
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Efficient Approximation Algorithms for
Scheduling Coflows with Total Weighted

Completion Time in Identical Parallel Networks
Chi-Yeh Chen

Abstract—This paper addresses the scheduling problem of coflows in identical parallel networks, a well-known NP-hard problem. We
consider both flow-level scheduling and coflow-level scheduling problems. In the flow-level scheduling problem, flows within a coflow
can be transmitted through different network cores, while in the coflow-level scheduling problem, flows within a coflow must be
transmitted through the same network core. The key difference between these two problems lies in their scheduling granularity.
Previous approaches relied on linear programming to solve the scheduling order. In this paper, we enhance the efficiency of solving by
utilizing the primal-dual method. For the flow-level scheduling problem, we propose an approximation algorithm that achieves
approximation ratios of 6− 2

m
and 5− 2

m
for arbitrary and zero release times, respectively, where m represents the number of network

cores. Additionally, for the coflow-level scheduling problem, we introduce an approximation algorithm that achieves approximation ratios
of 4m+ 1 and 4m for arbitrary and zero release times, respectively. The algorithm presented in this paper has practical applications in
data centers, such as those operated by Google or Facebook. The simulated results demonstrate the superior performance of our
algorithms compared to previous approach, emphasizing their practical utility.

Index Terms—Scheduling algorithms, approximation algorithms, coflow, datacenter network, identical parallel network.

✦

1 INTRODUCTION

W ITH the increasing demand for computing power,
large data centers have become vital components of

cloud computing. In these data centers, the advantages of
application-aware network scheduling have been demon-
strated, particularly for distributed applications with struc-
tured traffic patterns [1], [10], [12], [33]. Data-parallel com-
puting applications such as MapReduce [14], Hadoop [5],
[27], Dryad [19], and Spark [32] have gained significant pop-
ularity among users, resulting in a proliferation of related
applications [11], [15].

During the computing stage, data-parallel applications
generate a substantial amount of intermediate data (flows)
that needs to be transmitted across various machines for
further processing during the communication stage. Given
the multitude of applications and their corresponding data
transmission requirements, it is crucial for data centers
to possess robust data transmission and scheduling ca-
pabilities. Understanding the communication patterns of
data-parallel computing applications, the interaction among
flows between two sets of machines becomes a critical
aspect. This overall communication pattern within the data
center is abstracted by coflow traffic [9].

A coflow refers to a collection of interdependent flows,
where the completion time of the entire group relies on the
completion time of the last flow within the collection [25].
Previous research on coflow scheduling has predominantly
focused on the single-core model [18], which has been

• The author is with the Department of Computer Science and Information
Engineering, National Cheng Kung University, No. 1, University Road,
Tainan, Taiwan, ROC.
E-mail: chency@csie.ncku.edu.tw.

widely utilized in various coflow-related studies [1], [2],
[10], [12], [17], [20], [21], [25], [26], [33]. However, advance-
ments in technology have led to the emergence of data cen-
ters that operate on multiple parallel networks to enhance
efficiency [18], [28]. One such architecture is the identical
or heterogeneous parallel network, where multiple network
cores operate in parallel, providing aggregated bandwidth
by concurrently serving traffic.

The algorithm presented in this paper finds application
in the following scenario: Google [29] implemented tradi-
tional cluster networks utilizing the highest density Ethernet
switches available, with 512 ports of 1GE, to establish the
network backbone. Each Top of Rack (ToR) switch was
connected to all four of the cluster routers, ensuring both
scalability and fault tolerance. Furthermore, they started
with the key insight that they could expand cluster fabrics
to nearly arbitrary sizes by leveraging Clos topologies and
taking advantage of the then-emerging merchant switching
silicon industry. For a more comprehensive understanding
of network architectures, please consult the paper [29].

This paper focuses on an architecture that employs
multiple identical network cores operating in parallel. The
objective is to schedule coflows in these parallel networks
in a way that minimizes the total weighted coflow comple-
tion time. The problem is approached from two perspec-
tives: flow-level scheduling and coflow-level scheduling.
In the flow-level scheduling problem, the flows within a
coflow can be distributed across different network cores,
but the data in each flow is restricted to a single core.
In contrast, the coflow-level scheduling problem requires
that all flows within a coflow be distributed exclusively
within the same network core. The key difference between
these two problems lies in their scheduling granularity.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2023.3340729

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Coarse-grained scheduling, associated with the coflow-level
scheduling problem, enables faster resolution but yields
relatively inferior scheduling outcomes. On the other hand,
fine-grained scheduling, which pertains to the flow-level
scheduling problem, takes more time to solve but produces
superior scheduling outcomes.

1.1 Related Work

Chowdhury and Stoica [9] initially introduced the con-
cept of coflow abstraction to characterize communication
patterns within data centers. The scheduling problem for
coflows has been proven to be strongly NP-hard, necessi-
tating the use of efficient approximation algorithms instead
of exact solutions. Due to the inapproximability of the
concurrent open shop problem [4], [23], it is NP-hard to
approximate the coflow scheduling problem within a factor
better than 2−ϵ. Since the proposal of the coflow abstraction,
numerous investigations have been conducted on coflow
scheduling [2], [10], [12], [21], [25], [35].

Qiu et al. [21] introduced the first deterministic 64
3 -

approximation and randomized (8 + 16
√
2

3)-approximation
algorithms for minimizing the weighted completion time of
coflows. When coflows are released at arbitrary times, their
algorithms achieved 67

3 in the deterministic approach and
(9 + 16

√
2

3) in the randomized approach. Their algorithm
partitions coflows into disjoint groups using a linear pro-
gram. Each group can be treated as a single coflow, and
its optimal schedule can be determined in polynomial time.
However, Ahmadi et al. [2] demonstrated that the technique
proposed by Qiu et al. [21] actually only achieved 76

3 in the
deterministic algorithm for coflow scheduling with release
time.

Khuller et al. [20] also proposed a 12-approximation
algorithm for coflow scheduling with arbitrary release
times. Furthermore, the algorithm achieves a determinis-
tic 8-approximation and a randomized 3 + 2

√
2 ≈ 5.83-

approximation when all coflows have zero release times.
The algorithm uses an approximate algorithm for the con-
current open shop problem to determine the scheduling
order of coflows.

In recent research, Shafiee and Ghaderi [25] have devel-
oped an approximation algorithm which achieves 5 and 4
approximation rations for arbitrary and zero release time,
respectively. Their method uses a linear program approach
based on ordered variables to obtain the scheduling order
of coflows. Moreover, Ahmadi et al. [2] have also proposed
a primal-dual algorithm that achieved the same approxima-
tion ratio as Shafiee and Ghaderi [25].

Huang et al. [18] proposed an O(m)-approximation
algorithm for scheduling a single coflow in a heteroge-
neous parallel network, where m represents the number
of network cores. Chen [8] further introduces O(logm

log logm)-
approximation algorithms for both the makespan schedul-
ing problem and the total weighted completion time
scheduling problem.

When multiple coflows with precedence constraints exist
within a job, Tian et al. [31] were the first to propose a O(N)-
approximation algorithm, where N represents the number
of servers in the network. Shafiee and Ghaderi [26] then

devised a polynomial-time algorithm with an approxima-
tion ratio of O(µ̃ log(N)/ log(log(N))), where µ̃ denotes the
maximum number of coflows in a job. Furthermore, there
are several recent studies [30], [34] on coflow scheduling in
optical circuit switches.

1.2 Our Contributions
This paper focuses on addressing the coflow scheduling
problem within identical parallel networks and presents a
range of algorithms and corresponding results. The specific
contributions of this study are outlined below:

• For the flow-level scheduling problem, we introduce
an approximation algorithm that achieves approxi-
mation ratios of 6 − 2

m and 5 − 2
m for arbitrary and

zero release times, respectively.
• For the coflow-level scheduling problem, we propose

an approximation algorithm that achieves approxi-
mation ratios of 4m + 1 and 4m for arbitrary and
zero release times, respectively.

A summary of our theoretical findings is provided in
Table 1.

1.3 Organization
The structure of this paper is as follows. In Section 2, we
provide an introduction to the fundamental notations and
preliminary concepts that will be utilized in subsequent
sections. Section 3 presents an overview of previous meth-
ods and our high-level ideas. Next, we present our primary
algorithms in the following sections: Section 4 outlines the
algorithm for addressing the flow-level scheduling problem,
while Section 5 elaborates on the algorithm designed for the
coflow-level scheduling problem. In Section 6, we conduct
a comparative analysis to evaluate the performance of our
proposed algorithms against that of the previous algorithm.
Finally, in Section 7, we summarize our findings and draw
meaningful conclusions.

