IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024 219

Alleviating Congestion via Switch Design for Fair
Buffer Allocation in Datacenters

Ahmed M. Abdelmoniem

Abstract—In data-centers, the composite origin and bursty na-
ture of traffic, the small bandwidth-delay product and the tiny
switch buffers lead to unusual congestion patterns that are not han-
dled well by traditional end-to-end congestion control mechanisms
such as those deployed in TCP. Existing works address the problem
by modifying TCP to adapt it to the idiosyncrasies of data-centers.
While this is feasible in private environments, it remains almost
impossible to achieve practically in public multi-tenant clouds
where a multitude of operating systems and thus congestion control
protocols co-exist. In this work, we design a simple switch-based
active queue management scheme to deal with such congestion
issues adequately. Our approach requires no modification to TCP
which enables seamless deployment in public data-centers via
switch firmware updates. We present a simple analysis to show
the stability and effectiveness of our approach, then discuss the
real implementations in software and hardware on the NetFPGA
platform. Numerical results from ns-2 simulation and experimental
results from a small testbed cluster demonstrate the effectiveness of
our approach in achieving high overall throughput, good fairness,
smaller flow completion times (FCT) for short-lived flows, and a
significant reduction in the tail of the FCT distribution.

Index Terms—Data center, congestion control, TCP, NetFPGA.

I. INTRODUCTION

LOUD computing has dramatically risen in popularity in
C the past two decades. The special nature of datacenter net-
work traffic brought back to the surface the old tug-of-war prob-
lem between short-lived flows’ completion times and long-lived
flows’ throughput [1], [2]. In a nutshell, like recent works [3],
[4], [5], our goal in this work is to study, design and implement
the means to reconcile the flow delivery timeliness requirements
of the former and the high throughput requirements of the latter,
under the stringent conditions imposed by datacenter network
characteristics. Numerous congestion controllers were proposed
for the Internet, high-speed WANS, lossy wireless networks and
datacenters, and the interested reader may refer to the following
surveys for a broad coverage [6], [7], [8], [9]. Each algorithm
aims to improve the way TCP reacts to congestion in a particular
network setting.

Manuscript received 5 April 2023; revised 6 December 2023; accepted 27
December 2023. Date of publication 23 January 2024; date of current version
8 March 2024. This work was supported by Hong Kong RGC under Grant
GRF16209922. Recommended for acceptance by X. Tang. (Corresponding
author: Ahmed M. Abdelmoniem.)

Ahmed M. Abdelmoniem is with the School of EECS, Queen Mary University
of London, E1 4NS London, U.K., and also with CS Department, FCI, Assiut
University, Asyut 71515, Egypt (e-mail: ahmed.sayed @gmul.ac.uk).

Brahim Bensaou is with CSE Department, The Hong Kong Univer-
sity of Science and Technology, Clear Water Bay, Hong Kong (e-mail:
brahim @cse.ust.hk).

Digital Object Identifier 10.1109/TCC.2024.3357595

, Member, IEEE, and Brahim Bensaou

, Senior Member, IEEE

The co-existence of various flows with different performance
requirements, ranging from synchronous short-lived flows to
bulky long-lived flows, poses another challenge to TCP in dat-
acenter networks. This can be attributed to several characteris-
tics of datacenter networks, including the high bandwidth-low
latency and the use of switches with small buffers instead of
routers. These characteristics are at odds with the original design
philosophy of the TCP congestion controller. As a result, many
complex, non-conventional congestion events (incast conges-
tion [10], [11] and buffer-bloating [3], [12]), which are typically
not observed on (or do not cause dramatic effects in) the Internet,
appeared in datacenter networks. Also, Ssuch events cannot
simply be inferred from packet losses or duplicate ACKs, and
hence they require special treatment. For example: 1) Incast
congestion occurs frequently in datacenters where many loosely
time-correlated short-lived flows converge onto the same con-
gested output port of a switch over a short period of time. With
the small switch buffers, many of these flows would experience
synchronized losses; 2) Buffer-Bloating occurs as a result of
the normal stabilization process of loss-based TCP congestion
control, and as a result, ends up filling up the small switch buffer
(even though it is not necessary) [4], [12], [13], [14], [15]. Long-
lived flows occupy the small buffer space persistently while
short-lived flows fail to grab their share of buffer and experience
repeated losses, which ultimately results in significantly long
flow completion times. These two problems may coincide due
to the co-existence of flows of different natures competing for
the same buffer at the bottleneck link.

In this work, we advocate a flow-aware approach similar
to traditional flow-based networks (e.g., the available bit rate
service in ATM networks (ATM-ABR) [16] or its Internet
alter-ego XCP [17]) and its variation RCP [18]). This is also
supported by prior work showing that flow control can not be
optimally decentralized and requires the assistance of network
elements [19]. The challenge that arises however is how to
deploy such flow-awareness in the flow-agnostic and flow-averse
IP environment without modifying the TCP sender and receiver
algorithms or code. XCP (or RCP) would have been a good
solution, however, the latter requirement immediately disqual-
ifies it, as it is a clean-slate redesign of congestion control that
requires not only changes to the routers but also to the sender
and receiver. Prior attempts [4], [13] addressed more or less the
problem by adopting similar switch-based solutions.

To achieve our goal, we need to update the switch with
minimal added complexity and without changing the TCP
sender/receiver behaviour. In essence, for the switch to be able

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-1374-1882
https://orcid.org/0000-0002-4473-3658
mailto:ahmed.sayed@qmul.ac.uk
mailto:brahim@cse.ust.hk

220 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024

to help in controlling congestion while ensuring fairness, the
switch’s algorithm must only be able to: i) track a per queue
counter of the number of active TCP flows (instead of monitoring
the full TCP state); ii) calculate a fair share for each flow that
traverses the output link; iii) convey this fair share back to the
traffic sources, without the need for maintaining per-flow state
information.

To achieve this, in this work, we propose FairQ a switch-based
algorithm for a fair queue allocation among competing TCP
flows. FairQ leverages TCP flow control to achieve its goal of
maintaining a target buffer occupancy (such that sufficient room
is left for incast traffic). Since TCP flow control is an integral part
of all TCP variants, FairQ is a switch mechanism that requires no
change to the network stack at the endpoints (e.g., private virtual
machines (VMs) or containers) in datacenters. The algorithm
maintains each queue’s fair-share window values and conveys
them via the receiver window field in the TCP ACK headers.
Our contributions are as follows:

e We propose FairQ, a novel TCP-independent switch

scheme, to achieve fair allocation in datacenters.

®* We mathematically model FairQ dynamics and show its

fast convergence to the operating point as well as its sta-
bility.

® We discuss a hardware prototype implementation of FairQ

on the NetFPGA platform and show that the design imposes
minimal increase on FPGA resource usage compared to the
reference vanilla-switch design.!

® We evaluate FairQ via experiments in a small testbed using

its hardware prototype switch and show that it significantly
improves the FCT performance by up to two order-of-
magnitude over the state-of-the-art methods.

The rest of this paper is organized as follows: we give a brief
overview of the problem in Section II, then, we discuss the
proposed method and present the proposed queue management
scheme FairQ in Section III. We further develop a simple ana-
lytical model of FairQ to evaluate its convergence and stability
analytically and via simulations in Section IV. We present the
hardware prototype design and the testbed implementation and
experiments in Sections VI. We discuss some related works in
Section VII and summarize our contributions in Section VIIIL.

II. BACKGROUND

A. Intra-Protocol Unfairness in Datacenters

By design, for most TCP variants, the coexistence of TCP
flows from the same TCP variant should ideally result in a fair
competition where each flow can grab an equal share of the
bottleneck link capacity [21]. This fairness is also known as the
Round-Trip Time (RTT) fairness because it is conditional on
the fairness of the RTT: that is, the TCP throughput is inversely
proportional to the RTT, and two flows that share a bottleneck
can nominally achieve the same throughput if they last long

This work extends and builds on our prior work in [20]. To help interested
readers reproduce our results and for openness, we make the code and scripts
of our implementations, simulations, and experiments available online (as is) at
the following link: https://github.com/ahmedcs/FairSwitch.

enough and experience the same RTT [22]. In addition, since the
Internet-centric design of TCP targets long-term fairness among
competing flows, TCP’s deployments in datacenter networks
have inherited this goal. As a result, short-lived TCP flows, that
abound in datacenter networks and do not last long enough to
reach the steady state, cannot obtain their nominal fair share and
often experience losses leading to long waiting for the retrans-
mission timers to Timeouts (RTO). Short flows would benefit if
short-term fairness is achieved. However, it is hard to achieve
this for short-delay high-speed networks (e.g., datacenters) with
the current TCP design which caters for long-delay low-speed
networks (e.g., the Internet) [1], [3].

B. The TCP Flow Control Mechanism

To implement a flow-controlled byte stream reliable data
transfer service on top of the Segmented TCP transmission,
each TCP end-point reserves, during connection establishment,
a buffer for receiving incoming data from its peer. The main goal
of this buffer is to simplify the implementation of a distributed
flow control by simply ensuring that the sender never overflows
the buffer space of the receiver. As such, the outgoing segments
awaiting transmission or the arriving segments waiting to be
consumed by the application are stored in the send buffer or
receive buffer, respectively. To prevent receive buffers from
overflowing, TCP provides the means for the receiver to pace
the sender rate by controlling the extra amount of data bytes
that can be sent by the sender. This is achieved by returning a
permissible “window” of bytes with every ACK in a field named
“Receiver Window Size” [23]. This field has a width of 16 bits
thus allowing barely an increment of 64 KB of data, which was
sufficient in the early days of the Internet. Today, TCP includes
an option called “window scaling option” [24] that semanti-
cally expands the field to 30 bits allowing increments of up
to 1 GB.

