bids on a bundle of
services. The price of a composite service is the sum of pri-
ces of selected services. In that sense, our model is not a
combinatorial auction although the user selects a set of serv-
ices. Therefore, such malicious behaviors do not work in our
model. The design of our model is based on the assumption
that there is no limitation on the capacity of services that are
operated on IaaS platforms.

3 DP-BASED ALGORITHM

Although the 1-0 integer programming problem shown in
the previous section is NP-hard, the strategy-proofness of
VCG payments requires an exact solution; approximation
algorithms are not appropriate. In this paper, we apply a
dynamic programming-based algorithm, which is a quasi-
polynomial time algorithm.

In addition to the applicability to NP-hard problems, the
DP-based approach has another advantage. It can record
the process’s progress in quasi-polynomial sized spaces. We
can reduce the calculation by reusing this record when we
iteratively run Select, excluding a service selected during
the first selection.

In the following, we first introduce a DP-based algorithm
for service selection and then propose an extension of the
algorithm to improve the performance of VCG payment
calculation.

3.1 Service Selection

First, we define matrix M, whose row corresponds to a
selection at a service cluster and whose column corresponds
to a certain quality value. Element ec;q of M corresponds to
a subsolution of the service selection and is formally defined
as follows:

ec;q ¼ ðbsc;q; bpc;qÞ;

where bsc;q is a subsolution of the service selection, which
contains services from clusters 1 to c and achieves the
cheapest price at quality q. q is a discretized value of the
aggregated quality of the services in subsolution bsc;q. An
aggregated quality is a real value, but we discretize it as
roundðquality � dÞ to place it in M, where d is the scale for
discretization. bpc;q is the price achieved by bsc;q.

Based on these definitions, Algorithm 2 gives the best
feasible selection and quality.

First, the algorithm initializes the first row of M accord-
ing to the services in service cluster 1 (lines 4-8). The subso-
lutions that only contain services in service cluster 1 are put
by the quality. f is the quality aggregate function, which
takes a set of services and returns the aggregated quality
values. Then it iteratively sets values to the following rows
that expand the subsolutions. A subsolution is expanded by
combining a subsolution with a possible service in the next
service cluster. If the same quality value is given by differ-
ent subsolutions, the cheaper subsolution overwrites the
existing one. If an expanded subsolution does not satisfy
the maximum price constraint, it is discarded. After the
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calculation finishes all the rows, the algorithm searches for
the last row for an element with the cheapest price.

Algorithm 2. Select(S, P , Q)

1: S: set of available services fsi;jg
2: P : max price of composite service
3: Q: min quality of composite service
4: for all service s1;j 2 S do
5: if p1;j < P and (e1;fðfs1;jgÞ is undefined

or p1;j < bp1;fðfs1;jgÞ) then
6: Update e1;fðfs1;jgÞ to ðfs1;jg; p1;jÞ
7: end if
8: end for
9: for c ¼ 1 to N � 1 do

10: for all ec;q which is defined do
11: for all scþ1;j in service cluster cþ 1 do
12: sol0  combine bsc;q and scþ1;j
13: p0  price of sol0, q0  f(sol0)
14: if p0 < P and (ecþ1;q0 is undefined

or p0 < bpcþ1;q0) then
15: Update ecþ1;q0 to ðsol0; p0Þ
16: end if
17: end for
18: end for
19: end for
20: return eN;q s.t. 8q0 6¼ q; bpN;q � bpN;q0 ; q > Q

There are some requirements for quality aggregate func-
tion to implement Algorithm 2. First, the aggregated quality
values must also be defined for the subsolutions without
being limited to complete solutions that contain selections
at all the service clusters. Second, the quality aggregate
function must be a monotonic increasing function with
respect to quality. Finally, the price of the services must be
in a finite range because the quality is discretized to be
mapped inM.

Not all applications satisfy the above requirements.
The calculation of aggregated quality is often much more
complex than the calculation of price. Time and availabil-
ity are typical QoS metrics to which we can apply our
method. Many previous papers such as [7] have proposed
the quality aggregation of such QoS metrics for composite
services based on the control constructs. For example, the
response time of a composite service that executes com-
ponent services in sequence is defined as the sum of the
response time of component services. When a composite
service executes component services in parallel, the over-
all response time is the max values of those of component
services. Most of such proposed aggregation functions
satisfy the above requirements.