2 NOTATION AND PRELIMINARIES

The identical parallel networks are represented as a col-
lection of m large-scale non-blocking switches, each with
dimensions of N×N . In this configuration, N input links are
connected to N source servers, and N output links are con-
nected to N destination servers. Each switch corresponds
to a network core, making the model straightforward and
practical. Network architectures like Fat-tree or Clos [3], [16]
can be utilized to establish networks that offer complete bi-
section bandwidth. In this parallel networks configuration,
every parallel switch is linked to N source servers and N
destination servers. Specifically, the i-th input or j-th output
port of each switch is connected to the i-th source server or
j-th destination server, respectively. As a result, each source
(or destination) server possesses m simultaneous uplinks (or
downlinks), with each link potentially comprising multiple
physical connections in the actual topology [18]. Let I
denote the set of source servers, and J denote the set of
destination servers. The network core can be viewed as a
bipartite graph, with I on one side and J on the other. For
simplicity, we assume that all network cores are identical,

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2023.3340729

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

TABLE 1: Theoretical Results

Model Release Times Approximation Ratio

flow-level scheduling problem
√

6− 2
m

Thm 4.4
flow-level scheduling problem 5− 2

m
Thm 4.5

coflow-level scheduling problem
√

4m+ 1 Thm 5.4
coflow-level scheduling problem 4m Thm 5.5

and all links within each network core possess the same
capacity or speed.

A coflow is a collection of independent flows, and its
completion time is determined by the completion time of
the last flow in the set. The coflow k is represented by an
N × N demand matrix D(k) = (di,j,k)

N
i,j=1, where di,j,k

denotes the size of the flow to be transferred from input
i to output j within coflow k. Since all network cores are
identical, the flow size can be considered equivalent to
the transmission time. Each flow is identified by a triple
(i, j, k), where i ∈ I represents the source node, j ∈ J
represents the destination node, and k corresponds to the
coflow. Furthermore, we assume that flows are composed of
discrete data units, resulting in integer sizes. For the sake
of simplicity, we assume that all flows within a coflow are
initiated simultaneously, as demonstrated in [21].

This paper addresses the problem of coflow scheduling
with release times. The problem involves a set of coflows
denoted by K, where coflow k is released into the system
at time rk. Consequently, scheduling for coflow k is only
possible after time rk. The completion time of coflow k,
denoted as Ck, represents the time required for all flows
within the coflow to finish processing. Each coflow k ∈ K is
assigned a positive weight wk. The objective is to schedule
the coflows in an identical parallel network to minimize the
total weighted completion time of the coflows, represented
by

∑
k∈K wkCk. To aid in explanation, we assign different

meanings to the same symbols with different subscript
symbols. Subscript i represents the index of the source
(or the input port), subscript j represents the index of the
destination (or the output port), and subscript k represents
the index of the coflow. For instance, Fi denotes the set of
flows with source i, and Fj represents the set of flows with
destination j. The notation and terminology used in this
paper are summarized in Table 2.

3 THE PREVIOUS METHODS AND OUR HIGH-
LEVEL IDEAS

The first algorithm proposed for scheduling coflows in a
parallel network is Weaver [18]. Weaver initially addressed
the flow-level scheduling problem with the aim of min-
imizing the makespan. It schedules flows in descending
order of byte size. When selecting a network core for a
flow, it first assesses whether that flow would impact the
makespan. If the flow doesn’t affect the makespan, it is
considered a non-critical flow, and the goal is to balance the
load among the network cores when choosing a network
core for it. Conversely, if the flow does affect the makespan,
the objective is to minimize the makespan when selecting a
network core for it.

Chen [6], [7] proposed scheduling coflows in a parallel
network to minimize the total weighted completion time of

TABLE 2: Notation and Terminology

m The number of network cores.
N The number of input/output ports.
n The number of coflows.

I,J The source server set and the destination
server set.

K The set of coflows.
D(k) The demand matrix of coflow k.
di,j,k The size of the flow to be transferred from

input i to output j in coflow k.
Ck The completion time of coflow k.

Ci,j,k The completion time of flow (i, j, k).
rk The released time of coflow k.
wk The weight of coflow k.
Fi Fi =

{
(i, j, k)|di,j,k > 0, ∀k ∈ K, ∀j ∈ J

}
is

the set of flows with source i.
Fj Fj =

{
(i, j, k)|di,j,k > 0,∀k ∈ K, ∀i ∈ I

}
is

the set of flows with destination j.
d(S), d2(S) d(S) =

∑
(i,j,k)∈S di,j,k and d2(S) =∑

(i,j,k)∈S d2i,j,k for any subset S ⊆ Fi (or
S ⊆ Fj).

f(S) f(S) =
d(S)2+d2(S)

2m
for any subset S ⊆ Fi (or

S ⊆ Fj).
Li,S,k Li,S,k =

∑
(i′,j′,k′)∈S/i′=i,k′=k di′,j′,k′ is

the total load on input port i for coflow k in
the set S.

Lj,S,k Lj,S,k =
∑

(i′,j′,k′)∈S/j′=j,k′=k di′,j′,k′ is
the total load on output port j for coflow k
in the set S.

Li,k Li,k =
∑

j∈J di,j,k is the total load of flows
from the coflow k at input port i.

Lj,k Lj,k =
∑

i∈I di,j,k is the total load of flows
from the coflow k at output port j.

Li, Lj Li =
∑

k∈K Li,k and Lj =
∑

k∈K Lj,k .
Si,k Si,k is the set of flows from the first k coflows

at input port i.
Sj,k Sj,k is the set of flows from the first k coflows

at output port j.

fi(S) fi(S) =
∑

k∈S L2
i,k+(

∑
k∈S Li,k)

2

2m
for any sub-

set S ⊆ K.

fj(S) fj(S) =
∑

k∈S L2
j,k+(

∑
k∈S Lj,k)

2

2m
for any

subset S ⊆ K.
Sk Sk = {1, 2, . . . , k} is the set of first k coflows.

Li(Sk), Lj(Sk) Li(Sk) =
∑

k′≤k Li,k′ and Lj(Sk) =∑
k′≤k Lj,k′ .

µ1(k) µ1(k) is the input port in Sk with the highest
load.

µ2(k) µ2(k) is the output port in Sk with the highest
load.

the coflows. He initially employed a linear program to de-
termine the sequence of coflow scheduling and selected the
appropriate network cores with the aim of minimizing the
coflow completion times. However, this approach, due to
its reliance on linear programming, comes with higher time
complexity and requires a significant amount of memory
space to store the linear program’s constraints.

Therefore, this paper transforms the linear program into
a primal-dual method. In this approach, a feasible schedule

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2023.3340729

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

is constructed iteratively from right to left, determining the
processing order of coflows, starting from the last coflow
and moving towards the first. We first identify the coflow
with the largest release time among those that haven’t
been scheduled. Then, we compare this release time to the
product of a parameter and the data size of the currently
unscheduled coflows. If the comparison indicates that the
unscheduled coflows’ data size is bounded by this release
time, meaning that the coflow’s transmission time is con-
strained below its release time, we choose this coflow at
its current scheduling position. If not, we choose another
coflow. The selected coflow must adjust its corresponding
dual variable without violating the dual constraints of other
coflows, ensuring that its dual constraint becomes tight.
In other words, among the unscheduled coflows, we seek
the coflow for which the adjustment needed for its dual
variable is minimized. Once the coflow scheduling order
is determined, we utilize a list algorithm to select network
cores in a manner that minimizes the completion time of the
coflows.

4 APPROXIMATION ALGORITHM FOR THE FLOW-
LEVEL SCHEDULING PROBLEM

This section addresses the flow-level scheduling problem,
which enables different flows in a coflow to be trans-
mitted through distinct cores. We assume that coflows
are transmitted at the flow level, ensuring that the data
within a flow is allocated to the same core. We define
Fi as the collection of flows with source i, represented
by Fi = {(i, j, k)|di,j,k > 0,∀k ∈ K,∀j ∈ J }, and Fj as
the set of flows with destination j, given by Fj =
{(i, j, k)|di,j,k > 0,∀k ∈ K,∀i ∈ I}. For any subset S ⊆ Fi

(or S ⊆ Fj), we define d(S) =
∑

(i,j,k)∈S di,j,k as the sum
of data size over all flows in S and d2(S) =

∑
(i,j,k)∈S d2i,j,k

as the sum of squares of data size over all flows in S. Let

f(S) =
d(S)2 + d2(S)

2m
.