C. Relationship Between Congestion Control and Flow
Control

In addition, to the flow control window, TCP congestion con-
trol also uses a window to enforce a calculated limit on the source
sending rate based on the currently perceived congestion level.
Even though the two mechanisms are considered to be different
and target different purposes, functionally they are interrelated
as they both are used to limit the TCP source sending rate.
Generally speaking: 1) Flow Control: adjusts the sending rate
of the source to match the available buffer and processing speed
of its peer; 2) Congestion Control: adapts the sending rate to the
congestion state perceived from the network’s implicit or explicit
feedback. At any instant in time, any TCP flow in the network is
limited by either the remaining buffer space of its peer or the cur-
rent value of its unused congestion window. TCP sets the relation
between the congestion window C'wnd and the receiver window
Rwnd as follows: Swnd = min(Cwnd, Rwnd), where Swnd
is the sender window.

https://github.com/ahmedcs/FairSwitch

ABDELMONIEM AND BENSAOU: ALLEVIATING CONGESTION VIA SWITCH DESIGN FOR FAIR BUFFER ALLOCATION IN DATACENTERS 221

D. The Role of Active Queue Management (AQM)

AQM algorithms are deployed in switching devices to help
in controlling congestion by continuously monitoring the state
of the output queues and taking an active role in relieving
congestion if necessary. Typically the instantaneous (or average)
queue size, arrival rate and/or departure rate are estimated and
whenever their value exceeds a certain threshold the algorithm
infers (impending) congestion on the link. When this happens,
either, the algorithm proactively drops packets as a form of
implicit congestion notification to loss-based TCP sources or
it sends explicit congestion notification signals to the sources to
adjust their sending rates accordingly. A typical example of this
is the so-called Random Early Drop with Explicit Congestion
Notification (RED-ECN) [25].

III. THE PROPOSED METHODOLOGY

TCP is a full-duplex protocol that implements flow control via
the so-called Receiver window Rwnd in the ACK headers, in
addition to the receiver window scaling option of TCP. The two
end-points “agree” a priori on an exponent number n, between
0 and 14, that defines a multiplicative factor 2" applied to the
received Rwnd value. Upon receiving such information, the
sender calculates the actual receiver window value as Ruwnd <<
n. RFC7323 [24] states that the window scaling option can be set
during the connection establishment phase in the SYN packets.
In our approach, we propose to migrate the congestion controller
to the switch and piggyback it on the flow control window.
That is, to achieve the same expected effects as those achieved
normally by end-to-end flow control and congestion control via
the sender window setting: Swnd = min(Cwnd, Rwnd), and
without maintaining per-flow state information at the switches,
it is sufficient for the switch to overwrite the Rwnd field in the
TCP ACK headers to indicate the bottleneck fair share of the
bandwidth and buffer available for each flow sharing the same
output port. As the ACKSs traverse the switches in the reverse
path towards the sender, each switch examines the ACK and
modifies the Rwnd value after adjusting it, using the window
scaling which can be carried in the four reserved bits in the TCP
segment header to avoid maintaining flow state information at
the switch.

A. System Design and Algorithm

The main variables and parameters used in FairQ algorithm
are described in Table 1. Note that 7', M and « are parame-
ters of the algorithm that can be chosen by the administrator.
Algorithm 1 is shown as a set of event handler functions in an
event-driven environment. It runs on the switch and responds
to two major events: packet departures, and timer-based local
window update events.

Upon a Packet P Departure: the algorithm updates the local
maximum packet size (LM SS) seen so far (Line 2). If this is the
only flow (i.e., 8 < 0) to just arrive at this port, then the current
window L Rwnd is initially set to the target queue worth of bytes
(Lines 5 and 14) then FairQ enters the slow-start phase to start
probing for the effective window size (Lines 6 and 15). This is

TABLE I
VARIABLES AND PARAMETERS OF FAIRQ ALGORITHM 1

Parameter name Description
T Timeout value for each window increment interval
M Number of increment intervals to wait for an update
B Buffer size of the bottleneck link on the data path
« Target level (or threshold) of the queue occupancy
Variable name Description

LRwnd (LMSS) Local receive window (maximum segment size)

values maintained by the switch for each queue

B Number of current ongoing flows
¥ Window increments of one update interval
I Counter of the number of increments
Q Current output queue length in bytes
K The drift of @) from the target o B
P A packet
Rwnd(P) The value of receive window in the TCP header
Reserved(P) The value of reserved bits in TCP header

slow_start The current state flag

because initially the end-to-end bandwidth-delay product (BDP)
is unknown to the switch and hence the available bandwidth
has to be probed. Subsequently, for each new flow, the current
value of LRwnd is re-scaled to share the bandwidth equally
among all the flows (Lines 8 and 12). If the ACK bit is set, the
receive window field in TCP header Rwnd(P) isre-scaled by the
scale factor Reserved(P), then compared to the current local
window value L Rwnd of the corresponding forward path queue
(Line 16). If LRwnd < (Rwnd(P) << Reserved(P)), then
this packet is updated with the current local window L Rwnd
after scaling by the scale factor (i.e., Rwnd(P) <— LRwnd >>
Reserved(P)) (Line 17). Note that, in Section V-A, we show
how the scale factor can be encoded into the reserved bits of the
TCP header (i.e., Reserved(P)) by a hypervisor-level shim-
layer running on the end-host.

Upon Window Update Timer Expiry: k is calculated to track
the deviation of the current queue length from the target (Line
19). This is used to control the fraction of MSS added or sub-
tracted from the current value of v (Line 20). After a number M
of updates to y (Line 22), the current value of the local per-queue
window (L Rwnd) is updated (Line 23-24). Specifically, if slow
start is active, FairQ adds two MSS to the window to ramp
up LRwnd fast and reach the per-flow fair share, otherwise,
it adds the current value of « to the per-queue local window
L Rwnd. Specifically, for the first flow, the receive window is
set to the target queue occupancy (Line 6) then the slow start
is activated (Line 7). Then, the window is increased by 2MSS
gradually to account for the bandwidth-delay product. The slow
start phase ends when the queue hits the target (i.e., « x B) (Line
25). Notice that the value of the window increment is updated
M times before these updates are reflected in L Rwnd and thus
in the actual value of the TCP receive window Rwnd(P) that is
conveyed to the TCP sender.

The design of FairQ enables it to maintain a low loss rate by
keeping enough buffer space available to absorb sudden traffic
bursts (e.g., incast) while keeping the links fully utilized. It
embodies two principles, i) a congestion controller that adopts
a proportional increase, proportional decrease approach where
the window is expanded/shrunk in proportion to the level of

222 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024

Algorithm 1: Fair-Share AQM (FairQ) Algorithm.
1 Function Packet Departure Event Handler (P)
2 if LMSS < TCPSize(P) then

LMSS + TCP_Size(P) ;

3 if SYN — ACK(P) then

4 //Update for both incoming and outgoing queue;
5 if 5 <0 then

6 LRwnd <+ o x B;

7 L slow_start < True;

8 else

9 t LRwnd < LRwnd % %;

10 B+ B+1,;

u if FIN(P) then

12 //Update variables for only the outgoing queue;
13 B+ pB—1;

14 if 3 > 0 then LRwnd < LRwnd x % ;

15 else

16 LRwnd <+ a X B;

17 L slow_start < True;

18 if ACK(P) &&
(LRwnd < Rwnd(P) << Reserved(P)) then
19 | Rwnd(P) - LRwnd >> Reserved(P);

20 Function Window Update Timer

" HX LMSS.
X

24 if ' == M then

25 if slow_start == True then
LRwnd < LRwnd+ 2 x LMSS ;
26 else LRwnd + LRwnd + % ;
27 if Q > a x B then slowstart < False ;
28 v+ 0; '« 0

deficit/excess buffer occupancy with respect to a buffer thresh-
old, and thus congestion; ii) a fairness controller that divides the
amount of increase or decrease equally among all ongoing flows.
This makes it appropriate to handle well the co-existence of
short-lived and long-lived flows. Each switch port is associated
with a nominal window variable L Rwnd. Initially and whenever
the number of ongoing flows drops to zero, the algorithm goes
into the slow start mode, where this window is incremented by
two MSS after the end of each update period. When the queue
exceeds the target occupancy, the algorithm goes into congestion
avoidance and this window is decremented in proportion to the
backlog in excess of the target queue occupancy.

B. Practical Aspects of the System

Flow Tracking: In principle FairQ is very effective in solving
the problem of congestion, and actually avoiding it outright.
However, to enable its successful practical deployment, the
following requirements need to be met: i) the ACKs must travel

back along the reverse path taken by the corresponding data
packets, as they are used for switch explicit rate signals, ii)
the switch must be able to track the number of ongoing flows
to enable fair sharing; and, iii) as the Rwnd field of the TCP
header is used for signalling, the algorithm must take into
account the possible use of the window scaling option for each
ongoing flow to avoid semantic mismatches between the receiver
and the switch in interpreting the Rwnd values. To achieve
the first requirement (i), two approaches are possible: either
implement flow-aware routing in the open source network OS of
the bare-metal switch or, more likely, since SDN-based switches
are more common nowadays in datacenters, one can rely on the
functions already provided by SDN to setup flow-based routing.
To fulfill the second requirement (ii), one can implement a
SYN/FIN-based counting using hardware registers in the switch,
or again relying on an SDN controller to track the number of
active flows via a special OpenFlow rule on SYN/FIN packets;
we implemented and tested the first approach in a NetFPGA
platform and deployed the second in an SDN-enabled testbed.?
To meet the third requirement (iii), we can rely on assistance
from the end hosts as described next.