The effect of price discretization is less significant than
the aggregation of quality regarding applicability. Since
price lists for real services require little precision, we con-
sider discretization scale d to be at most 100. We discuss the
effect of the discretization scale on the computational com-
plexity in Section 4.

We consider the algorithm’s computational complexity.
For the nth service cluster, it requires the calculation of price
and updating the value OðnmQ=NÞ times, because the

average service prices are approximately Q=N . Therefore,
each time the process in an iteration of a loop for a service
cluster runs, the maximum number of filled elements in a
row is expected to increase by approximately Q=N until a
row is filled with an element. At the nth row, the maximum
price is expected to be nQ=N . For each price value, the cal-
culation of the quality and its update are performed m
times. Therefore, the computation cost for a row in M is
OðnmQ=NÞ. Since each service composition using N rows is
repeated N times for VCG payment calculation, the overall

execution time is SN
n¼1OðnmQ=NÞ �N ’ OðmQN2Þ.

3.2 Extension for VCG Payment

As shown in Algorithm 1, the VCG payment calculation
iteratively performs service selection as many times as the
number of service clusters. Since each selection is computa-
tionally expensive, VCG payment calculation may take a
long time. Thus, we extend Algorithm 2 to reduce the
computational cost.

The idea of our extended algorithm is to reuse matrix M.
Not all of its elements need to be updated when we iterate
the selection that excludes si;j, which was selected during
the first selection. To reuse M, selections that contain si;j
must be removed first. Elements whose best selection relies
on si;j also need to be updated.

Algorithm 3. SelectForVCG(S, P , Q)

1: S: set of available services fsi;jg
2: P : max price of composite service
3: Q: min quality of composite service
4: for all service s1;j 2 S do
5: if p1;j < P then
6: if e1;fðfs1;jgÞ is undefined

or p1;j < bp1;fðfs1;jgÞ then
7: Update e1;q to ðfs1;jg; fðfp1;jgÞÞ
8: end if
9: Add fs1;jg to ASc;qi;j

10: Add fp1;jg to APc;qi;j

11: end if
12: end for
13: for c ¼ 1 to N � 1 do
14: for all p s.t. ec;q is defined do
15: for all scþ1;j in service cluster cþ 1 do
16: sol0  combine bsc;q and scþ1;j
17: p0  price of sol0, q0  f(sol0)
18: if p0 < P then
19: if e1;fðfs1;jgÞ is undefined

or p0 < bpcþ1;q0 then
20: Update ecþ1;q0 to ðsol0; p0Þ
21: end if
22: Add sol0 to ASc;q0
23: Add p0 to APc;q0
24: end if
25: end for
26: end for
27: end for
28: return eN;q s.t. 8q0 6¼ q; bpN;q � bqN;q0 ; q > Q
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To achieve the above idea, we extend an element in
matrixM as follows:

ec;q ¼ ðbsc;q; bpc;q; ASc;q; APc;qÞ;

ASc;q is a set of all the subsolutions that are expanded
from all bsc�1;q and sc;j, which are all the services in service
cluster c. APc;q is a set of price values given by ASc;q. From
the definition, bsc;q 2 ASc;q and bpc;q 2 APc;q hold. Excluding
a service may make the current best subsolution recorded at
ec;q infeasible. Thus, the extension records more possible
subsolutions that correspond to a certain price without
being limited to the best one.

Algorithm 2 is revised and renamed Algorithm 3 for the
extension. This algorithm is performed for the first selection
in Algorithm 1 (line 4).

The significant difference is adding a selection and its
quality value to ASc;q and APc;q (lines 9-10, 22-23). This is
performed when the price of the selection satisfies the price
constraint. Matrix M is preserved after the first service
selection is finished.

Once the user determines the services, Algorithm 4 effi-
ciently selects services, excluding services si;j which are
selected at the first service selection.