The problem can be formulated as a linear programming
relaxation, given by:

min
∑
k∈K

wkCk (1)

s.t. Ck ≥ Ci,j,k, ∀k ∈ K,∀i ∈ I,∀j ∈ J
(1a)

Ci,j,k ≥ rk + di,j,k, ∀k ∈ K,∀i ∈ I,∀j ∈ J
(1b)∑

(i,j,k)∈S

di,j,kCi,j,k ≥ f(S), ∀i ∈ I,∀S ⊆ Fi (1c)

∑
(i,j,k)∈S

di,j,kCi,j,k ≥ f(S), ∀j ∈ J ,∀S ⊆ Fj (1d)

In the linear program (1), the variable Ck represents the
completion time of coflow k in the schedule, and Ci,j,k

denotes the completion time of flow (i, j, k). Constraint (1a)
specifies that the completion time of coflow k is limited by
all its flows, while constraint (1b) ensures that the comple-
tion time of any flow (i, j, k) is at least its release time rk
plus its load. Constraints (1c) and (1d) serve to impose a

lower bound on the completion time variable in the input
port and output port, respectively.

Let Li,S,k =
∑

(i′,j′,k′)∈S/i′=i,k′=k di′,j′,k′ be the to-
tal load on input port i for coflow k in the set S. Let
Lj,S,k =

∑
(i′,j′,k′)∈S/j′=j,k′=k di′,j′,k′ be the total load on

output port j for coflow k in the set S. The dual linear
program is given by

max
∑
k∈K

∑
i∈I

∑
j∈J

αi,j,k(rk + di,j,k)

+
∑
i∈I

∑
S⊆Fi

βi,Sf(S)

+
∑
j∈J

∑
S⊆Fj

βj,Sf(S) (2)

s.t.
∑
i∈I

∑
j∈J

αi,j,k

+
∑
i∈I

∑
S⊆Fi

βi,SLi,S,k

+
∑
j∈J

∑
S⊆Fj

βj,SLj,S,k ≤ wk, ∀k ∈ K (2a)

αi,j,k ≥ 0, ∀k ∈ K,∀i ∈ I,∀j ∈ J
(2b)

βi,S ≥ 0, ∀i ∈ I,∀S ⊆ Fi

(2c)
βj,S ≥ 0, ∀j ∈ J ,∀S ⊆ Fj

(2d)

It is worth noting that for each flow (i, j, k), there is a
corresponding dual variable αi,j,k, and for every coflow k,
there exists a corresponding constraint. Moreover, for any
subset S ⊆ Fi (or S ⊆ Fj) of flows, there is a dual variable
βi,S (or βj,S). Importantly, it should be emphasized that the
cost of any feasible dual solution serves as a lower bound
for OPT , which represents the cost of an optimal solution.

The primal-dual algorithm (Algorithm 1) is inspired by
the work of Davis et al. [13] and Ahmadi et al. [2]. In this
algorithm, a feasible schedule is constructed iteratively from
right to left, determining the processing order of coflows,
starting from the last coflow and moving towards the first.
Let us consider a specific iteration. At the beginning of
this iteration, let K denote the set of coflows that have not
been scheduled yet, and let k represent the coflow with the
largest release time. In each iteration, a decision needs to
be made regarding the increase of a α dual variable or a β
variable. The dual LP serves as a guide for this decision-
making process. If the release time rk is very large, raising
α yields significant gains in the dual objective function
value. Conversely, if Lµ1(r) (or Lµ2(r) if Lµ2(r) ≥ Lµ1(r))
is large, raising β leads to substantial improvements in the
objective value. Let κ be a constant to be optimized later. If
rk >

κ·Lµ1(r)

m (or rk >
κ·Lµ2(r)

m if Lµ2(r) ≥ Lµ1(r)), the dual
variable α is increased until the dual constraint for coflow
k becomes tight. Consequently, coflow k is scheduled to be
processed as early as possible and before any previously
scheduled coflows.

If rk ≤
κ·Lµ1(r)

m (or rk ≤
κ·Lµ2(r)

m if Lµ2(r) ≥ Lµ1(r)),
the dual variable βµ1(r),Gi (or βµ2(r),Gj

if Lµ2(r) ≥ Lµ1(r))
is increased until one of the constraints becomes tight for a
coflow k′ ∈ K. Coflow k′ is then scheduled to be processed

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2023.3340729

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Algorithm 1 Permuting Coflows

1: K is the set of unscheduled coflows and initially K = {1, 2, . . . , n}
2: Gi = {(i, j, k)|di,j,k > 0,∀k ∈ K,∀j ∈ J }
3: Gj = {(i, j, k)|di,j,k > 0,∀k ∈ K,∀i ∈ I}
4: αi,j,k = 0 for all k ∈ K, i ∈ I, j ∈ J
5: βi,S = 0 for all i ∈ I, S ⊆ Fi

6: βj,S = 0 for all j ∈ J , S ⊆ Fj

7: Li,k =
∑

j∈J di,j,k for all k ∈ K, i ∈ I
8: Lj,k =

∑
i∈I di,j,k for all k ∈ K, j ∈ J

9: Li =
∑

k∈K Li,k for all i ∈ I
10: Lj =

∑
k∈K Lj,k for all j ∈ J

11: for r = n, n− 1, . . . , 1 do
12: µ1(r) = argmaxi∈I Li

13: µ2(r) = argmaxj∈J Lj

14: k = argmaxℓ∈K rℓ
15: if Lµ1(r) > Lµ2(r) then
16: if rk >

κ·Lµ1(r)

m then
17: αµ1(r),1,k = wk −

∑
i∈I

∑
S⊆Fi

βi,SLi,S,k −
∑

j∈J
∑

S⊆Fj
βj,SLj,S,k

18: σ(r)← k

19: else if rk ≤
κ·Lµ1(r)

m then

20: k′ = argmink∈K

{
wk−

∑
i∈I

∑
S⊆Fi

βi,SLi,S,k−
∑

j∈J
∑

S⊆Fj
βj,SLj,S,k

Lµ1(r),Gµ1(r),k

}
21: βµ1(r),Gµ1(r)

=
wk′−

∑
i∈I

∑
S⊆Fi

βi,SLi,S,k′−
∑

j∈J
∑

S⊆Fj
βj,SLj,S,k′

Lµ1(r),Gµ1(r),k
′

22: σ(r)← k′

23: end if
24: else
25: if rk >

κ·Lµ2(r)

m then
26: α1,µ2(r),k = wk −

∑
i∈I

∑
S⊆Fi

βi,SLi,S,k −
∑

j∈J
∑

S⊆Fj
βj,SLj,S,k

27: σ(r)← k

28: else if rk ≤
κ·Lµ2(r)

m then

29: k′ = argmink∈K

{
wk−

∑
i∈I

∑
S⊆Fi

βi,SLi,S,k−
∑

j∈J
∑

S⊆Fj
βj,SLj,S,k

Lµ2(r),Gµ2(r),k

}
30: βµ2(r),Gµ2(r)

=
wk′−

∑
i∈I

∑
S⊆Fi

βi,SLi,S,k′−
∑

j∈J
∑

S⊆Fj
βj,SLj,S,k′

Lµ2(r),Gµ2(r),k
′

31: σ(r)← k′

32: end if
33: end if
34: K ← K \ σ(r)
35: Gi = {(i, j, k)|di,j,k > 0,∀k ∈ K,∀j ∈ J }
36: Gj = {(i, j, k)|di,j,k > 0,∀k ∈ K,∀i ∈ I}
37: Li = Li − Li,σ(r) for all i ∈ I
38: Lj = Lj − Lj,σ(r) for all j ∈ J
39: end for

as early as possible and before any previously scheduled
coflows. Appendix A presents a simple and equivalent
algorithm, which is Algorithm 5. This algorithm has a space
complexity of O(Nn) and a time complexity of O(n2),
where N represents the number of input/output ports and
n represents the number of coflows.

The flow-driven-list-scheduling algorithm, presented in
Algorithm 2, utilizes a list scheduling rule. We assume,
without loss of generality, that the coflows are ordered
based on the permutation provided by Algorithm 1, where
σ(k) = k, ∀k ∈ K. The coflows are scheduled sequentially in
this predefined order, and within each coflow, the flows are
scheduled in non-increasing order of byte size, breaking ties
arbitrarily. For each flow (i, j, k), the algorithm considers

all congested flows that are scheduled before it. It then
identifies the least loaded network core h∗ and assigns flow
(i, j, k) to this core in order to minimize its completion time.
The specific steps involved in this process are outlined in
lines 5-11 of the algorithm. Lines 12-26 of the algorithm are
adapted from the work of Shafiee and Ghaderi [25]. It is
worth noting that all flows are transmitted in a preemptible
manner.