TCP Window Scaling: The TCP window scaling option re-
mains an important issue. In practice, this option is supposed to
be activated to deal with long-fat pipes by increasing the receiver
window from 64 KB per flow to up to 1 GB per flow. However,
even in current low-latency DCNs with 10-100 Gbps interfaces,
the scaling remains a necessary element and the receive window
still needs to be scaled to maintain full link utilization. Even
though, one could argue that the chances of having a single flow
active on a given port are close to nil (considering the average
number of flows per server in a private DCN measurement is
about 36 [3]), a robust technique should provide the ability to
rescale receive window values. According to the RFC [24], the
window scaling option is negotiated between the sender and
the receiver and to enable it, both sender and receiver must
send their window scaling option in the SYN segment and
its corresponding SYN-ACK. However, in practice, the scaling
value is not negotiated as different TCP implementations adopt
different default values for the scaling factor. For example, by
default in MacOS the scaling exponent is set to three while
Linux calculates it according to the allocated receiver buffer size.
Furthermore, these values can be reconfigured by the application
to be from O (i.e., up to 64KBytes for no-scaling) to 14 (i.e., up
to 1 GBytes with full scaling). To avoid any cognitive mismatch
between the values set by FairQ in the receive window field
and those interpreted at the receiver, and to operate regardless
of the link speed used in modern datacenters, the following are
the possible ways to solve this issue without modifying TCP in
the VM/container:

e ifthe scaling option is negotiated then we propose to simply

unify the value supported in the DCN by rewriting it in the
SYN and its corresponding SYN-ACK during the phase

2We note that other recent works have implemented various AQMs on P4
Tofino switch [15], [26] and therefore we believe, owning to FairQ’s simplicity,
it could be easily implemented on programmable switches and NICs.

ABDELMONIEM AND BENSAOU: ALLEVIATING CONGESTION VIA SWITCH DESIGN FOR FAIR BUFFER ALLOCATION IN DATACENTERS 223

of TCP connection establishment via an SDN rule in the
switches or directly by FairQ;

¢ if the TCP implementation informs the peers of the scaling

value during connection setup, then we propose to have a
lightweight shim layer at the end-hosts. This shim-layer
tracks the per-flow scaling factor recomputes the receive
window of outgoing ACKs and resets the value to a pre-set
network-wide scaling factor which is already configured
on all the switches; and

We adopt in our prototype (see Section V) a module (or shim-
layer) in the server (or hypervisor) to store the scaling factors of
the flows. This factor is communicated to the other side of the
TCP connection within the SYN packet. The module leverages
four of the reserved bits in the TCP header to encode the scaling
factor on the outgoing ACKs. The switches use the encoded
value to adjust the window value before it is updated in the TCP
header. Therefore, this approach does not require any changes
to the network stack and is transparent to the VM’s guest OS.

Role of SDN: In the SDN approach, SDN’s capability to track
flows, flow statistics and the scaling value sent in the SYN
segments can be easily invoked to address the three requirements
above. In contrast, if SDN is not available and the network
elements are not prone to upgrade, additional knowledge of
the DCN architecture and routing can enable the DCN operator
to easily deploy FairQ. For example, if single-path routing is
used, the learning ability of the switches can be invoked to
implicitly assume that forward and reverse paths are already the
same. If Equal-Cost Multi-Path (ECMP) routing is used a simple
modification to the FairQ algorithm to equally divide the flow
fair share among the multiple routing paths is easily applied. In
addition, to track the number of active TCP flows, we can simply
implement an efficient header filter to track SYN/FIN flags for
connection establishment or tear-down without per-flow state by
using per-port registers.

Processing Complexity: In terms of processing complexity,
FairQ is a simple algorithm with very low complexity because
it requires O(1) computation per packet. This makes it ideal
for integration into new switches or routers. For example, it can
be implemented in Linux-based routers as a module using the
NetFilter framework. Netfilter [27] allows for modifications to
the packet headers prior to their forwarding by the IP layer. FairQ
can also cope with Internet checksum recalculation efficiently
after header modification, by applying a straightforward one’s-
complement add and subtract operations on the following three
16-bit words [23]: C'Sumyew, = CSumeig + Rundyeq, (P) —
Rwnd,q(P). In addition, since Fair(is designed to deal with
TCP traffic, tracking the number of flows can be achieved in a
scalable manner by monitoring SYN/SYN-ACK and FIN/FIN-
ACK bits which is O(1).> All in all, the operations of FairQ are
O(1).

3This approach may result in unfair allocation with silent flows. Alternatively,
the switch can estimate the number of active flows via flow-state information.
Both solutions have drawbacks but maintaining flow-state information at the
switch makes the solution less practical [4], [13], [17]. To handle silent flows,
our shim-layer could maintain a per-flow timer and generate dummy FIN (and
SYN) to reduce (and increase) the number of active connections at the switches,
dummy FIN and SYN being then discarded by the receiving end host before
reaching TCP. A similar approach was adopted in [28], [29].

Effect on Internet-Facing TCP Connections: It is worth men-
tioning that, the WAN connections of datacenters to the Internet
in most cases are facing intra-datacenter load-balancers and
proxies that split the TCP connection. Hence, TCP connections
inside the datacenter are effectively separated from the TCP
traffic from outside the Internet. This avoids the possible issues
of updating the receive window of the Internet-facing TCP con-
nections which run in a high Bandwidth-Delay Product (BDP)
environment like the Internet.

IV. CONVERGENCE AND STABILITY ANALYSIS

Since FairQ adopts a proportional increase and proportional
decrease approach to adjust its window, it is important to study
its convergence and stability. In the following, we model FairQ
behavior by considering the three parts that make up the system:
the switch queue behavior, the switch’s per-queue local window
updates, and the source’s window adjustments in response to the
switch feedback updates.

A. Mathematical Modelling

Similar to [30], [31], we adopt a fluid approach to model
how FairQ reacts proportionally to the extent of congestion
and how it updates the local L Rwnd value at a predetermined
constant interval in the switch before conveying its value in the
incoming ACKs to the sources. This leads us to a model that
is centered around the switch where all calculations are based
on the advances in time. Recall that 7" is the interval duration
of the increments. We let the target queue occupancy be o x B
where B is the buffer size and « is the target threshold as defined
in Table I. At the start of FairQ’s operation, the local window
size denoted w(t) in the switch is initially set to a x B bytes.
We further model the window dynamics using a discrete-time
model with respect to 7', then the window dynamics, w(t), can
be expressed as

w(t - T) + (t)
w(t) = {w(t -7 !

where k£ is a positive integer which tracks the window update
epochs and ~(t) is the average value of (t) over the different
increment intervals expired during one update interval. Simply
put, y(t) is the number of MSS by which the window should be
increased or decreased in the update interval ending at ¢. Note
that, ~(¢) is reset at the end of each update epoch (i.e., at time
t = kMT). Hence, (t) can be expressed as (2) shown at the
bottom of the next page.

Notice that instead of reducing the queue dynamics in the
update interval to the final value only, our calculation of ~(t)
takes into account the past queue fluctuations from the start of the
interval by averaging all M sampled values. Let the link speed
(or capacity) be C, then the queue dynamics can be described

as
+
e (= B IRC

ift=kMT,
otherwise,

ey

that is, the queue at time ¢ receives a window-worth of bytes
that were calculated half an RTT earlier (to account for the

224
20 T T T T
18 [e
2 16 =
o
c 14 -{ -
8 12 7’ i
o 10f .
g H
g s} .
s 6f .
3 4L |
= without slowstart
2F with slowstart ===+]
0 L L 1
0 2 4 6 8 10
Simulation time (x10%)
Fig. 1. Stability and convergence speed of the system described by (1), (2)

and (3) where the z-axis is in RTT units (i.e., 100 us).

propagation time of the ACK from the switch to the source and
the propagation of the data from the source to the switch, arriving
at time t). For simplicity, we assume there is no congestion and
the RTT fluctuates slowly, hence the ACKs do not queue up in
the reverse direction.

Then, it is expected that the persistent queue converges to
a X B as t goes to infinity. To support this claim, we use the
above model and run numerical experiments with the system
model described by (1), (2) and (3) in Matlab. In the experiments,
we assume traffic sources are connected to one switch with a
buffer size of 83 packets and the target queue occupancy is set
to o = 20% = 16.6 packets. The capacity of the output link is
10 Gbps and the RTT is 100 ps. We run two scenarios, one with
the slow start enabled and one without.

Fig. 1 shows the mean queue size over time, which is displayed
in increments of RTT (i.e., 100 us), for the two scenarios (i.e.,
with and without slow start) as obtained from the Matlab simula-
tions. The graph supports our intuition that, in the beginning, the
mean queue occupancy remains at the zero level until the pipe is
filled. Then, it increases steadily until it converges to the target
queue occupancy as time goes to infinity. In addition, a slow
start seems to improve the speed of convergence dramatically.
A slow start leads the queue occupancy to the target very fast, and
then the proportional increase proportional decrease mechanism
maintains the window around the target queue occupancy while
reacting with agility to congestion. Hence, FairQ enjoys a fast
convergence speed and is expected to operate the queue around
the target queue level. The system is also expected to be stable as
it can reject any external transient disturbance (e.g., new flow or
incast event) and return quickly back to the steady state operating
point (i.e., the target queue level «).

