
IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 4, OCTOBER-DECEMBER 2023 3469

Priority-Driven Differentiated Performance for
NoSQL Database-as-a-Service

Remo Andreoli , Tommaso Cucinotta , and Daniel Bristot De Oliveira

Abstract—Designing data stores for native Cloud Computing
services brings a number of challenges, especially if the Cloud
Provider wants to offer database services capable of controlling the
response time for specific customers. These requests may come from
heterogeneous data-driven applications with conflicting respon-
siveness requirements. For instance, a batch processing workload
does not require the same level of responsiveness as a time-sensitive
one. Their coexistence may interfere with the responsiveness of
the time-sensitive workload, such as online video gaming, virtual
reality, and cloud-based machine learning. This article presents a
modification to the popular MongoDB NoSQL database to enable
differentiated per-user/request performance on a priority basis
by leveraging CPU scheduling and synchronization mechanisms
available within the Operating System. This is achieved with mini-
mally invasive changes to the source code and without affecting the
performance and behavior of the database when the new feature
is not in use. The proposed extension has been integrated with
the access-control model of MongoDB for secure and controlled
access to the new capability. Extensive experimentation with real-
istic workloads demonstrates how the proposed solution is able to
reduce the response times for high-priority users/requests, with
respect to lower-priority ones, in scenarios with mixed-priority
clients accessing the data store.

Index Terms—Cloud computing, differentiated performance,
NoSQL, cloud storage, MongoDB.

I. INTRODUCTION

OVER the past decade, Cloud Computing proved to be a
cost-effective paradigm for businesses looking for ways to

ease the development, deployment, monitoring, and operations
of monolithic or distributed applications featuring continuous
availability and reliability. In this regard, the Infrastructure-as-
a-Service (IaaS), Software-as-a-Service (SaaS), and Platform-
as-a-Service (PaaS) cloud paradigms allow customers to avail
of a number of services with on-demand capabilities, avoiding
the capital investment and maintenance burden of on-premise
infrastructures [1]. One of the key advantages of the cloud
computing paradigm is the decoupling between providers, who
manage the physical infrastructure and offer cloud services

Manuscript received 12 August 2022; revised 19 May 2023; accepted 24
June 2023. Date of publication 4 July 2023; date of current version 6 December
2023. Recommended for acceptance by M. Singhal. (Corresponding author:
Remo Andreoli.)

Remo Andreoli and Tommaso Cucinotta are with the Institute of Com-
munication, Information and Photonics Technologies, Scuola Superiore
Sant’Anna, 56127 Pisa, Italy (e-mail: remo.andreoli@santannapisa.it; tommaso.
cucinotta@santannapisa.it).

Daniel Bristot De Oliveira is with RedHat Inc., 56127 Pisa, Italy (e-mail:
bristot@redhat.com).

Digital Object Identifier 10.1109/TCC.2023.3292031

fully managed on a 24/7 basis, and customers (or tenants),
who use them. Cloud-native software [2] makes use of many
techniques to efficiently operate at a global scale on multiple
geo-distributed, fault-independent sites, such as data replication
and sharding, horizontal scalability, load balancing, and efficient
orchestration of virtual machines and containers.

At the heart of the cloud-native distributed software ecosys-
tem, there are storage services, which must address the stringent
performance, reliability, and scalability requirements of today’s
database-driven web applications. These often perform mas-
sive big-data processing, as in extreme-scale simulations [3]
or application scenarios making use of machine learning and
artificial intelligence. This has led to a new generation of data
stores, named NoSQL to highlight the difference compared to
the relational counterpart, which employs more relaxed design
choices, departing from traditional ACID guarantees to embrace
schema-less and weak-consistency data models and simpler
APIs, gaining in efficiency and scalability.

Since the success of a cloud-based application is directly
correlated to the quality of the user experience, the so-
called Quality-of-Service (QoS), it is fundamental for a cloud
provider (CP) to consistently provide performance levels as ex-
pected by its customers, whether implicit or formally defined in
an in-place Service Level Agreement (SLA). A well-known [4],
[5], [6] performance-related challenge in Cloud Computing is
to provide predictable response times for time-sensitive, low-
latency, and interactive applications, such as video streaming,
online gaming [7], social networks in virtual and augmented
reality [8] and Internet-of-Things (IoT) network systems, which
all intrinsically possess tight responsiveness requirements.