4.1 Analysis
In this section, we establish the efficacy of the proposed
algorithm by proving its approximation ratios. Specifically,
we demonstrate that the algorithm achieves an approxi-
mation ratio of 6 − 2

m for arbitrary release times and an

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2023.3340729

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Algorithm 2 Flow-Driven-List-Scheduling

1: Let loadI(i, h) be the load on the i-th input port of the
network core h

2: Let loadO(j, h) be the load on the j-th output port of the
network core h

3: Let Ah be the set of flows allocated to network core h
4: Both loadI and loadO are initialized to zero and Ah = ∅

for all h ∈ [1,m]
5: for k = 1, 2, . . . , n do
6: for every flow (i, j, k) in non-increasing order of di,j,k,

breaking ties arbitrarily do
7: h∗ = argminh∈[1,m] (loadI(i, h) + loadO(j, h))
8: Ah∗ = Ah∗ ∪ {(i, j, k)}
9: loadI(i, h

∗) = loadI(i, h
∗) + di,j,k and

loadO(j, h
∗) = loadO(j, h

∗) + di,j,k
10: end for
11: end for
12: for each h ∈ [1,m] do in parallel do
13: wait until the first coflow is released
14: while there is some incomplete flow do
15: for k′ = 1, 2, . . . , n do
16: for every released and incomplete flow (i, j, k =

k′) ∈ Ah in non-increasing order of di,j,k, break-
ing ties arbitrarily do

17: if the link (i, j) is idle then
18: schedule flow f
19: end if
20: end for
21: end for
22: while no new flow is completed or released do
23: transmit the flows that get scheduled in line 18 at

maximum rate 1.
24: end while
25: end while
26: end for

approximation ratio of 5 − 2
m in the absence of release

times. It is important to note that we assume the coflows
are arranged in the order determined by the permutation
generated by Algorithm 1, i.e., σ(k) = k, ∀k ∈ K. Let
Sk = {1, 2, . . . , k} denote the set of first k coflows. Let Si,k

denote the set of flows from the first k coflows at input port
i, that is

Si,k = {(i, j, k′)|di,j,k′ > 0,∀k′ ∈ {1, . . . , k} ,∀j ∈ J } .

Similarly, let Sj,k represent the set of flows from the first k
coflows at output port j, that is

Sj,k = {(i, j, k′)|di,j,k′ > 0,∀k′ ∈ {1, . . . , k} ,∀i ∈ I} .

Let βi,k = βi,Si,k
and βj,k = βj,Sj,k

. Additionally, let
µ1(k) denote the input port with the highest load in Sk,
and µ2(k) denote the output port with the highest load
in Sk. Recall that d(S) represents the sum of loads for all
flows in subset S. Therefore, d(Si,k) corresponds to the total
load of flows from the first k coflows at input port i, and
d(Sj,k) corresponds to the total load of flows from the first
k coflows at output port j. Let Li,k =

∑
j∈J di,j,k be the

total load of flows from the coflow k at input port i and
Lj,k =

∑
i∈I di,j,k be the total load of flows from the coflow

k at output port j.

Let us begin by presenting several key observations
regarding the primal-dual algorithm.

Observation 4.1. The following statements hold.

1) Every nonzero βi,S can be written as βµ1(k),k for some
coflow k.

2) Every nonzero βj,S can be written as βµ2(k),k for some
coflow k.

3) For every set Sµ1(k),k that has a nonzero βµ1(k),k vari-
able, if k′ ≤ k then rk′ ≤ κ·d(Sµ1(k),k)

m .
4) For every set Sµ2(k),k that has a nonzero βµ2(k),k vari-

able, if k′ ≤ k then rk′ ≤ κ·d(Sµ2(k),k)

m .
5) For every coflow k that has a nonzero αµ1(k),1,k, rk >

κ·d(Sµ1(k),k)

m .
6) For every coflow k that has a nonzero α1,µ2(k),k, rk >

κ·d(Sµ2(k),k)

m .
7) For every coflow k that has a nonzero αµ1(k),1,k or a

nonzero α1,µ2(k),k, if k′ ≤ k then rk′ ≤ rk.

Each of the aforementioned observations can be easily
verified and their correctness can be directly inferred from
Algorithm 1.

Observation 4.2. For any subset S, we have that d(S)2 ≤ 2m ·
f(S).

Lemma 4.3. If there is an algorithm that generates a feasible
coflow schedule such that for any coflow k, Ck ≤ a·maxk′≤k rk+
d(Sµ1(k),k)+d(Sµ2(k),k)

m +(1− 2
m)maxi,j di,j,k for some constants

a, then the total cost of the schedule is bounded as follows.

∑
k

wkCk ≤
(
a+

2

κ

) n∑
k=1

∑
i∈I

∑
j∈J

αi,j,krk

+2 (a · κ+ 2)
∑
i∈I

∑
S⊆Fi

βi,Sf(S)

+2 (a · κ+ 2)
∑
j∈J

∑
S⊆Fj

βj,Sf(S)

+

(
1− 2

m

)
·OPT

Proof. The proof is given in Appendix B.

Theorem 4.4. There exists a deterministic, combinatorial, poly-
nomial time algorithm that achieves an approximation ratio of
6− 2

m for the flow-level scheduling problem with release times.

Proof. To schedule coflows without release times, the appli-
cation of Lemma 4.3 (with a = 1) indicates the following:

∑
k

wkCk ≤
(
1 +

2

κ

) n∑
k=1

∑
i∈I

∑
j∈J

αi,j,krk

+2 (κ+ 2)
∑
i∈I

∑
S⊆Fi

βi,Sf(S)

+2 (κ+ 2)
∑
j∈J

∑
S⊆Fj

βj,Sf(S)

+

(
1− 2

m

)
·OPT.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2023.3340729

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

In order to minimize the approximation ratio, we can sub-
stitute κ = 1

2 and obtain the following result:∑
k

wkCk ≤ 5
n∑

k=1

∑
i∈I

∑
j∈J

αi,j,krk

+5
∑
i∈I

∑
S⊆Fi

βi,Sf(S)

+5
∑
j∈J

∑
S⊆Fj

βj,Sf(S)

+

(
1− 2

m

)
·OPT

≤
(
6− 2

m

)
·OPT.

Theorem 4.5. There exists a deterministic, combinatorial, poly-
nomial time algorithm that achieves an approximation ratio of
5− 2

m for the flow-level scheduling problem without release times.

Proof. To schedule coflows without release times, the appli-
cation of Lemma 4.3 (with a = 0) indicates the following:∑

k

wkCk ≤
(
2

κ

) n∑
k=1

∑
i∈I

∑
j∈J

αi,j,krk

+2 · 2
∑
i∈I

∑
S⊆Fi

βi,Sf(S)

+2 · 2
∑
j∈J

∑
S⊆Fj

βj,Sf(S)

+

(
1− 2

m

)
·OPT.

In order to minimize the approximation ratio, we can sub-
stitute κ = 1

2 and obtain the following result:∑
k

wkCk ≤ 4
n∑

k=1

∑
i∈I

∑
j∈J

αi,j,krk

+4
∑
i∈I

∑
S⊆Fi

βi,Sf(S)

+4
∑
j∈J

∑
S⊆Fj

βj,Sf(S)

+

(
1− 2

m

)
·OPT

≤
(
5− 2

m

)
·OPT.

5 APPROXIMATION ALGORITHM FOR THE
COFLOW-LEVEL SCHEDULING PROBLEM

This section specifically addresses the coflow-level schedul-
ing problem, which involves the transmission of flows
within a coflow through a single core. It is worth recalling
that Li,k =

∑N
j=1 di,j,k and Lj,k =

∑N
i=1 di,j,k, where Li,k

represents the total load at source i for coflow k, and Lj,k

represents the total load at destination j for coflow k. Let

fi(S) =

∑
k∈S L2

i,k +
(∑

k∈S Li,k

)2
2m

and

fj(S) =

∑
k∈S L2

j,k +
(∑

k∈S Lj,k

)2
2m

for any subset S ⊆ K. To address this problem, we propose
a linear programming relaxation formulation as follows:

min
∑
k∈K

wkCk (3)

s.t. Ck ≥ rk + Li,k, ∀k ∈ K,∀i ∈ I (3a)
Ck ≥ rk + Lj,k, ∀k ∈ K,∀j ∈ J (3b)∑
k∈S

Li,kCk ≥ fi(S) ∀i ∈ I,∀S ⊆ K (3c)∑
k∈S

Lj,kCk ≥ fj(S) ∀j ∈ J ,∀S ⊆ K (3d)

In the linear program (3), the completion time Ck is
defined for each coflow k in the schedule. Constraints (3a)
and (3b) are to ensure that the completion time of any coflow
k is greater than or equal to its release time rk plus its
load. Furthermore, constraints (3c) and (3d) establish lower
bounds for the completion time variable at the input port
and the output port, respectively.