B. Simulation Analysis

We then study the convergence properties of FairQ via ns2
simulation in network scenarios with low BDP (i.e., datacen-
ter networks). We compare FairQ to the state-of-the-art TCP
variant for datacenters (i.e., DCTCP). The simulation results

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024

demonstrate FairQ can outperform DCTCP over convergence
speed to steady state and fairness among competing flows.

For FairQ, the values of «, T and M are chosen based only on
the target level of congestion that can be tolerated regardless of
the capacity, delay, and the number of sources. In the simulation
experiments, we set a to 20% (of the buffer size), T to 50 us
and M to 10 intervals leading to an update epoch every 500 ps.
DCTCP parameters are set according to their recommended
settings with K (the target queue occupancy) of DCTCP set
to 17% of the buffer size.

We use a single rooted-tree (i.e., Dumbbell) topology and
run the experiments for a period of 1 sec. The buffer size of
the bottleneck link is set to the value of the BDP in all cases
(e.g., 83 Packets or 125 KBytes), and the IP data packet size is
1,500 bytes. We use high-speed links of 11 Gbps for the sending
stations in our simulation experiments, a bottleneck link speed
of 10 Gbps, a low RTT of 100 us and a RT'O,,,;,, of 2 ms as
opposed to the default 200 ms in real implementations.

We simulate a scenario with 5 long-lived flows that start and
stop each in a predetermined order. Fig. 2(a) and (b) show the
goodput achieved by the 5 long-lived flows. The results show
that compared to DCTCP, FairQ is able to converge faster to
the fair-share for each newly active flow and achieves better
short-term (or instantaneous) fairness with a lower variance.

V. SYSTEM IMPLEMENTATION

DCN operators use commodity Ethernet switches with small
buffers for interconnecting the servers mainly because of their
low cost and ease of deployment. Typically, the in-network
switches are under the control of the datacenter operator. These
switches have a certain lifetime (and even worse they frequently
fail, long before that) after which they need to be replaced
just like any other hardware equipment. Hence, we believe that
solutions involving very simple modifications to the switching
chips or firmware are feasible. Switching chip manufacturers
would be motivated by marketing efficient datacenter-tailored
chips that involve minimal hardware/software updates in favor
of performance gains.

In the following, we present the details of software and
hardware involved in the prototyping of FairQ. The goal is
to fulfill the following: (F1) Improving latency-sensitive ap-
plications Flow Completion Time (FCT) and mitigate incast;
(F2) Maintaining high sustained throughput for long-lived flows
in a work-conservative manner; (F3) Achieving this without
imposing modifications on the existing TCP protocol stack or
anything that is controlled by the tenant;* we then evaluate FairQ
via a real deployment in a small testbed.

“If changes to existing systems are needed (i.e., inevitable) then they must
be in network devices and/or hypervisors that are fully under the control of the
DCN operator

0
v(t) = {MSS

M

(1 - ZJM=1 Kt — jT)) =

if t = KMT,

) otherwise.

2

q(t—3T)
aB

MS

M

(1-2i

ABDELMONIEM AND BENSAOU: ALLEVIATING CONGESTION VIA SWITCH DESIGN FOR FAIR BUFFER ALLOCATION IN DATACENTERS 225

12

10 [

Goodput (Gb/s)
(o]
T

4 -
2 - —
0 .

0 0.2 0.4 0.6 0.8 1
Simulation Time (s)
(a) DCTCP
12 T I T
Flow1
Flow2 -----
101 Flow3 ------]
Flow4 -
8 | Flow5 —

Goodput (Gb/s)
»
T
l

AR

S

2 | ity ‘ : _
1 ‘ '
! | |
0 L I [
0 02 04 06 08 1
Simulation Time (s)
(b) FairQ
Fig. 2. Goodput of 5 flows that start/stop in a predetermined order showing

the convergence speed to the fair-share.

The principles discussed above in the design of FairQ can be
implemented in many different ways (e.g., in a virtual software
switch such as OpenvSwitch (OvS) using virtualization or in
firmware on bare metal switches, and so on). In this paper, we
discuss the implementation of FairQ as a two components soft-
ware/hardware implementation which we name hereafter Fair-
Switch (or FS in short) as shown in Fig. 3: the first component
in FS (the software part) is implemented under the hypervisor at
the physical servers and consists in a shim-layer whose role is
to maintain the consistency of the receiver window fields with
respect to their window scaling factors. The second component

Oy tig

" Reciever « ~.FairQ Switcr! ~._Sender
. l SRAM ” Registery |
Flows = Out Queues 5
= £
VM3 VM2 VM1 £ Out : £
£ —> Port [FairQ 3
| Hypervisor | £ Find Module 5
|
_ . |Flow Scale| Dat = -
Flowl| 7 ata
- - = Flow2| 3 Acks —
Flow3| 5 Modified Acks mwm me= =

Fig. 3. FairQ switch: a software/hardware incarnation of FairQ.

is implemented in the switch and deploys the logic that estimates
the equal fair share, and modifies the receiver window field
in the outgoing ACKs to enforce rate adjustments in a fair
manner to regulate the queue at a certain target occupancy by
leveraging the TCP flow control mechanism to control TCP flow
rates without interfering with their current “congestion” window
update function.

Fig. 3 shows how the FairQ switch could be deployed in a
datacenter. The FairQ switch module computes the fair share
associated with the output port buffer and updates the receiver
window of all outgoing ACKs to assign that fair share to all
flows that share this buffer. To take into account the scaling
factor when updating the corresponding window values yet avoid
maintaining per-flow state information, the scale factor is written
in the reserved bits of the outgoing TCP ACK packet headers
by the FairQ shim-layer in the host and is applied to the new
window value by FairQ switch module on the fly so that the
assigned fair share is interpreted correctly by the ACK receiving
end-point (i.e., the TCP sender). The switch module monitors the
queue occupancy of the per-port output queue and the occurrence
of special packets such as SYN-ACK/FIN-ACK. The switch
actively calculates a local per-port window value based on the
deviation from the target queue occupancy. The local window
value is re-calculated each time a new flow is observed or an
existing flow leaves the queue.

A. An End-Host Helper Module for Window Scaling

The switch requires the window scaling factor to rescale the
local receive window values before updating the TCP header of
the ACKs. RFC7323 [24] states that the three-byte scale option
may be sent in an SYN segment by each TCP end-point, other-
wise it is ignored. Its purpose is to inform the peer of the value of
the exponent it is using to scale the offered receive window. This
option is unnecessary for networks with a BDP of 31.25 Kbyte
(i.e., a bandwidth of 1 Gbps and RTT of 250 us). However, with
the introduction of high-speed links of 40 Gbps (i.e., BDP=1.25
Mbyte) and 100 Gbps (i.e., BDP=3.125 Mbyte), the scaling
factor becomes necessary to utilize the bandwidth when the
number of flows is small.

226 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024

To avoid scalability issues with flow-level state tracking,
we propose the adoption of a lightweight end-host/hypervisor
shim-layer to explicitly append the scaling factor to all outgo-
ing ACKs. The shim-layer extracts from outgoing SYN and
SYN-ACK packets the advertised scaling factor (i.e., within
the scaling option) for each established TCP flow at connection
setup, hashes the flows via the 4-tuple (including IP addresses
and port numbers) into a hash-table in which it stores the scaling
exponent. The entries in the hash table are cleared when a
connection is explicitly closed (i.e., FIN is sent out).

The module writes the exponent of the scale factor for all
outgoing ACK packets in the 4-bit reserved field of TCP head-
ers.’ Regardless of the method used to carry the exponent bits,
these modified TCP bits are cleared by the shim-layer once used,
to avoid the packet being dropped by the destination due to an
invalid TCP checksum value. This saves the recalculation of the
TCP checksum by the switches along the path.

Typically, this module resides either above the NIC driver
for a non-virtualized setup, or below the hypervisor to support
VMs/containers in cloud datacenters or finally could be imple-
mented in the data-path of the NIC (e.g., FPGA or Smart NICs).
Hence, this module does not affect any network protocol stack
implementation of the guest OS in the VM/container, making it
readily deployable in production datacenters.

B. Hardware Prototype

We discuss hereafter the hardware design aspects of FairQ
switch (called FairSwitch in the sequel) on the NetFPGA plat-
form. FairSwitch is a hardware realization of a simple AQM
mechanism based on the ideas of the Fair(Q algorithm discussed
above. As such, 1) when congested, it has to share the throughput
among competing (distributed) TCP flows equally; 2) it must
only rely on universally standardized mechanisms for conges-
tion or flow control to throttle the senders; and 3) it must not
require heavy computational overhead to intervene at the line
speed. FairSwitch achieves FairQ’s objective of maintaining a
target (Q_T'arget occupancy to reduce the latency for short-lived
TCP flows with minimal impact on the throughput of long-lived
flows. This is achieved by implementing a module in the switch
which tracks the per-queue active flows counters by observing
the flags in TCP headers and uses built-in implementations
of the division operator to calculate the local per-queue re-
ceive window. These two functionalities can be offloaded to an
SDN controller that uses readily available OpenFlow per-queue
switch statistics and a rule to duplicate SYN/FIN packets for
active flow tracking. The controller can calculate the per-queue
window and set a rule in the switch to update ACKs with the
calculated window.