Algorithm 4. SelectForVCGExcluding(si;j, S, P , Q)

1: si;j: service to be excluded
2: S: set of available services fsi;jg
3: P : max price of composite service
4: Q: min quality of composite service
5: for all ec;q inM do
6: if solc;q 2 ASc;q contains si;j then
7: Remove solc;q and pc;q 2 APc;q

8: Add ec;q to setD
9: end if

10: end for
11: for c ¼ i to N � 1 do
12: for all ec;q in D do
13: for all scþ1;j in cluster cþ 1 do
14: sol0  combine bsc;q and scþ1;j
15: p0  price of sol0, q0  f(sol0)
16: if p0 < bpcþ1;q0 and p0 < P then
17: Update ecþ1;q0 to ðsol0; p0Þ
18: Add ecþ1;q0 to setD
19: end if
20: end for
21: Remove ec;q from D
22: end for
23: end for
24: return eN;q s.t. 8q0 6¼ q; bqN;p � bpN;q0

The solutions that contain excluded service si;j are
removed first (line 7). The element in M from which si;j is
excluded is added to set D because it needs to be updated
later (line 8). The update of the elements starts with the row
that corresponds to the cluster of the excluded service. This
algorithm iteratively updates each row by propagating
changes. After updating the last row, it finds the best solu-
tion from the last row.

The computational cost of SelectForVCGExcluding
given sc;j is

PN
n¼c nmQ=N . This is because the nQ=N ele-

ments can be updated in the nth row. The m subsolutions
are generated for each element, and the updates are iterated
from the cth row to the last row. Since SelectForVCGExclud-
ing is iterated for services selected in each service cluster,
the computational complexity for the entire update isPN

c¼1
PN

n¼c nmQ=N , which is less than Algorithm 2,PN
n¼1 OðnmQ=NÞ �N .

4 EVALUATION

The algorithms shown in the previous section effectively
calculate the VCG payments. We implemented a prototype
and investigated the performance of our algorithms.

The following is the experimental framework. We per-
formed service selection and payment calculation based on
Algorithm 1. The evaluation criteria are the execution time
to finish the process, the success ratio of the service compo-
sition, and the utility values of a user and the service pro-
viders. The initial conditions are maximum price P and
minimum quality Q given by a user and price pi;j and
quality qi;j proposed by the service providers. We repeat
the process a certain number of times by setting random
values to the initial conditions to investigate the general
properties of the proposed algorithms. We defined con-
stant values P0 ¼ 100, Q0 ¼ 50 and generated random val-
ues 0:5 � rp; rq � 1:5. Then we set P and Q to rpP0 and
rqQ0, respectively. Similarly, we also generated random
values 0:5 � rpi;j ; rqi;j � 1:5 and set pi;j and qi;j to rpi;jP=N

and rqi;jP=N , respectively. For a comparison of multiple

settings, we used the same sequence of random values.
We also defined the following experimental parameters:

number of service clusters N , number of concrete services
in a service cluster m, and scale for discretization d. In the
following sections, we show some properties including the
performance of our algorithms with respect to the experi-
mental parameters.

All the experiments were conducted on a machine that
was composed of Intel(R) Xeon(R) X5675 and 72-GB RAM.
We implemented our prototype system for our experiments
in Java (Oracle JDK 7 Update 51). The CPU had 12 cores,
but the prototype was implemented as a single-threaded
program. Thus, only one core is used. The maximum
amount of memory used was around 6 GB.

4.1 Number of Service Clusters

We investigated the execution times as the number of ser-
vice clusters increased from 5 to 100. For each service clus-
ter, we performed service composition ten times and
plotted the execution times on a chart. The number of con-
crete services in a service cluster, m, was set to 20. The scale
for price discretization dwas 10.

In Fig. 3, the horizontal axis represents the number of ser-
vice clusters, and the vertical axis represents the execution
times. There are three series in the figure. The red crosses
show the execution times based on the basic DP-based algo-
rithm (Algorithm 2; shown as DP basic with VCG payments
in Fig. 3. The green x’s show the execution times based on
the extended algorithm (Algorithms 3 and 4; shown as DP
ext with VCG payments). The blue triangles show the

TANAKA AND MURAKAMI: STRATEGY-PROOF PRICING FOR CLOUD SERVICE COMPOSITION 369



execution times to find a combination of concrete services
without calculating the VCG payments (shown as DP with-
out VCG payments). This corresponds to the execution of
the first Select in Algorithm 1 (line 4). We investigated this
execution time to determine how much the computational
cost increases for the strategy-proofness of VCG payments.