The dual linear program is given by

max
∑
k∈K

∑
i∈I

αi,k(rk + Li,k)

+
∑
k∈K

∑
j∈J

αj,k(rk + Lj,k)

+
∑
i∈I

∑
S⊆K

βi,Sfi(S)

+
∑
j∈J

∑
S⊆K

βj,Sfj(S) (4)

s.t.
∑
i∈I

αi,k +
∑
j∈J

αj,k

+
∑
i∈I

∑
S⊆K/k∈S

βi,SLi,k

+
∑
j∈J

∑
S⊆K/k∈S

βj,SLj,k ≤ wk, ∀k ∈ K (4a)

αi,k ≥ 0, ∀k ∈ K,∀i ∈ I
(4b)

αj,k ≥ 0, ∀k ∈ K,∀j ∈ J
(4c)

βi,S ≥ 0, ∀i ∈ I,∀S ⊆ K
(4d)

βj,S ≥ 0, ∀j ∈ J ,∀S ⊆ K
(4e)

Notice that for every coflow k, there exists two dual
variables αi,k and αj,k, and there is a corresponding con-
straint. Additionally, for every subset of coflows S, there
are two dual variables βi,S and βj,S . Algorithm 3 presents
the primal-dual algorithm. The concept is the same as Algo-
rithm 1. The difference is that scheduling is done from the
perspective of coflows. Appendix C presents a simple and
equivalent algorithm, which is Algorithm 6. This algorithm
has a space complexity of O(Nn) and a time complexity
of O(n2), where N represents the number of input/output
ports and n represents the number of coflows.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2023.3340729

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Algorithm 3 Permuting Coflows

1: K is the set of unscheduled coflows and initially K = {1, 2, . . . , n}
2: αi,k = 0 for all k ∈ K, i ∈ I
3: αj,k = 0 for all k ∈ K, j ∈ J
4: βi,S = 0 for all i ∈ I, S ⊆ K
5: βj,S = 0 for all j ∈ J , S ⊆ K
6: Li,k =

∑
j∈J di,j,k for all k ∈ K, i ∈ I

7: Lj,k =
∑

i∈I di,j,k for all k ∈ K, j ∈ J
8: Li =

∑
k∈K Li,k for all i ∈ I

9: Lj =
∑

k∈K Lj,k for all j ∈ J
10: for r = n, n− 1, . . . , 1 do
11: µ1(r) = argmaxi∈I Li

12: µ2(r) = argmaxj∈J Lj

13: k = argmaxℓ∈K rℓ
14: if Lµ1(r) > Lµ2(r) then
15: if rk >

κ·Lµ1(r)

m then
16: αµ1(r),k = wk −

∑
i∈I

∑
S∋k βi,SLi,k −

∑
j∈J

∑
S∋k βj,SLj,k

17: σ(r)← k

18: else if rk ≤
κ·Lµ1(r)

m then
19: k′ = argmink∈K

{
wk−

∑
i∈I

∑
S∋k βi,SLi,k−

∑
j∈J

∑
S∋k βj,SLj,k

Lµ1(r),k

}
20: βµ1(r),K =

wk′−
∑

i∈I
∑

S∋k βi,SLi,k′−
∑

j∈J
∑

S∋k βj,SLj,k′

Lµ1(r),k′

21: σ(r)← k′

22: end if
23: else
24: if rk >

κ·Lµ2(r)

m then
25: αµ2(r),k = wk −

∑
i∈I

∑
S∋k βi,SLi,k −

∑
j∈J

∑
S∋k βj,SLj,k

26: σ(r)← k

27: else if rk ≤
κ·Lµ2(r)

m then
28: k′ = argmink∈K

{
wk−

∑
i∈I

∑
S∋k βi,SLi,k−

∑
j∈J

∑
S∋k βj,SLj,k

Lµ2(r),k

}
29: βµ2(r),K =

wk′−
∑

i∈I
∑

S∋k βi,SLi,k′−
∑

j∈J
∑

S∋k βj,SLj,k′

Lµ2(r),k′

30: σ(r)← k′

31: end if
32: end if
33: K ← K \ σ(r)
34: Li = Li − Li,σ(r) for all i ∈ I
35: Lj = Lj − Lj,σ(r) for all j ∈ J
36: end for

The coflow-driven-list-scheduling (as described in Algo-
rithm 4) operates as follows. We assume, without loss of
generality, that the coflows are ordered based on the per-
mutation provided by Algorithm 3, where σ(k) = k, ∀k ∈ K
and schedule all the flows in each coflow iteratively, respect-
ing the order in this list. For each coflow k, we determine
a network core h∗ that can transmit coflow k in a way that
minimizes the complete time of coflow k (lines 5-9). We then
transmit all the flows allocated to network core h in order
to minimize its completion time.

5.1 Analysis

This section substantiates the effectiveness of the proposed
algorithm by providing proof of its approximation ratios.
Specifically, we demonstrate that the algorithm achieves an
approximation ratio of 4m + 1 for arbitrary release times
and an approximation ratio of 4m in the absence of release
times. It is important to note that we assume the coflows

are arranged in the order determined by the permuta-
tion generated by Algorithm 3, i.e., σ(k) = k,∀k ∈ K.
We also recall that Sk = {1, 2, . . . , k} denote the set of
first k coflows. Let βi,k = βi,Sk

and βj,k = βj,Sk
. Let

Li(Sk) =
∑

k′≤k Li,k′ and Lj(Sk) =
∑

k′≤k Lj,k′ . Addition-
ally, let µ1(k) denote the input port with the highest load
in Sk, and µ2(k) denote the output port with the highest
load in Sk. Therefore, Lµ1(k)(Sk) =

∑
k′≤k Lµ1(k),k′ and

Lµ2(k)(Sk) =
∑

k′≤k Lµ2(k),k′ .
Let us begin by presenting several key observations

regarding the primal-dual algorithm.

Observation 5.1. The following statements hold.

1) Every nonzero βi,S can be written as βµ1(k),k for some
coflow k.

2) Every nonzero βj,S can be written as βµ2(k),k for some
coflow k.

3) For every set Sk that has a nonzero βµ1(k),k variable, if
k′ ≤ k then rk′ ≤ κ·Lµ1(k)(Sk)

m .

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2023.3340729

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Algorithm 4 coflow-driven-list-scheduling

1: Let loadI(i, h) be the load on the i-th input port of the
network core h

2: Let loadO(j, h) be the load on the j-th output port of the
network core h

3: Let Ah be the set of coflows allocated to network core h
4: Both loadI and loadO are initialized to zero and Ah = ∅

for all h ∈ [1,m]
5: for k = 1, 2, . . . , n do
6: h∗ = argminh∈[1,m]

(
maxi,j∈[1,N] loadI(i, h)+

loadO(j, h) + Li,k + Lj,k)
7: Ah∗ = Ah∗ ∪ {k}
8: loadI(i, h

∗) = loadI(i, h
∗) + Li,k and loadO(j, h

∗) =
loadO(j, h

∗) + Lj,k for all i, j ∈ [1, N]
9: end for

10: for each h ∈ [1,m] do in parallel do
11: wait until the first coflow is released
12: while there is some incomplete flow do
13: for all k ∈ Ah, list the released and incomplete

flows respecting the increasing order in k
14: let L be the set of flows in the list
15: for every flow f = (i, j, k) ∈ L do
16: if the link (i, j) is idle then
17: schedule flow f
18: end if
19: end for
20: while no new flow is completed or released do
21: transmit the flows that get scheduled in line 17 at

maximum rate 1.
22: end while
23: end while
24: end for

4) For every set Sk that has a nonzero βµ2(k),k variable, if
k′ ≤ k then rk′ ≤ κ·Lµ2(k)(Sk)

m .
5) For every coflow k that has a nonzero αµ1(k),k, rk >

κ·Lµ1(k)(Sk)

m .
6) For every coflow k that has a nonzero αµ2(k),k, rk >

κ·Lµ2(k)(Sk)

m .
7) For every coflow k that has a nonzero αµ1(k),k or a

nonzero αµ2(k),k, if k′ ≤ k then rk′ ≤ rk.