3Since the exponent is limited to a maximum value of 14 these 4 bits are
sufficient. Alternatively, to avoid any collision with other protocols that might
be using the reserved 4 bits, the 16-bit window field can be used: with 4-bits
for the exponent and the remaining 12 bits for window values which allows
values of 256 MB which is orders of magnitude larger than the BDP in existing
datacenter networks. It is also possible to resort to using the checksum field of
IP header which in modern networks is ignored.

in_data_in_ctrl _in_wr Output_queues

FairSwitch

ECN |

£ ECN ™5 chksm !
old_ip_chksm | Mark P |
|

|

old_tcp_chksm, Tcp

8

3
old_window | Checksum| tcp chksm| ! | out_data

3

£

in_data

parse_out_port

in_ctrl 1dkdela

g wnd_scale

I proc_data_state_machinel

cur_flows i
f———— new_window

store_pkt l
near_ful
CTRL | Str/drp Q_targetf abovg | Adjust p—
kt_len | o otect q_maxwords +/- | below | window R
—enable 4
w €
full q_words <8
store
0g_regs T l
q.ree FairSwitch_regs
7 T —— q_maxwords i
] g words use_FairQ_agm
SRAM q_full FairQ_threshold
q_nearfull
ql|q2(q3 . | g8 : Use_dctcp_agm
i1
[PCl Interface |

Fig. 4. FairSwitch NetFPGA-based system design.

C. NetFPGA Design and Implementation

The hardware implementation of FairSwitch was devel-
oped on the NetFPGA-1 G platform using “Verliog” hardware
description language and is based on the reference switch
project [32]. NetFPGA processes data in words consisting of
64 bits (i.e., 8 bytes) and spends 1 clock cycle on each word.

1) Fair_Switch Module: As shown in Fig 4, the
“Fair_Switch” module is part of the top “output_queues”
module. The main inputs to the module are the incoming packet
on the in_data line, the control information on the in_ctrl line
and the data_ready signal on the in_wr line. These are fed
in from the output_queues module and are allocated SRAM
space for the destination queue (i.e., q_maxwords) and the
number of words currently used by stored packets (i.e., q_words
which are fed by oq_regs module). The main outputs are the
(un)modified packet information (i.e., out_data, out_ctrl and
out_wr) which is written into the FIFO queue of the destination
port. The module uses helper modules (i.e., “avg_32”, “div_32”,
“TCP_checksum” and “ECN_mark”).

The module tracks separate per-output-queue counters for
SYN/SYN-ACK, FIN/FIN-ACK and RST packets. The counters
are updated via a state machine to process the headers coming
in the in_data input. The module identifies a word as part of the
packet header or NetFPGA metadata when in_wr is active and
in_ctrl is disabled. Then, the following cases could occur:

e whenever a SYN-ACK is received, the active flow counter

is incremented for both the incoming and outgoing queues.

e whenever a FIN-ACK or RST packet is received, the active

flow counter is decremented for the outgoing queue.

Note, the counter is reset whenever no packets are received
from any of the active flows for a long period of time (i.e., 1 sec
which is suitable time-out for intra-DC traffic).

The module monitors whether the safe threshold (i.e., target
queue occupancy) has been exceeded for any output queue. This
can be evaluated via the average number of occupied words, and

ABDELMONIEM AND BENSAOU: ALLEVIATING CONGESTION VIA SWITCH DESIGN FOR FAIR BUFFER ALLOCATION IN DATACENTERS 227

the maximum number of words in the queue right-shifted by the
target threshold.® If the queue occupancy is above or below the
threshold, the local window of the queue is readjusted follow-
ing Algorithm 1. Notably, whenever the variable cur_flows is
updated (i.e., the number of active connections has changed), a
new window is produced. The new window value is calculated
as the target occupancy (i.e., _maxwords > FairQ _threshold)
is divided by cur_flows.

Finally, before the departure of each ACK, the receive window
field of the TCP header is updated before the packet is forwarded
to its output queue (port).” This happens only if the window is
less than the receive window in the TCP header. Note that the
threshold should be set to maintain a nearly empty queue to
absorb bursts of short-lived flows or incast traffic while keeping
the link fully busy with long-lived flows.

2) Helper Modules: The FairSwitch module relies on the
following helper modules:

1) AVG_32: calculates a running average of the number of

words used for each output-queue. It averages the last
32 samples of the q_words every avg_queue_time. The
avg_queue_time is a configurable timer. The default value
is set to 48 ps which corresponds to the transmission time
of four packets of 1500 Bytes onto a link of 1 Gbps.

2) TCP_checksum: calculates a new TCP checksum using
the incremental update [33] method shown in line 13 of
Algorithm 1. It takes the old and new windows, and the
current checksum as input and outputs the new checksum
value in the next clock cycle. Note that, because of the one
clock cycle delay, the in_data is also delayed by one clock
cycle for writing the new checksum into the correct word
of the out_data.

3) ECN_mark: implements the DCTCP AQM marking.
Whenever the maximum queue occupancy limit (by de-
fault set at 25%, which is close to the advised 20% value)
is exceeded, the packets are marked. Additionally, the
incremental update [33] method is used to generate a new
IP checksum using ECT (01 or 10), ECN (11), and the
previous checksum value. In this case, no delay is added
because the IP checksum is one word after the TOS field.

4) DIV_32 b: implements the division for window calcu-
lation. It divides the left-shifted q_maxwords by FairQ
_threshold over cur_flows (i.e., fair allocating the buffer
among concurrent flows). This module is generated via
the Xilinx IP cores library. The division process takes 18
clock cycles to complete but there is no need to add an extra
18-cycle delay to in_data. This is because the new window
is updated with SYN/FIN occurrences but is not used until
the ACKs arrive in the backward path after approximately
half an RTT from the connection setup.

5) FairSwitch_regs: maintains FairSwitch parameters (stored
inregisters) and is responsible for communicating with the
Peripheral Component Interconnect (PCI) interface.

“Right shifting by x is equivalent to multiplying by 2~
"The new window is right shifted by the “window scale” value which can be
extracted from the reserved-bits field [23] of the ACK header

TABLE II
RESOURCE USE BY THE REFERENCE SWITCH VERSUS FAIRSWITCH

Reference Switch FairSwitch NetFPGA Total
Used | Percentage | Used | Percentage Available
Slices 9605 40% 10851 45% 23616
Slice Flip Flops | 8364 17% 9419 19% 47323
4 input LUTs 14067 29% 15985 33% 47232
BRAMs 22 9% 22 9% 232
Bonded IOBs 360 52% 360 52% 692
CGLKs 8 50% 8 50% 16
DCM 6 75% 6 75% 8
NetFPGA —Bottleneck—

1 Gb/s—

FairSwitch

Rack 3

Rack 4

Fig. 5. Testbed setup for FairSwitch evaluation

Fig. 4 also shows that the FairSwitch module interacts with
the other modules. The destination port information is first
parsed and extracted by parse_out_port module from the control
headers which is added by output_port_lookup. Then the packet
is processed by FairSwitch and its output (i.e., out_data) is sent
to store_pkt module for storing in the SRAM for transmission
later or dropping the packet if it can not be stored.

Finally, to assess the complexity of our module in terms of
resource usage, Table II highlights the increase in the resources
between the reference switch design and the modified one that
includes the FairSwitch module.

VI. EVALUATION

Testbed Setup: In the next set of experiments, we deploy the
NetFPGA-based FairSwitch in a small-scale real testbed. The
testbed consists of 28 virtual servers, each server is associated
with a physical dedicated 1 Gbps Network Interface Card (NIC).
The serves are a set of high-performance Dell PowerEdge R320
machines. The machines are equipped with an Intel Xenon ES5-
2430 6-cores CPU, 32 GBytes of RAM and Intel 1350 server-
grade 1 Gbps quad-port NIC. As shown in Fig. 5, the servers are
organized into 4 racks (each rack is a subnet) and connected via
4 non-blocking Top-of-Rack (ToR) switches and the NetFPGA
FairSwitch serves as the core switch of the network. The 4 racks
are divided into (racks 1,2 and 3) which are designated as senders
and rack 4 which is designated as the receiver. Each 7 out of the
28 ports belonging to the same subnet is connected to one of the
non-blocking ToR switches through 1 Gbps Ethernet links. The
base RTT in the network is ~2200-300 ps. The servers run Linux
Operating System (i.e., Ubuntu distribution) whose Kernel has
by default the implementations of DCTCP [34], Cubic and New-
Reno (abbreviated to Reno) congestion control mechanisms. We

228 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024

also run on all end-hosts the shim-layer which is implemented
as a NetFilter-based loadable Linux kernel module [27].

For experimentation purposes, the machines are installed
with the iperf [35] for creating long-lived flows and Apache
benchmark [36] for creating short-lived flows. We setup dif-
ferent scenarios to reproduce both “incast” and “incast with
buffer-bloating” situations on the bottleneck link connected to
the receiving rack 4. To emulate virtual guests and increase the
number of senders dramatically, senders are attached to multiple
virtual ports at the end-hosts on OpenvSwitch (OvS) [37]. In
this case, each iperf or Apache client/server process is directly
associated with one of the virtual ports of OvS. This allows
us to emulate traffic originating from any number of VMs and
simplifies the creation of scenarios with a large number of flows
in the network. The objectives of the experiments are to verify
the ability of FairSwitch: i) to support more TCP connections
and with high link utilization; ii) to equally and fairly allocate
bandwidth among conflicting short-lived and long-lived TCP
flows; iii) to improve the FCT of the time-critical short-lived
flows and by how much.

A. Incast Without Background Traffic

We run two scenarios with mildly and heavily loaded incast
where a large number of short-lived flows request a large content
divided into 11.5 KB chunks.