Fig. 3 shows that the execution times of the basic DP algo-
rithm exponentially increase as the number of service clusters
increases. The execution time of the extended DP algorithm
is also exponential, but more moderate. Based on the
average execution times for all the trials shown in Fig. 3, the
extendedDP algorithm is 1.7 times faster than the basic one.

For both algorithms, the execution times are categorized
into two groups. The group near the bottom line shows the
times when the first service selection fails. If a combination
of services is not found at the first service selection, the fol-
lowing selection for calculating the VCG payments does not
run. This is why the algorithm finishes soon. The extended
algorithm records many more subsolutions and correspond-
ing prices, but the other only records the best ones. This
makes the extended algorithm slightly more time-consum-
ing than the basic one when service composition fails.

The execution time without calculating the VCG pay-
ments is much shorter than the other settings. We used the
basic DP algorithm for this setting. As discussed in Section
2, this runs Select once while the other runs it N þ 1 times.
Therefore, the difference with the other cases increases as
the number of service clusters N increases. The experimen-
tal results of the basic and extended DP-based algorithm in
Fig. 3 roughly follow the estimation of the computational
complexity shown in Sections 3.1 and 3.2 respectively. In
the extended algorithm, the computational cost of the
worst case is almost the same as the basic algorithm.
However, the algorithm checks existing elements in M
and stops searching when the price of the new subsolution
exceeds the existing one. This works as pruning and
improves the performance.

4.2 Number of Concrete Services

We also investigated the execution times as the number
of concrete services in a service cluster, m, increases

from 5 to 100. The number of service clusters, N , was set
to 20. The scale for price discretization d was 10.

In Fig. 4, the horizontal axis represents the number of
concrete services in a service cluster. The vertical axis repre-
sents the execution times. There are also three series in
Fig. 3. The red crosses show the execution times based on
the basic DP-based algorithm. The green x’s show the exe-
cution times based on the extended algorithm. The blue tri-
angles show the execution times to find a combination of
concrete services without calculating the VCG payments.

The extended algorithm also has a significant advantage
over the basic one in this experiment, although both show
linear times. For the basic algorithm, there are clearly two
groups where the service composition succeeded or failed.
For the extended algorithm, there are still two groups but
the difference between them is much smaller. When service
composition succeeds, the execution time of the extended
algorithm is shorter, but it takes longer when the service
composition fails. Based on the average execution times for
all the trials shown in Fig. 4, the extended DP algorithm is
1.8 times faster than the basic one.

According to the above discussion, the computational
complexity is OðmQN2Þ. Therefore, the execution time with
respect to the number of concrete services in a service cluster
is expected to be linear. The result shown in Fig. 4 also
roughly follows this estimation. Similar to the previous exper-
iment, the computational cost of the extended algorithm in
the worst case is almost the same as the basic algorithm.
Therefore, the extended algorithm’s performance ismuch bet-
ter because of the pruning based on the existing values inM.

4.3 Scale of Discretization

The scale of discretization d greatly impacts both the appli-
cability to the real problem and the computational complex-
ity. If the scale is small, the possible range of prices is
limited while the computational complexity is small. For
example, the offered price can go to one decimal place
when d is set to 10.

According to the definition of discretized price
roundðquality � dÞ, on the other hand, the computational com-
plexity is expected to linearly increase when the scale

Fig. 4. Execution time of DP-based algorithm: concrete services.

Fig. 3. Execution time of DP-based algorithm: service clusters.
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of discretization increases. Since the required price
“resolution” depends on the application, d should be appro-
priately set based on a tradeoff between performance
and precision.

We compared execution times, td¼10 and td¼100, in which
two settings, d ¼ 10 and d ¼ 100 resulted, respectively. In
Fig. 5, the horizontal axis represents the number of concrete
services in a service cluster, and the vertical axis represents
the execution time. Both series represent execution times
where two values of dwere the results.

Our result shows that the execution times of both settings
are linear. The execution time in which d ¼ 100 resulted is
around ten times bigger than the execution time where
d ¼ 10was the result. Based on the discussion in Section 3.1,
the overall computational complexity is estimated to be

OðmQN2Þ. After discretization, the maximum number of
columns in M was dQ. Thus, the computational complexity

was revised to OðmdQN2Þ. The result shown in Fig. 5 fol-
lows this estimation. Fig. 6 also shows the execution times
of the two settings regarding the number of service clusters.
The result in Fig. 5 also follows this estimation.