Each of the aforementioned observations can be easily
verified and their correctness can be directly inferred from
Algorithm 3.

Observation 5.2. For any subset S, we have that
(
∑

k∈S Li,k)
2 ≤ 2m · fi(S) and (

∑
k∈S Lj,k)

2 ≤ 2m · fj(S).

Lemma 5.3. If there is an algorithm that generates a feasible
coflow schedule such that for any coflow k, Ck ≤ a·maxk′≤k rk+
Lµ1(k)(Sk)+Lµ2(k)(Sk) for some constants a, then the total cost

of the schedule is bounded as follows.∑
k

wkCk ≤
(
a+

2m

κ

) ∑
k∈K

∑
i∈I

αi,k(rk)

+

(
a+

2m

κ

) ∑
k∈K

∑
j∈J

αj,k(rk)

+2 (a · κ+ 2m)
∑
i∈I

∑
S⊆K

βi,Sfi(S)

+2 (a · κ+ 2m)
∑
j∈J

∑
S⊆K

βj,Sfj(S)

Proof. The proof is given in Appendix D.

Theorem 5.4. There exists a deterministic, combinatorial, poly-
nomial time algorithm that achieves an approximation ratio of
4m+1 for the coflow-level scheduling problem with release times.

Proof. To schedule coflows without release times, the appli-
cation of Lemma 5.3 (with a = 1) indicates the following:∑

k

wkCk ≤
(
1 +

2m

κ

) ∑
k∈K

∑
i∈I

αi,k(rk)

+

(
1 +

2m

κ

) ∑
k∈K

∑
j∈J

αj,k(rk)

+2 (κ+ 2m)
∑
i∈I

∑
S⊆K

βi,Sfi(S)

+2 (κ+ 2m)
∑
j∈J

∑
S⊆K

βj,Sfj(S)

In order to minimize the approximation ratio, we can sub-
stitute κ = 1

2 and obtain the following result:∑
k

wkCk ≤ (4m+ 1)
∑
k∈K

∑
i∈I

αi,k(rk)

+ (4m+ 1)
∑
k∈K

∑
j∈J

αj,k(rk)

+ (4m+ 1)
∑
i∈I

∑
S⊆K

βi,Sfi(S)

+ (4m+ 1)
∑
j∈J

∑
S⊆K

βj,Sfj(S)

≤ (4m+ 1) ·OPT.

Theorem 5.5. There exists a deterministic, combinatorial, poly-
nomial time algorithm that achieves an approximation ratio of 4m
for the coflow-level scheduling problem without release times.

Proof. To schedule coflows without release times, the appli-
cation of Lemma 5.3 (with a = 0) indicates the following:∑

k

wkCk ≤
(
2m

κ

) ∑
k∈K

∑
i∈I

αi,k(rk)

+

(
2m

κ

) ∑
k∈K

∑
j∈J

αj,k(rk)

+2 (2m)
∑
i∈I

∑
S⊆K

βi,Sfi(S)

+2 (2m)
∑
j∈J

∑
S⊆K

βj,Sfj(S)

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2023.3340729

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

In order to minimize the approximation ratio, we can sub-
stitute κ = 1

2 and obtain the following result:∑
k

wkCk ≤
(
2m

κ

) ∑
k∈K

∑
i∈I

αi,k(rk)

+

(
2m

κ

) ∑
k∈K

∑
j∈J

αj,k(rk)

+2 (2m)
∑
i∈I

∑
S⊆K

βi,Sfi(S)

+2 (2m)
∑
j∈J

∑
S⊆K

βj,Sfj(S)

≤ 4m ·OPT.

6 RESULTS AND DISCUSSION

This section performs simulations to assess the performance
of the proposed algorithm in comparison to a previous
algorithm, using both synthetic and real traffic traces. This
experiment is simulated using Python on an Intel i5 3.10
GHz, 32 GB RAM machine running Windows 10. The simu-
lation results are presented and analyzed in the subsequent
sections.

6.1 Workload
We employed the model presented in [25] to generate
synthetic traces for our evaluation. For each coflow, we
are provided with a coflow description in the form of
(Wmin,Wmax, Lmin, Lmax). The number of non-zero flows
in each coflow, denoted as M , is determined as the prod-
uct of two randomly chosen values, w1 and w2, both
falling within the interval [Wmin,Wmax]. Additionally, the
input links are assigned w1 and the output links are as-
signed w2 in a random manner. The size of each flow
is randomly selected from the interval [Lmin, Lmax]. The
default configuration for constructing all coflows follows
a specific percentage distribution based on the coflow
descriptions: (1, 4, 1, 10), (1, 4, 10, 1000), (4, N, 1, 10), and
(4, N, 10, 1000), with proportions of 41%, 29%, 9%, and
21%, respectively. Here, N represents the number of ports
in the core. In comparing the effects of flow density, the
coflows were categorized into three instances based on
their sparsity: dense, sparse, and combined. For each in-
stance, we randomly selected M flows from either the
set

{
N,N + 1, . . . , N2

}
or {1, 2, . . . , N} depending on the

specific instance. In the combined instance, each coflow
was classified as either sparse or dense with equal proba-
bility. Subsequently, flow sizes were randomly assigned to
each flow, following a uniform distribution over the range
{1, 2, . . . , 100} MB. The links of the switching core had a
capacity of 128 MBps, and each time unit corresponded to
1/128 of a second (8 milliseconds), which equated to 1 MB
per time unit. We generated 100 instances for each case and
calculated the average performance of the algorithm.

The real traffic trace utilized in our study was sourced
from the Hive/MapReduce traces captured from Face-
book’s 3000-machine cluster, comprising 150 racks. This
trace has been widely employed in previous simulations by
researchers [10], [21], [25]. The trace encompasses essential

details, including the arrival time (measured in millisec-
onds) of each coflow, the location of the mappers and
reducers (specifically, the rack number they belong to), and
the amount of shuffle data for each reducer (expressed in
Megabytes). The trace dataset consists of a total of 526
coflows.

6.2 Algorithms
In the case of m = 1, Algorithm 4 achieves approximation
ratios of 5 and 4 for arbitrary release time and zero release
time, respectively, which aligns with the findings reported
in Shafiee and Ghaderi [25]. Their empirical evaluation has
demonstrated that their algorithm outperforms determin-
istic algorithms used in Varys [12], [22], and [24]. Conse-
quently, this paper focuses on simulating the performance
of the algorithms in an identical parallel network (m > 1).
We evaluate the performance of FDLS (Algorithm 2) and
Weaver [18] in the identical parallel network setting. Weaver
arranges the flows one by one, classifying them as critical
or non-critical, and assigns a network core that minimizes
the coflow completion time for critical flows. For non-
critical flows, it selects a network core that balances the load
among the network cores. Since Weaver only schedules one
coflow on the parallel network, we employ our algorithm to
determine the order of coflows. We then utilize Weaver to
schedule the coflows in the obtained order. In other words,
all algorithms schedule coflows in the same order, but the
distinction lies in the method employed to minimize the
completion time of each coflow.

In our simulations, we compute the approximation ratio
by dividing the total weighted completion time obtained
from the algorithms by the cost of the feasible dual solution.
The feasible dual solution is obtained using Algorithms 5
and 6 and serves as a lower bound on the optimal value
of the coflow scheduling problem. It is worth noting that
when the cost of the feasible dual solution is significantly
lower than the cost of the integer optimal solution, the
resulting approximation ratio may exceed the theoretically
analyzed approximation ratio. To assign weights to each
coflow, we randomly and uniformly select positive integers
from the interval [1, 100]. The release times for each coflow
are randomly and uniformly selected as positive integers
from the interval [0, 100].

6.3 Results
Figure 1 illustrates the approximation ratio of the proposed
algorithm compared to the previous algorithm for synthetic
traces. The problem size ranges from 5 to 25 coflows in
five network cores. The proposed algorithm demonstrates
significantly smaller approximation ratios than 5− 2

m when
all coflows are released at time 0 and significantly smaller
approximation ratios than 6 − 2

m when coflows have vary-
ing release times. Furthermore, FDLS outperforms Weaver
by approximately 2.7% to 7.8% within this problem size
range. Additionally, as the number of coflows increases, the
approximation ratio decreases. This observation aligns with
subsequent findings, indicating that dense instances result
in lower approximation ratios. It is worth noting that the
dual solutions for the case where all coflows are released at
time 0 are different from the dual solutions when coflows

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2023.3340729

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

have release times. Therefore, we can only observe whether
the results for these two cases individually align with the
theoretical analysis, and we cannot guarantee the relation-
ship between these two cases. Although the approximation
ratios for the case where coflows have release times are
higher than the case where all coflows are released at time
0.