Experimental Setup: In both scenarios, each of the 7 servers
in rack 4, issues web requests via the Apache benchmark for a
“index.html” page of size 11.5 KB from each of the 21 (7 x 3)
servers in racks 1, 2 and 3. Hence a total of 126 synchronized
requests are issued (i.e., each server in rack 4 makes 21 requests
to the servers in racks 1, 2, and 3). The requests within the same
subnet are avoided so the number of transfers is 3 racks x 7 src
x 6 dest (not in the same subnet) = 126. In the mildly loaded
scenario, each request is repeated a thousand consecutive times
by Apache benchmark which is equivalent to the transfer of 11.5
MByte file for each requester (11.5 MB x 126 ~ 1.5 GBbytes
total transfer through the bottleneck link). In the heavily loaded
case, we repeat the same experiment with a thousand consecutive
requests however, we use now five parallel TCP connections
instead of just one. This is the same amount of transfer through
the bottleneck link within the same period as in the mild load
but with more concurrent connections. Note that Apache bench-
mark, at the Othsec, starts requesting the web page 1,000 times
then it reports different statistics over all the requests.

Experimental Results: Fig. 6 shows that, under heavy load,
FairSwitch achieves a significantly improved performance for
TCP flows in terms of the FCT variation from average and the
FCT of the tail-end flows. Even though FairQ still improves
both metrics in the mild case, the performance gains are not
significant compared to the heavy load scenario. The competing
short-lived flows benefit under FairSwitch in the mild case by
achieving almost the same FCT on average but with an order-of-
magnitude, smaller standard deviation compared to TCP (Cubic,
Reno) with DropTail and DCTCP. In addition, the FCT of the
tail-end (i.e., the maximum FCT) is improved by two orders of

1.0 Average Standard Deviation 99th Percentile
0.8} 41 F B

w 06} 41 F E

[a)

O 04}] L]
0.2} 4 F E
00 L L L

10° 10" 10%10° 10" 10® 10%10° 10" 10®° 10°
) Response Tlme in (ms- IogscaIT)
- - FS-Cubic - -+ FS-Reno — FS-DCT T-Cubic - -+ Reno — DCTCP

(a) Medium incast scenario: 126 concurrent short-lived flows

1.0 Average Standard Deviation 99th Percentile
0.8} 4 F E
w 06 41 F 4
a
O 04}] o i
0.2} 4 F E
0.0 : ¢'
10 10210 10 10%10° 10° 10*
Response Time in (ms- Iogscalt%)
- - FS-Cubic - -+ FS-Reno — FS-DCTCP - - DT-Cubic - Reno — DCTCP

(b) Heavy incast scenario: 630 concurrent short-lived flows

Fig. 6. Incast Scenario: Average, Standard Deviation and Max FCT for TCP
with FairSwitch versus DropTail versus DCTCP. Each flow requests 11.5 MB
file (divided into 1000 11.5 KB blocks).

3.5 45
. BN FS BN No-FS __ 40| EER FS EEE No-FS
230 L 2.76 -
= 2.5 =35 31.26 30.81
x = x 30 - 30.05
g 20K g 25
%15 %2
-)
2 1.0 2
9 £ 10
a 05 a 5
0.0 0

Cubic

Reno DCTCP

Cubic

Reno DCTCP

(a) The medium load case (b) The heavy load case

Fig. 7. Incast Scenario: Total Packet Drops during the experiment for TCP
with FairSwitch versus DropTail versus DCTCP.

magnitude suggesting that almost all flows (including tails) can
meet their deadlines. Moreover, Fig. 6 shows that more gains
are obtained in the heavy load experiment thanks to the agility
and fast convergence of FairQ (or its FairSwitch incarnation).
Finally, the results suggest that FairSwitch can help incast traffic
grab their fair-share quickly thanks to the drop rate which is
significantly reduced. Fig. 7 shows that the number of drops
during the incast events is reduced by ~ 55% and ~ 73% in the
mild and heavy scenarios, respectively.

B. Low-Frequency Incast With Background Traffic

In the following experiments, we run a low-frequency sce-
nario where short-lived flows compete with long-lived flows.
Our goal is to see if FairSwitch can help short-lived flows grab
some bandwidth from long-lived flows and to see the effects on
the throughput of long-lived flows.

ABDELMONIEM AND BENSAOU: ALLEVIATING CONGESTION VIA SWITCH DESIGN FOR FAIR BUFFER ALLOCATION IN DATACENTERS 229

10 Average Standard Deviation ~ 99th Percentile
- T H T
0.8} B B
w 0.6} E E
O 04} i]
0.2} 4 |
00 l.| ; L l L
10° 10" 10 10°10° 10" 10° 10° 10*10" 10® 10° 10* 10°
) Response Time in (ms-logscale
- - FS-Cubic -+ FS-Reno — FS-DCTCP - - DT-Cubic -+ DT-Reno— DCTCP

(a) FCT metrics for one epoch of 126 concurrent short-lived flows

1.0 T

T 35
N FS Il No-FS
0.8} e - 30
=1 25 25.35
w 0.6F 1 kS
8 ¢ =+ FS-Cubic g2
= + FS-Cubi
0.4} -Reno o 15
i —agk
- -Cubic
0.2} . +1v DT-Reno 7] g 10
B —DCTCP <
0.0 A L =]

0.02

. .
0O 20 40 60 80 100 :
DCTCP

Elpehant Goodput (Mb/s)

(b) Avg. long flows goodput (c) Total packet drops

Fig. 8. Incast with background traffic: TCP with FairSwitch versus DropTail
versus DCTCP. Each of the 126 short-lived flow requests once a 1.15 MB file
(divided into 100 11.5 KB blocks) while competing with 21 long-lived flows.

Experimental Setup: With iperf, we first generate 21 synchro-
nized long-lived flows from each server in racks 1, 2 and 3
towards rack 4 through the bottleneck link continuously sending
traffic for 20 seconds. Then, we again invoke Apache benchmark
on the servers of rack 4 to request “index.html” from each of the
web servers running on the servers in racks 1, 2 and 3. Hence,
these web requests must compete for the bottleneck bandwidth
with each other and most importantly with the iperf long-lived
flows. After long-lived flows have reached a steady state (i.e.,
at the 10th second), we trigger a single incast epoch consisting
of 126 flows issuing 100 consecutive web requests each (i.e.,
each client requests a 1.15 MB file partitioned into 100 11.5 KB
chunks).

Experimental Results: Fig. 8(a) shows that, in medium load,
FairSwitch achieves FCT improvements for short-lived flows
while nearly not affecting the performance of the long-lived
flows. Short-lived flows benefit from FairSwitch by improving
the FCT on average and with one order-of-magnitude reduction
in FCT variation compared to TCP (Cubic, Reno) with DropTail
and DCTCP. Also, in terms of the tail-end (i.e., the 99%), Fair-
Switch reduces the tail FCT by two order-of-magnitude almost
close to the average, and the FCT values are within 10’s of ms.
The improvement means short-lived flows finish quickly within
their stipulated deadlines. Fig 8(b) shows that the long-lived
flows are almost not affected by FairSwitch intervention and
the throttling of their rates during the incast epochs. Fig. 8(c)
shows that the packet drops under FairSwitch are reduced by
up to ~ 99% due to its efficient rate control during incast
which explains why short-lived flows can avoid long waiting
for timeouts.

10 Average Standard Deviation 99th Percentile
. T T T i ol

0.8
w 06
© 04} | 41 F
0.2} E »__.':
0'Oo 1 Iz 3 -1.|o|1 2|3 4 1 ‘2 3 ‘4 5
10" 100 10 10710 10°1010°10°10° 10 10 10" 10" 10

Response Time in (ms-logscale
FS-Reno — FS-DCTCP - - DT-Cubic - - - DT-Reno — DCTCP

T
L
T

T
L
T

D

- - FS-Cubic - - -

(a) FCT metrics for 9 epochs of 126 concurrent short-lived flows

1.0

N FS Il No-FS

®
o

0.8} 73.82

69.05
L 0.6}
a

© 04

D
o

= + FS-Cubic
+++ FS-Reno 7
== FS-DCTCP
=+ DT-Cubic
+++ DT-Reno
= DCTCP

0 20 40 60 80 100
Elpehant Goodput (Mb/s)

I
o

0.2}

n
=]

Drops in Pkts (x 10°)

0.0

0
Cubic Reno DCTCP

(b) Avg. long flow goodput (c) Total packet drops

Fig. 9. Incast with background traffic: TCP with FairSwitch versus DropTail
versus DCTCP. Each of the 126 short-lived flows requests 9 times a 1.15 MB file
(divided into 100 11.5 KB blocks) while competing with 21 long-lived flows.

C. High-Frequency Incast With Background Traffic

We repeat the previous experiment, increasing the frequency
of incast epochs to nine times within the 20-second period (i.e.,
at the 2nd, 4th,..., and 18th sec). In each epoch, each server
requests the web page 100 times. The total transfer is ~ 145
MBytes per epoch and ~ 1.3 GBytes for all 9 epochs.