4.4 Success Ratio of Composition

If our model fails to find a combination of services and
calculate the payments, there are three possible reasons,
shown in Algorithm 1. First, a feasible combination of
services might not exist that satisfies the maximum price
and the minimum quality based on the prices proposed
by providers (line 6). Second, as a result of excluding a
service selected during the first selection, a combination
of services might not exist that satisfies the constraints
(line 11). Third, the sum of the VCG payments might
exceed the maximum price given by the user (line 17).
Service composition fails in this case because we assume
that the user does not accept negative utility. This failure
never happens in a service market that follows the 1st
price reverse auction, where service providers propose
prices by concealing their true cost and the user pays the
proposed price. Therefore, we consider this failure a sort
of tradeoff between strategy-proofness and the success
ratio of service composition.

To determine how much the success ratio suffers by
introducing VCG payments, we compared the success ratio

of service composition in two cases: when we introduced
VCG payments and when the user pays the price proposed
by service providers. The latter is an extreme case because it
maximizes the success ratio while the utility of service pro-
viders is always zero. Thus, the success ratio certainly
becomes smaller when we introduce VCG payments.

Fig. 7 shows the experimental results regarding the suc-
cess ratios. The horizontal axis is m and shows the number
of concrete services in a service cluster. The number of ser-
vice clusters N is 20. We repeated the procedure in Algo-
rithm 1 10 times and plotted the successes of the service
composition. The vertical axis is the resulting success ratio
of the service compositions. The blue triangles represent the
success ratios when the user pays the price proposed by the
service providers without VCG payments. The red crosses
represent the success ratios when the user pays the VCG
payments. The success ratios increase, and the number of
concrete service increases. Since the number of possible
combinations of services increases, it becomes more likely
to find feasible combinations. Although the success ratio
becomes lower when we introduce VCG payments, we
don’t believe the difference is fatal.

Fig. 6. Execution time and discretization scale: service clusters.

Fig. 7. Success ratio and number of concrete services.

Fig. 5. Execution time and discretization scale: concrete services.
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We also investigated the success ratio by increasing the
number of service clusters. Fig. 8 shows the results; the
number of service clusters does not affect the success ratio.

4.5 Service Supply and Utility

In a service market, the number of alternative services can
increase or decrease. This change affects the utility of the
user and the service providers. For example, an increase in
the size of service clusterm can be interpreted as an increase
of the supply and may reduce the utility of the service pro-
viders. We assume that a supply of services can satisfy as
much demand of computational resources as requested
thanks to an IaaS platform, but an increase of service pro-
viders may give a chance to find cheaper services. To exper-
imentally clarify this, we investigated the utility of the
service providers.

Fig. 9 shows the sum of the service providers’ utility
(
P

i;j ui;j). The horizontal axis is the number of concrete
services in service cluster m. The number of service clusters
N is 20. We repeated the procedure in Algorithm 1 10 times.
The vertical axis represents the average of the service
providers’ utility. According to formula (8), the user’s utility
is determined by the service providers’ utility. This is why
we show only the service providers’ utility.

As shown in Fig. 9, the providers’ utility decreases as the
number of concrete service increases. Following the defini-
tion, the provider’s utility is determined by the difference
between the prices of the cheapest and the second cheapest
combinations. The difference becomes small when the num-
ber of possible combinations increases. Thus, the providers’
utility decreases as the number of concrete services
increases. On the other hand, the user’s utility increases
because the amount of the payments decreases.

When the number of concrete services increases, the suc-
cess ratio also increases but the average utility decreases.
The decrease of the providers’ utility gets slimmer as the
number of concrete services increases. From the viewpoint
of each service provider, there is a tradeoff between the suc-
cess ratio of the service composition and the utility.

We also investigated the utility by increasing the number
of service clusters. Fig. 10 shows that the service providers’
utility decreases when the number of service clusters
increase, because the average of the service providers’ util-
ity is given as ðP � UÞ=N .