Fig. 1: The approximation ratio of synthetic traces between
the previous algorithm and the proposed algorithm.

Figure 2 presents the approximation ratio of synthetic
traces for 100 random dense and combined instances, com-
paring the previous algorithm with the proposed algorithm.
The problem size consists of 25 coflows in five network
cores, with input and output links of N = 10. In the dense
case, Weaver achieves an approximation ratio of 1.35, which
is worse than FDLS that attains an approximation ratio of
1.33 when all coflows release at time 0. This results in a
1.45% improvement when using FDLS, with an associated
error percentage of 0.11%. When coflows have varying re-
lease times, Weaver achieves an approximation ratio of 1.42,
which is worse than FDLS that attains an approximation ra-
tio of 1.40. This results in a 1.72% improvement when using
FDLS, with an associated error percentage of 0.17%. In the
combined case, FDLS slightly outperforms Weaver. Notably,
the proposed algorithm demonstrates a larger improvement
in the dense case compared to the combined case.

Fig. 2: The approximation ratio of synthetic traces between
the previous algorithm and the proposed algorithm for
different number of coflows for 100 random dense and
combined instances.

Figure 3 depicts the approximation ratio of synthetic

traces for varying numbers of network cores, comparing
the previous algorithm to the proposed algorithm. The
problem size consists of 25 coflows distributed across 5 to
25 network cores, with input and output links of N = 10.
The proposed algorithm consistently achieves much smaller
approximation ratios than 5 − 2

m when all coflows are
released at time 0 and much smaller approximation ratios
than 6 − 2

m when coflows have varying release times. As
the number of network cores increases, the approximation
ratio also increases. This trend is attributed to the widening
gap between the cost of the feasible dual solution and
the cost of the integer optimal solution as the number of
network cores grows. Consequently, there is an amplified
disparity between the experimental approximation ratio and
the actual approximation ratio. Notably, FDLS outperforms
Weaver by approximately 1.49% to 2.93% across different
numbers of network cores.

Fig. 3: The approximation ratio of synthetic traces between
the previous algorithm and the proposed algorithm for
different number of network cores.

Figure 4 presents the approximation ratio of real traces
for various thresholds of the number of flows, comparing
the previous algorithm to the proposed algorithm. Specif-
ically, we apply a filter to the set of coflows based on
the condition that the number of flows is greater than
or equal to the threshold. The problem size comprises a
randomly selected a set of 526 coflows distributed across
five network cores, with input and output links of N = 150.
Remarkably, FDLS outperforms Weaver by approximately
2.93% to 14.69% across different thresholds. Furthermore,
as the number of flows increases, the approximation ratio
decreases. This finding aligns with our previous obser-
vation, which indicates that dense instances yield lower
approximation ratios.

Figure 5 illustrates the cumulative distribution function
(CDF) plots of the coflow completion time for the previous
algorithm and the proposed algorithm when all coflows are
released at time 0. The problem size consists of 15 coflows in
five network cores, with input and output links of N = 10.
As shown in the figure, 92.86% of the coflow completion
time achieved by FDLS is below 15.936 seconds, whereas
Weaver’s completion time is 17.824 seconds. Moreover, the
area under the CDF plot of FDLS is larger than the area
under the CDF plot of Weaver, providing further evidence
of FDLS’s superiority over Weaver.

Figure 6 presents a box plot of the approximation ratio

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2023.3340729

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Fig. 4: The approximation ratio of real trace between the
previous algorithm and the proposed algorithm for different
threshold of the number of flows.

Fig. 5: CDF of coflow completion time under the previous
algorithm and the proposed algorithm for synthetic traces
when all coflows release at time 0.

for synthetic traces, comparing the previous algorithm and
the proposed algorithm when all coflows are released at
time 0. The problem size consists of 25 coflows in five
network cores, with input and output links of N = 10.
In FDLS, the first quartile (Q1), median, and third quartile
(Q3) values are 1.6234, 1.7056, and 1.7932, respectively. The
maximum and minimum values are 2.0746 and 1.3758,
respectively. This result demonstrates that the proposed
algorithm achieves a significantly smaller approximation
ratio than 5− 2

m . For Weaver, the Q1, median, and Q3 values
are 1.6459, 1.7603, and 1.8511, respectively, with maximum
and minimum values of 2.0851 and 1.3741, respectively. This
result indicates that FDLS is more stable and outperforms
Weaver.

Next, we will discuss the results of the coflow-level
scheduling problem. Given that Weaver originally tack-
led the flow-level scheduling problem to minimize the
makespan, we can adapt Weaver to address the coflow-
level scheduling problem while minimizing the completion
time of each coflow. In this context, Weaver prioritizes
selecting network cores that minimize the completion time
of the individual coflow, rather than striving to balance
the load among network cores. As a result, the modified
Weaver approach for the coflow-level scheduling problem
yields equivalent outcomes to those obtained using the the
Coflow-Driven-List-Scheduling (CDLS) algorithm. There-

Fig. 6: Box plot of the approximation ratio under the pre-
vious algorithm and the proposed algorithm for synthetic
traces when all coflows release at time 0.

fore, we will exclusively present the results obtained using
CDLS.

Figure 7 illustrates the approximation ratio of CDLS
algorithm for synthetic traces. The problem size ranges from
5 to 25 coflows in five network cores, with input and output
links of N = 10. The proposed algorithm demonstrates
outstanding performance by achieving significantly lower
approximation ratios than 4m in the case where all coflows
are released at time 0, and significantly lower approximation
ratios than 4m + 1 when coflows have varying release
times. Furthermore, as the number of coflows increases, the
approximation ratio decreases. This observation aligns with
our previous finding, suggesting that dense instances result
in lower approximation ratios.

Fig. 7: The approximation ratio of coflow-driven-list-
scheduling (CDLS) algorithm for different number of
coflows.

Figure 8 depicts the approximation ratio of the CDLS
algorithm for varying numbers of network cores. The prob-
lem size consists of 25 coflows distributed across 5 to 25
network cores, with input and output links of N = 10. The
proposed algorithm consistently achieves much smaller ap-
proximation ratios than 4m in the case where all coflows are
released at time 0, and much smaller approximation ratios
than 4m+1 when coflows have varying release times. As the
number of network cores increases, the approximation ratio
also increases. This is consistent with our theoretical results,
showing a linear relationship between the approximation

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2023.3340729

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

ratio and the number of network cores.

Fig. 8: The approximation ratio of coflow-driven-list-
scheduling (CDLS) algorithm for different number of net-
work cores.

Figure 9 displays the box plot of the approximation ratio
of the CDLS algorithm for synthetic traces. The problem size
consists of 25 coflows in five network cores, with input and
output links of N = 10. When all coflows release at time
0, the CDLS algorithm achieves Q1, median, and Q3 val-
ues of 2.8731, 3.0426, and 3.2563, respectively. Additionally,
the maximum and minimum values are 3.692 and 2.1815,
respectively. These results demonstrate that the CDLS algo-
rithm achieves a significantly smaller approximation ratio
than 4m. In the case where coflows have varying release
times, the CDLS algorithm achieves Q1, median, and Q3 val-
ues of 2.8901, 3.0821, and 3.3163, respectively. Additionally,
the maximum and minimum values are 3.8616 and 2.3019,
respectively. These results further underscore that the CDLS
algorithm achieves a significantly lower approximation ratio
than 4m+ 1.

Fig. 9: Box plot of the approximation ratio under the
coflow-driven-list-scheduling (CDLS) algorithm for syn-
thetic traces.

7 CONCLUDING REMARKS

In recent years, with advancements in technology, the tradi-
tional single-core model has become insufficient. As a result,
we have shifted our focus to studying identical parallel
networks, which utilize multiple parallel-operating network
cores. Previous approaches relied on linear programming to

solve scheduling order. Although the linear program can
be solved in polynomial time using the ellipsoid method, it
requires exponentially more constraints, necessitating suffi-
cient memory to store them. Therefore, this paper improves
the efficiency of solving by employing the primal-dual
method. The primal-dual algorithm has a space complexity
of O(Nn) and a time complexity of O(n2). We investigate
both flow-level and coflow-level scheduling problems. Our
proposed algorithm for the flow-level scheduling problem
achieves an approximation ratio of 6 − 2

m with arbitrary
release times and 5− 2

m without release time. For the coflow-
level scheduling problem, we obtain an approximation ratio
of 4m + 1 with arbitrary release times and 4m without
release time.