Experimental Results: Fig. 9(a) shows that even with the
higher incast frequency, FairSwitch can keep up even when
short-lived flows are competing against each other and long-
lived flows. The average and variation of FCT for short-lived
flow show similar improvement as the previous experiment. This
can be attributed to the lower packet drop rate improvement
of up to ~ 92% with the help of FairSwitch and hence lower
chances of experiencing timeouts as shown in Fig. 9(c). Com-
pared to the previous experiment, Fig. 9(b) shows that long-lived
flows’ throughput is slightly reduced because of the equal rate
allocation for a surge of incast flows and the few long-lived
flows during the incast epochs. However, we believe that the
fair utilization of the bandwidth by short-lived and long-lived
flows during incast events is necessary for short-lived flows
to finish quickly which explains the marginally lower achieved
goodput by long-lived flows. To summarize, the results highlight
FairQ’s benefits: 1) it reduces the FCT variance and tail-end
FCT for short-lived flows by up to two orders of magnitude;
2) it can maintain the same improvement even if the long-lived
flows are hogging the network; 3) it efficiently handles incast of
various frequencies by fairly allocating the resources even in the
presence of bandwidth-hungry long-lived flows; and 4) it fulfils
its requirements with no more than the default assumptions about
the network stack and without imposing any modifications to
VMs protocol stack.

230 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024

VII. RELATED WORK

Due to the impact and severity of the congestion symptoms,
much recent work has been devoted to addressing such short-
comings of TCP in DCNs. Some approaches explored flow
path scheduling schemes to isolate short-lived and long-lived
flows [2], [38]. However, they require path delay estimation
and solving optimization problems which is inadequate for
low-latency datacenters. Instead, most of the proposed solutions
fall into two categories: window-based (e.g., [3], [4], [11], [39],
[40], [41], [42]) or fast loss recovery (e.g., [28], [29], [43], [44],
[45]), receiver-driven (e.g., [11], [46], [47], [48],0r proactive and
token-based (e.g., [5], [13], [14], [15], [49], [50]) schemes. In the
window-based category, For instance, DCTCP [3] is a window-
based method which proposes a modification to both TCP and
RED AQM to adapt the congestion window for stabilizing the
queue length at a predefined threshold, guaranteeing thus short
delays for incast traffic, without degrading the link utilization.

Fast loss recovery schemes try to improve the agility of
TCP in recovering from congestion events by shortening the
reaction time. For instance, [28], [43] reduces TCP’s minimum
retransmission timeout R7'O,,;, to reduce the unnecessarily
long waiting times after packet losses [44] cleverly tries to
deploy a fast congestion-detection mechanism by truncating the
packet payload of congestion-causing packets, only conveying
the header to the receiver.

Receiver-driven approaches [11], [46], [47], [48] estimate the
available bandwidth and convey it to the sender proactively to
avoid congestion at the receiver. They mainly handle congestion
at the receiver and do not address buffer buildup in the switches.
Other work consider the co-flow abstraction to collectively
optimize the performance of flows that share the same task [51],
[52].

Recently, there has been a line of work proposing proactive
congestion controls with in-network assistance [14], [15] or
receiver-driven [49], [50]. HPCC [15] is designed for RDMA
networks requiring support at the end-host and switch. Proac-
tive transports [14], [49], [50] that use a form of “credit” for
packet transmission protocol are promising approaches towards
transport protocols that emerged recently but are still under
investigation and have not been seen practical deployments.

Alternatively, we have explored an end-to-end flow-aware
approach leveraging explicit feedback from in-network devices
similar to traditional flow-based systems like ATM-ABR [16],
XCP [17] or RCP [18]. More recently, SAB [4], TFC [13], and
PowerTCP [5] were proposed and similar to FairQ in trying to
maintain the occupancy of the buffers low while utilizing the
network bandwidth. RCP and TFC measure an estimate of the
number of concurrent flows using packet dynamics. PowerTCP
in essence is similar as it relies on the exchange of the net-
work telemetry information between the switch and end-hosts
to convey the transmitted volume and queue occupancy in the
TCP header of in-flight packets. Both SAB and FairQ rely
on-switch SYN/FIN counting for ongoing flow measurement.
This potentially achieves a more accurate estimation of the active
flows compared to RCP, TFC and PowerTCP. Also, FairQ gives
operators the flexibility of controlling the buffer allocation via

hyper-parameters which is beneficial in all scenarios compared
to SAB which uses a preset buffer capacity and has a problem
with the flow counting logic via using SYN packets.

VIII. CONCLUSION

In this work, we explore a non-intrusive way of reconciling
the performance of long-lived with that of short-lived flows in
datacenters. To achieve this, the persistent switch queue sizes
should operate at low levels to make room for the bursts of incast
traffic which helps avoid packet-losses. We proposed FairQ, a
switch-assisted flow-aware rate matching algorithm that only re-
lies on the existing flow-control mechanism of TCP to feedback
queue occupancy levels to TCP senders. To show the practicality
of FairQ, we implemented several prototypes as Linux-Kernel
module for bare-metal switches, as an OpenvSwitch patch for
virtual networks which were omitted in the paper due to space
constraints and finally as hardware NetFPGA-based switches for
programmable hardware switches in datacenters. A number of
detailed simulations and real test-bed experiments showed that
FairQ can achieve its goals efficiently while outperforming the
most prominent alternative approaches. Last but not least, know-
ing that in public datacenters the TCP sender and/or receiver are
outside the control of the datacenter operator, FairQ ensures that
it does not modify the TCP congestion control which enables its
true deployment potential in public datacenter networks.

REFERENCES

[1] L. Guo and I. Matta, “The war between mice and elephants,” in Proc. Int.
Conf. Netw. Protoc., 2001, pp. 180-188.

[2] W. Wang, Y. Sun, K. Salamatian, and Z. Li, “Adaptive path isolation for

elephant and mice flows by exploiting path diversity in datacenters,” IEEE

Trans. Netw. Service Manag., vol. 13, no. 1, pp. 5-18, Mar. 2016.

M. Alizadeh et al., “Data center TCP (DCTCP),” ACM SIGCOMM Com-

put. Commun. Rev., vol. 40, pp. 63-74, 2010.

J. Zhang, F. Ren, X. Yue, R. Shu, and C. Lin, “Sharing bandwidth by

allocating switch buffer in data center networks,” IEEE J. Sel. Areas

Commun., vol. 32, no. 1, pp. 39-51, Jan. 2014.

V. Addanki, O. Michel, and S. Schmid, “PowerTCP: Pushing the perfor-

mance limits of datacenter networks,” in Proc. 19th USENIX Symp. Netw.

Syst. Des. Implementation, 2022, pp. 51-70.

S. Fahmy and T. P. Karwa, “TCP congestion control: Overview and survey

of ongoing research,” Purdue Univ., West Lafayette, IN, Tech. Rep. 01-016,

2001. [Online]. Available: http://docs.lib.purdue.edu/cstech/1513/

J. Widmer, R. Denda, and M. Mauve, “A survey on TCP-friendly conges-

tion control,” JEEE Netw., vol. 15, no. 3, pp. 28-37, May/Jun. 2001.

D. Liuand W. Baptiste, “On approaches to congestion control over wireless

networks,” Int. J. Commun. Netw. Syst. Sci., vol. 2, no. 3, pp. 222-228,

2009.

R. P. Tahiliani, M. P. Tahiliani, and K. C. Sekaran, “TCP variants for data

center networks: A comparative study,” in Proc. Int. Symp. Cloud Serv.

Comput., 2012, pp. 57-62.

Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph, “Understanding

TCP incast throughput collapse in datacenter networks,” in Proc. 1st ACM

Workshop Res. Enterprise Netw., 2009, pp. 73-82.

H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast congestion control

for TCP in data-center networks,” IEEE/ACM Trans. Netw., vol. 21, no. 2,

pp. 345-358, Apr. 2013.

M. Alizadeh, A. Kabbani, T. Edsall, and B. Prabhakar, “Less is more:

Trading a little bandwidth for ultra-low latency in the data center,” in Proc.

9th USENIX Symp. Netw. Syst. Des. Implementation, 2012, Art. no. 19.

J. Zhang, F. Ren, R. Shu, and P. Cheng, “TFC: Token flow control in data

center networks,” in Proc. 11th Eur. Conf. Comput. Syst., 2016, Art. no. 23.

[3

—

[4

=

[5

—_

[6

—_

[7

[

[8

[t}

[9

—

[10]

[11]

[12]

[13]

http://docs.lib.purdue.edu/cstech/1513/

ABDELMONIEM AND BENSAOU: ALLEVIATING CONGESTION VIA SWITCH DESIGN FOR FAIR BUFFER ALLOCATION IN DATACENTERS 231

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32

[33]

[34]
[35]
[36]
(371
[38]

[39]

[40]

[41]

S. Hu, W. Bai, B. Qiao, K. Chen, and K. Tan, “Augmenting proactive
congestion control with aeolus,” in Proc. 2nd Asia-Pacific Workshop Netw.,
2018, pp. 22-28.

Y. Li et al., “HPCC: High precision congestion control,” in Proc. ACM
Special Int. Group Data Commun., 2019, pp. 44-58.

CISCO inc, “Understanding the available bit rate (ABR) service
category for ATM VCs,” 2005. [Online]. Available: http://www.cisco.
com/c/en/us/support/docs/asynchronous-transfer-mode- atm/atm- traffic-
management/10415-atmabr.html

D. Katabi, M. Handley, C. Rohrs, D. Katabi, M. Handley, and C. Rohrs,
“Congestion control for high bandwidth-delay product networks,” ACM
SIGCOMM Comput. Commun. Rev., vol. 32, no. 4, pp. 89—102, 2002.

N. Dukkipati and N. McKeown, “Why flow-completion time is the right
metric for congestion control,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 36, pp. 59-62, 2006.