4.6 Comparison with Fixed Pricing

The utility received by users and service providers is often
lower than more intuitive models, such as fixed pricing.
One possible reason is the service composition failure,
caused by the additional payments of the VCG mechanism
that exceed user’s budget P , as discussed in Section 4.4.
From the service providers’ viewpoint, the payment given
by the VCG mechanism can be too small because the user
pays less than or equal to his budget P . Since it is difficult to
theoretically judge the advantages/disadvantages of our
model regarding utility, we experimentally compared our
VCG mechanism with fixed pricing.

For fixed pricing, we assume service providers have a
parameter margin and propose the price ð1:0þmarginÞ�
pi;j. The model is a simple reverse auction where the user
pays the sum of the prices of the selected services. We set
the number of clusters N to 20 and the number of concrete
services in a service cluster to 20. The scale of discretization
d was set to ten. We iterated the service composition
100 times and recorded the utility. The results are shown in
Figs. 11 and 12.

Fig. 11 shows the sum of the utility of the user and
service providers. We refer to it as the “system utility.” The
horizontal axis is the step of the iteration of the serviceFig. 9. Utility and number of concrete services.

Fig. 10. Utility and number of service clusters.

Fig. 8. Success ratio and number of service clusters.
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composition. The vertical axis is the accumulated system
utility. For fixed pricing, four series correspond to different
values ofmargins, 0.1, 0.2, 0.4, and 0.6. Another series corre-
sponds to the system utility given by the VCG mechanism.

As shown in Fig. 11, margins 0.1 and 0.2 resulted in
almost the same system utility, which outperforms the
others. This is a natural outcome because the low profit ratio
leads to a high success ratio of service composition. The next
is the VCG mechanism, and the difference of the values is
not significant. The system utility is better than those given
by margins 0.4 and 0.6. In this experiment, the VCG mecha-
nism is not the best, but we can interpret the disadvantage
of the system utility as a tradeoff of strategy-proofness.

Fig. 12 shows the service providers’ utility in the vertical
axis. Although 0.1 is the best margin in terms of the system
utility, the value resulted in low providers’ utility. margin
values 0.4 and 0.6 resulted in better providers’ utility than the
VCG mechanism, but the system utility given by the margin
values are smaller than the VCG mechanism. Only margin
0.2 resulted in better results both for the system and the
provider’s utility than the VCGmechanism. This experiment
suggests that service providers can earn acceptable utility
without worrying about the failure of pricing. Note that the
utility of the users decreases when the utility of the service
providers increases and vice versa because of formula (8).
Therefore, any providers’ utility can be accepted based on
the systemdesign policy if the system utility is high enough.

5 RELATED WORKS

In the area of services computing, many previous works
have proposed various approaches, including integer pro-
gramming [8], constraint satisfaction [9], and GA [10].
There is no significant difference between our service
composition model and the fundamental models assumed
in the previous works. They assume that abstract compos-
ite services are given and the user or the system selects
concrete services. One real service platform that follows
the same style of service composition is the Language
Grid [5]. On it, approximately 120 concrete services are
available, based on such service types as machine transla-
tors and dictionaries. Since all the interfaces of the
service types are standardized, users can transparently

bind concrete services by specifying them in the extended
header of a request, such as in SOAP.

Pricing services is another growing topic in this area, and
even the discussion of goal concepts is active. We focused on
strategy-proofness in this paper, but other solution concepts
can be applied to profit sharing in composite services.Matsu-
bara introduced the Shapley value [11] for the profit alloca-
tion of a composite service and cited some properties of
profit sharing based on it and compared it with a simpler
approach [12]. But they did not show any experimental or
theoretical results. From more practical aspects, it is reason-
able to price services based on the detailed cost and perfor-
mance. The elasticity of cloud computing also forces users to
directly face the tradeoff between price and performance.
Assume an IaaS such as Amazon EC2. The prices of the serv-
ices differ based on the specifications or the performance.
But the relationship between the price and the actual perfor-
mance is not clear. Wang et al. discussed the tradeoffs
between cost and performance for various applications [13].
A tradeoff is obvious when the user can improve the perfor-
mance of his application by paying more for more high-
performance machines. But they also show a non-trivial
tradeoff in which a high-performance machine can reduce
the execution time, and the cost is also reduced compared to
cheaper, lower-performance machines. Li et al. proposed a
framework to estimate the cost considering the performance
and application types. Their framework helps users select
cloud services based on criteria including typical bench-
marks, the latency of the starting services, communication
overhead, and access to storage [14]. In their approach, the
costs of cloud services from the viewpoint of providers are
estimated from power consumption and amortization.
Another work by Sharma et al. [15] applied option theory to
estimate the value of cloud resources to determine prices.