ACKNOWLEDGMENTS

This research was supported in part by the Ministry of
Science and Technology, Taiwan, R.O.C. under Grant no.
MOST 111-2221-E-006-125-MY2 and the Higher Education
Sprout Project, Ministry of Education to the Headquarters
of University Advancement at National Cheng Kung Uni-
versity (NCKU).

REFERENCES

[1] S. Agarwal, S. Rajakrishnan, A. Narayan, R. Agarwal, D. Shmoys,
and A. Vahdat, “Sincronia: Near-optimal network design for
coflows,” in Proceedings of the 2018 ACM Conference on SIGCOMM,
ser. SIGCOMM ’18. New York, NY, USA: Association for Com-
puting Machinery, 2018, p. 16–29.

[2] S. Ahmadi, S. Khuller, M. Purohit, and S. Yang, “On scheduling
coflows,” Algorithmica, vol. 82, no. 12, pp. 3604–3629, 2020.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commod-
ity data center network architecture,” ACM SIGCOMM computer
communication review, vol. 38, no. 4, pp. 63–74, 2008.

[4] N. Bansal and S. Khot, “Inapproximability of hypergraph vertex
cover and applications to scheduling problems,” in Automata,
Languages and Programming, S. Abramsky, C. Gavoille, C. Kirch-
ner, F. Meyer auf der Heide, and P. G. Spirakis, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 250–261.

[5] D. Borthakur, “The hadoop distributed file system: Architecture
and design,” Hadoop Project Website, vol. 11, no. 2007, p. 21, 2007.

[6] C.-Y. Chen, “Scheduling coflows for minimizing the total weighted
completion time in identical parallel networks,” 2022.

[7] ——, “Scheduling coflows with precedence constraints for min-
imizing the total weighted completion time in identical parallel
networks,” 2022.

[8] ——, “Scheduling coflows for minimizing the total weighted
completion time in heterogeneous parallel networks,” Journal of
Parallel and Distributed Computing, vol. 182, p. 104752, 2023.

[9] M. Chowdhury and I. Stoica, “Coflow: A networking abstraction
for cluster applications,” in Proceedings of the 11th ACM Workshop
on Hot Topics in Networks, ser. HotNets-XI. New York, NY, USA:
Association for Computing Machinery, 2012, p. 31–36.

[10] ——, “Efficient coflow scheduling without prior knowledge,” in
Proceedings of the 2015 ACM Conference on SIGCOMM, ser. SIG-
COMM ’15. New York, NY, USA: Association for Computing
Machinery, 2015, p. 393–406.

[11] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica,
“Managing data transfers in computer clusters with orchestra,”
ACM SIGCOMM computer communication review, vol. 41, no. 4, pp.
98–109, 2011.

[12] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow schedul-
ing with varys,” in Proceedings of the 2014 ACM Conference on
SIGCOMM, ser. SIGCOMM ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 443–454.

[13] J. M. Davis, R. Gandhi, and V. H. Kothari, “Combinatorial algo-
rithms for minimizing the weighted sum of completion times on
a single machine,” Operations Research Letters, vol. 41, no. 2, pp.
121–125, 2013.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2023.3340729

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[14] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,” Communications of the ACM, vol. 51, no. 1, p.
107–113, jan 2008.

[15] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron, “Decen-
tralized task-aware scheduling for data center networks,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 4, pp. 431–
442, 2014.

[16] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: A scalable and flexible
data center network,” in Proceedings of the ACM SIGCOMM 2009
conference on Data communication, 2009, pp. 51–62.

[17] X. S. Huang, X. S. Sun, and T. E. Ng, “Sunflow: Efficient optical cir-
cuit scheduling for coflows,” in Proceedings of the 12th International
on Conference on emerging Networking EXperiments and Technologies,
2016, pp. 297–311.

[18] X. S. Huang, Y. Xia, and T. S. E. Ng, “Weaver: Efficient coflow
scheduling in heterogeneous parallel networks,” in 2020 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2020, pp. 1071–1081.

[19] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: dis-
tributed data-parallel programs from sequential building blocks,”
in Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems 2007, 2007, pp. 59–72.

[20] S. Khuller and M. Purohit, “Brief announcement: Improved ap-
proximation algorithms for scheduling co-flows,” in Proceedings of
the 28th ACM Symposium on Parallelism in Algorithms and Architec-
tures, 2016, pp. 239–240.

[21] Z. Qiu, C. Stein, and Y. Zhong, “Minimizing the total weighted
completion time of coflows in datacenter networks,” in Proceed-
ings of the 27th ACM Symposium on Parallelism in Algorithms and
Architectures, ser. SPAA ’15. New York, NY, USA: Association for
Computing Machinery, 2015, p. 294–303.

[22] ——, “Minimizing the total weighted completion time of coflows
in datacenter networks,” in Proceedings of the 27th ACM symposium
on Parallelism in Algorithms and Architectures, 2015, pp. 294–303.

[23] S. Sachdeva and R. Saket, “Optimal inapproximability for schedul-
ing problems via structural hardness for hypergraph vertex
cover,” in 2013 IEEE Conference on Computational Complexity, 2013,
pp. 219–229.

[24] M. Shafiee and J. Ghaderi, “Scheduling coflows in datacenter
networks: Improved bound for total weighted completion time,”
SIGMETRICS Perform. Eval. Rev., vol. 45, no. 1, p. 29–30, jun 2017.

[25] ——, “An improved bound for minimizing the total weighted
completion time of coflows in datacenters,” IEEE/ACM Transac-
tions on Networking, vol. 26, no. 4, pp. 1674–1687, 2018.

[26] ——, “Scheduling coflows with dependency graph,” IEEE/ACM
Transactions on Networking, 2021.

[27] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST), 2010, pp. 1–10.

[28] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Ban-
non, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala,
J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart,
and A. Vahdat, “Jupiter rising: A decade of clos topologies and
centralized control in google’s datacenter network,” in Proceedings
of the 2015ACM Conference on SIGCOMM, ser. SIGCOMM ’15.
New York, NY, USA: Association for Computing Machinery, 2015,
p. 183–197.

[29] ——, “Jupiter rising: A decade of clos topologies and centralized
control in google’s datacenter network,” SIGCOMM Comput. Com-
mun. Rev., vol. 45, no. 4, p. 183–197, aug 2015.

[30] H. Tan, C. Zhang, C. Xu, Y. Li, Z. Han, and X.-Y. Li,
“Regularization-based coflow scheduling in optical circuit
switches,” IEEE/ACM Transactions on Networking, vol. 29, no. 3,
pp. 1280–1293, 2021.

[31] B. Tian, C. Tian, H. Dai, and B. Wang, “Scheduling coflows of
multi-stage jobs to minimize the total weighted job completion
time,” in IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications, 2018, pp. 864–872.

[32] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Sto-
ica, “Spark: Cluster computing with working sets,” in 2nd USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 10), 2010.

[33] H. Zhang, L. Chen, B. Yi, K. Chen, M. Chowdhury, and Y. Geng,
“Coda: Toward automatically identifying and scheduling coflows
in the dark,” in Proceedings of the 2016 ACM Conference on SIG-
COMM, ser. SIGCOMM ’16. New York, NY, USA: Association for
Computing Machinery, 2016, p. 160–173.

[34] T. Zhang, F. Ren, J. Bao, R. Shu, and W. Cheng, “Minimizing
coflow completion time in optical circuit switched networks,”
IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 2,
pp. 457–469, 2021.

[35] Y. Zhao, K. Chen, W. Bai, M. Yu, C. Tian, Y. Geng, Y. Zhang,
D. Li, and S. Wang, “Rapier: Integrating routing and scheduling
for coflow-aware data center networks,” in 2015 IEEE Conference on
Computer Communications (INFOCOM). IEEE, 2015, pp. 424–432.

Chi-Yeh Chen received the B.S. degree in Com-
munication Engineering from Da-Yeh University,
Changhua, Taiwan, R.O.C., in 2001, and the
M.S. degree in Computer Science and Infor-
mation and Engineering from National Cheng
Kung University, Tainan, Taiwan, R.O.C., in 2005
and the Ph.D. degree in Computer Science
and Information and Engineering from National
Cheng Kung University, Tainan, Taiwan, R.O.C.,
in 2012. He is currently an assistant professor
in the Department of Computer Science and In-

formation Engineering, National Cheng Kung University, Taiwan, ROC.
His research interests include scheduling problems, approximation al-
gorithms, parallel algorithm, load distribution and deep learning.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2023.3340729

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