J. Jaffe, “Flow control power is nondecentralizable,” IEEE Trans. Com-
mun., vol. 29, no. 9, pp. 1301-1306, Sep. 1981.

A. M. Abdelmoniem and B. Bensaou, “Reconciling mice and elephants
in data center networks,” in Proc. IEEE Int. Conf. Cloud Netw., 2015,
pp. 119-124.

S. Molndr, B. Sonkoly, and T. A. Trinh, “A comprehensive TCP fair-
ness analysis in high speed networks,” Comput. Commun., vol. 32,
pp. 1460-1484, 2009.

G. Marfia, C. Palazzi, G. Pau, M. Gerla, M. Y. Sanadidi, and M. Roccetti,
“TCP libra: Exploring RTT-fairness for TCP,” in Proc. Int. Conf. Res.
Netw., 2007, pp. 1005-1013.

J. Postel, “RFC 793 - Transmission control protocol,” pp. 1-85, 1981.
[Online]. Available: http://www.ietf.org/rfc/rfc793.txt

D. Borman, R. Braden, V. Jackbson, and R. Scheffenegger, “TCP exten-
sions for high performance,” 2014. [Online]. Available: https://datatracker.
ietf.org/doc/html/rfc7323

S. Floyd and V. Jacobson, “Random early detection gateways for con-
gestion avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4, pp. 397413,
Aug. 1993.

1. Kunze, M. Gunz, D. Saam, K. Wehrle, and J. Riith, “Tofino p4: A strong
compound for AQM on high-speed networks?,” in Proc. IFIP/IEEE Int.
Symp. Integr. Netw. Manage., 2021, pp. 72—-80.

NetFilter.org, “NetFilter packet filtering framework for linux,” Jan. 2023.
[Online]. Available: http://www.netfilter.org/

A. M. Abdelmoniem and B. Bensaou, “Curbing timeouts for TCP-Incast
in data centers via a cross-layer faster recovery mechanism,” in Proc. IEEE
Conf. Comput. Commun., 2018, pp. 675-683.

A. M. Abdelmoniem and B. Bensaou, “T-RACKs: A faster recovery
mechanism for TCP in data center networks,” IEEE/ACM Trans. Netw.,
vol. 29, no. 3, pp. 1074-1087, Jun. 2021.

J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP through-
put: A simple model and its empirical validation,” SIGCOMM Comput.
Commun. Rev., vol. 28, no. 4, pp. 303-314, Oct. 1998.

V. Misra, W.-B. Gong, D. Towsley, V. Misra, W.-B. Gong, and D. Towsley,
“Fluid-based analysis of a network of AQM routers supporting TCP flows
with an application to RED,” in Proc. Conf. Appl. Technol. Architectures
Protoc. Comput. Commun., 2000, pp. 151-160.

netfpga.org, “The NetFPGA 1G specification documents,” Jan. 2023.
[Online]. Available: https://netfpga.org/NetFPGA-1G.html

A. Rijsinghani, “RFC 1624—Computation of the internet checksum via
incremental update,” 1994. [Online]. Available: https://tools.ietf.org/html/
rfc1624

K. D. Community, “Data CenterTCP (DCTCP),” Jan. 2023. [Online].
Available: https://docs.kernel.org/networking/dctcp.html

iperf, “The TCP/UDP bandwidth measurement tool,” Jan. 2023. [Online].
Available: https://iperf.fr/

Apache.org, “Apache HTTP server benchmarking tool,” Jan. 2023. [On-
line]. Available: http://httpd.apache.org/docs/2.2/programs/ab.html
OpenvSwitch.org, “Open virtual switch project,” Jan. 2023. [Online].
Available: http://openvswitch.org/

W. Cheng, F. Ren, W. Jiang, K. Qian, T. Zhang, and R. Shu, “Isolating
mice and elephant in data centers,” 2016, arXiv:1605.07732.

A. M. Abdelmoniem, B. Bensaou, and V. Barsoum, “IncastGuard: An
efficient TCP-incast mitigation mechanism for cloud networks,” in Proc.
IEEE Int. Conf. Glob. Commun., 2018, pp. 1-6.

A. M. Abdelmoniem and B. Bensaou, “Incast-aware switch-assisted TCP
congestion control for data centers,” in Proc. IEEE Glob. Commun. Conf.,
2015, pp. 1-6.

A. M. Abdelmoniem and B. Bensaou, “Hysteresis-based active queue
management for TCP traffic in data centers,” in Proc. IEEE Int. Conf.
Comput. Commun., 2019, pp. 1621-1629.

[42] A. M. Abdelmoniem and B. Bensaou, “Enhancing TCP via hysteresis
switching: Theoretical analysis and empirical evaluation,” IEEE/ACM
Trans. Netw., vol. 31, no. 6, pp. 2614-2623, Dec. 2023.

[43] V. Vasudevan et al., “Safe and effective fine-grained TCP retransmissions
for datacenter communication,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 39, pp. 303-314, 2009.

[44] P. Cheng, F. Ren, R. Shu, and C. Lin, “Catch the whole lot in an action:
Rapid precise packet loss notification in data center,” in Proc. 11th USENIX
Symp. Netw. Syst. Des. Implementation, 2014, pp. 17-28.

[45] A.M. Abdelmoniem, H. Susanto, and B. Bensaou, “Taming latency in data
centers via active congestion-probing,” in Proc. IEEE Int. Conf. Distrib.
Comput. Syst., 2019, pp. 101-110.

[46] J.Hwang,J. Yoo, and N. Choi, “Deadline and incast aware TCP for cloud
data center networks,” Comput. Netw., vol. 68, pp. 20-34, 2014.

[47] K. Nagaraj, D. Bharadia, H. Mao, S. Chinchali, M. Alizadeh, and S. Katti,
“NUMFabric: Fast and flexible bandwidth allocation in datacenters,” in
Proc. ACM SIGCOMM Conf., 2016, pp. 188-201.

[48] J. Xue, M. U. Chaudhry, B. Vamanan, T. N. Vijaykumar, and M. Thot-
tethodi, “Dart: Divide and specialize for fast response to congestion in
RDMA-based datacenter networks,” IEEE/ACM Trans. Netw., vol. 28,
no. 1, pp. 322-335, Feb. 2020.

[49] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa: A receiver-
driven low-latency transport protocol using network priorities,” in Proc.
ACM Special Int. Group Data Commun., 2018, pp. 221-235.

[50] Q. Cai, M. T. Arashloo, and R. Agarwal, “DcPIM: Near-optimal proactive
datacenter transport,” in Proc. ACM SIGCOMM Conf., 2022, pp. 53-65.

[51] L. Shi, Y. Liu, J. Zhang, and T. Robertazzi, “Coflow scheduling in data
centers: Routing and bandwidth allocation,” IEEE Trans. Parallel Distrib.
Syst., vol. 32, no. 11, pp. 2661-2675, Nov. 2021.

[52] H. Susanto, B. L. Ahmed, M. Abdelmoniem, H. Zhang, and D. Towsley,
“A near optimal multi-faced job scheduler for datacenter workloads,” in
Proc. IEEE 39th Int. Conf. Distrib. Comput. Syst., 2019, pp. 2026-2036.

Ahmed M. Abdelmoniem (Member, IEEE) received
the PhD degree in computer science and engineer-
ing from the Hong Kong University of Science and
Technology, Hong Kong, in 2017. He is an Assistant
Professor with the Queen Mary University of London,
U.K. and Assuit University, Egypt. Formerly, he was
a research scientist with KAUST, Saudi Arabia, and
a senior researcher with Huawei’s Future Networks
Lab, Hong Kong. He is a principal and co-investigator
on projects totalling USD 1.5mil in funding. His
research interests lie in the intersection of distributed
systems, networks and machine learning. His work appears in top-tier con-
ferences and journals including NeurIPS, AAAIL MLSys, ACM EuroSys, IEEE
INFOCOM and ICDCS, IEEE/ACM Transactions on Networking, IEEE Internet
of Things Journal, and Elsevier Computer Networks. He is a member of ACM
and USENIX.

Brahim Bensaou (Senior Member, IEEE) received
the PhD degree in computer science from the Uni-
versity Paris VI, in 1993. He is a faculty member
with the CSE Department of HKUST. Formerly, he
held positions of research assistant with France Tele-
com Research Labs, research associate with HKUST,
and senior staff with the National R&D Centre for
Wireless Communications in Singapore where he led
the strategic research group on wireless networking.
His research is in general centered around Internet
Communication, Wireless communications and Mo-
bile Networks, and their performance (e.g., Congestion Control, Information-
centric Networks, Energy efficiency, and Performance evaluation). He published
more than 130 research papers in prominent conferences and journals, received
numerous research grants, supervised and graduated more than 20 postgraduate
research theses including both PhD and master’s and holds 3 granted US patents,
one of which is licensed. He is a member of ACM.

http://www.cisco.com/c/en/us/support/docs/asynchronous-transfer-mode-atm/atm-traffic-management/10415-atmabr.html
http://www.cisco.com/c/en/us/support/docs/asynchronous-transfer-mode-atm/atm-traffic-management/10415-atmabr.html
http://www.cisco.com/c/en/us/support/docs/asynchronous-transfer-mode-atm/atm-traffic-management/10415-atmabr.html
http://www.ietf.org/rfc/rfc793.txt
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc7323
http://www.netfilter.org/
https://netfpga.org/NetFPGA-1G.html
https://tools.ietf.org/html/rfc1624
https://tools.ietf.org/html/rfc1624
https://docs.kernel.org/networking/dctcp.html
https://iperf.fr/
http://httpd.apache.org/docs/2.2/programs/ab.html
http://openvswitch.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