In addition to the fundamental achievements by the
above work, more application oriented designs for pricing
have also been proposed. Upadhyaya et al. proposed a
mechanism for cost sharing when multiple users benefit
from investments on a common platform [16]. They assume
that users can invest in such a shared cache of a database on
the cloud. But the investment demand dynamically changes
and depends on the users. If those who need the investment
first pay all the cost, users may falsely report demands as

Fig. 12. Comparison with fixed pricing: providers’ utility.Fig. 11. Comparison with fixed pricing: system utility.
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delays. The proposed mechanism assures strategy-proof-
ness about the declaration of the demands. Dash et al. also
focused on whether the user invests in the improvement of
performance [17]. Based on regret theory [18], their method
determines whether users should invest by calculating the
difference between the result of their actual choice and the
expected profit of another choice.

As mentioned in Section 2, an approximate solution does
not assure strategy-proofness. In mechanism design, various
approaches have been proposed mainly for combinatorial
auctions, whose computational complexity is NP-hard. Zurel
and Nisan approach improves the initial solution until the
solution assures strategy-proofness [19]. Assuming some
limitations, Lehmann proposed an approximation algorithm
whose solution assures strategy-proofness without exploit-
ing VCG payments [20]. On the other hand, Kfir-Dahav
showed the axioms required so that approximate algorithms
assure strategy-proofness [21]. But these works are for gen-
eral settings and are not specialized for service selection.

The popular goal of researches that propose pricing
cloud services is maximizing utility. Various approaches
have been proposed, including the genetic algorithm
[22], stochastic dynamic programming [23], and optimal
control problem [24]. Other works have adopted auction
models for their formalizations [4], [25], [26], [27], [28],
[29]. Some aimed for strategy-proofness by extending
typical auctions, as we did in this paper. Mihailescu and
Teo introduced a reverse auction model for the selection
of services (cloud platforms in their context) [4]. They
also introduced VCG payments to exploit dynamic pric-
ing by assuring strategy-proofness. Users declare their
required types of items and counts. In their model, the
computational cost of service selection (winner determi-
nation) is not as serious as in our model. Another work
[28] achieved strategy-proofness using MDP to maximize
utility. The major interest of the above works is to maxi-
mize the utility of users and/or service providers, but
we focus more on the computational efficiency of VCG
payment calculation.

6 CONCLUSION

In this paper, we modeled VCG payments for service com-
position and proposed an efficient algorithm for service
selection and VCG payment calculation. Even though VCG
payments have such desirable properties as strategy-proof-
ness for pricing services, they require iterative service selec-
tion, each of which is NP-hard. To investigate how our
algorithm works on the problem, we implemented it and
conducted a series of experiments. The following are the
contributions of this paper:

� Our proposed DP-based algorithm solves service
selection in quasi-polynomial time and largely
improves the performance of VCG payment calcula-
tion compared to the basic DP.

� Our experiments clarified how VCG payments affect
some important properties of service composition,
including the success ratio and utility as well as the
computational cost.

Our experimental results show that our extended
algorithm improves the performance of VCG payment

calculation by caching the progress of the first service
selection and reusing it when the algorithm iteratively
solves the service selection. In our experiment, given
20 concrete services in approximately 100 service clus-
ters, the proposed algorithm solved service composition
and calculated VCG payments in a few seconds. The
scale of this problem cannot be solved by the intuitive
backtrack and branch-and-bound approach. Although
our implementation for the experiment is a prototype
that was not fully optimized, it is promising to apply the
algorithm to real scale problems.

We also investigated some properties of our model and
algorithms. By introducing VCG payments, the failure of
service composition might happen even after a feasible
combination of concrete services is found. Thus we con-
firmed that the decline of the success ratio of the service
composition is not significant. Moreover, experiments
regarding utility values show the relationship with the
amount of service supply and difference with fixed pricing,
which is a more intuitive model.

The experimental results in this paper are based on serv-
ices that have random values as their price and quality. In
the future, we will extend our model and algorithms for
real services and applications.
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