In this context, a CP should expose managed virtualized
infrastructure elements (e.g., virtual machines) and cloud ser-
vices (e.g., storage solutions) that exhibit stable and predictable
performance to build reliable applications that satisfy the timing
constraints necessary for high-quality interactivity with mini-
mum degradation [4], [9]. However, multi-tenant architectures
are well-known to suffer from the “noisy neighbor” effect. This
can be tackled by deploying dedicated hardware, but it is quite
expensive, whilst normally CPs save on operational costs and
energy consumption by applying resource consolidation tech-
niques [10], [11], [12] to maximize the infrastructure utilization
and help running a sustainable and cost-effective service. For
instance, multiple VMs can be hosted on the same physical
machine, or data from multiple independent tenants may be
stored within a single scalable data store, to reduce the overall
software footprint. As a practical example, DynamoDB [13] is

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-3268-4289
https://orcid.org/0000-0002-0362-0657
https://orcid.org/0000-0002-4577-7855
mailto:remo.andreoli@santannapisa.it
mailto:tommaso.cucinotta@santannapisa.it
mailto:tommaso.cucinotta@santannapisa.it
mailto:bristot@redhat.com

3470 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 4, OCTOBER-DECEMBER 2023

an infinitely scalable and reliable fully-managed NoSQL service
with performance guarantees that stores data from different
customers on the same physical machines to ensure higher
utilization, and therefore saving on costs. Clearly, this allows for
heterogeneous workload patterns with competing requirements,
such as a combination of heavyweight requests for batch or high-
performance applications, which generally need to process high
volumes of data at maximum throughput, and lightweight re-
quests coming from time-sensitive applications, which generally
need to process a small amount of data with tight response times.
This turns into a risk of unstable performance for multi-tenant
cloud services, therefore a cloud platform may not be able to
meet pre-specified temporal requirements without a mechanism
to reduce and/or control the interferences [14] among the differ-
ent co-located workloads. The problem is non-trivial and does
not revolve around maximizing overall throughput [4], as with
general-purpose applications: although the response time for an
activity tends to decrease as the overall throughput increases,
the trade-off becomes evident when the cloud service has to
balance the need for maximizing throughput in ongoing batch
requests, with the urgent need to serve time-sensitive requests.
The more resources are dedicated to the latter request types, the
larger is the impact on the throughput; conversely, the fewer
resources time-sensitive activities are granted, the longer it
takes for them to complete, while the overall system throughput
grows.

A. Contributions

This paper tackles the above-mentioned performance chal-
lenge in the domain of storage services, addressing the need
of designing evolved fully-managed NoSQL data stores that
support highly heterogeneous workloads. We present a modi-
fication to the popular open-source MongoDB data store that
extends it, adding the ability to differentiate response times on
a per-request or per-client basis, according to a simple mech-
anism that enforces a priority-driven request ordering. This is
achieved by exploiting a combination of features and locking
primitives within the Operating System (OS). The final result
is a NoSQL data store that enables higher-priority users to
pre-empt or postpone access to the data store for lower-priority
users, for the time needed by higher priority requests to be
served. The proposed solution acts as a “building block” towards
fully-managed storage services with predictable performance
(if coupled with a real-time admission control mechanism) or
for use-cases where there is a need to differentiate between
multiple performance provisioning offers. A CP hosting our
modified version of MongoDB can offer a subscription-based
model with different fees in which high-priority, “gold” users
are served before low-priority, “bronze” users. For instance, a
tenant requesting data access with high responsiveness will be
assigned the high-priority status.

This paper follows up on, and provides significant extensions
to, our prior research [15], [16]. Compared to that, in this work
we present improvements to the internal design of the prior-
itization mechanism, measuring the additional computational
overhead of the proposal. Moreover, each component of the

proposal is coupled with pseudocode describing the implemen-
tation logic. We present a workaround for an “unsafe” instance
of busy-waiting in MongoDB, which went unnoticed in our pre-
vious papers due to the experimentation setup. This caused very
high response time spikes in many-core, many-clients scenarios.
We integrated the proposal within the MongoDB access-control
model; in this way, database administrators can restrict the use of
the differentiated performance feature to a subset of “privileged”
users. We provide new experimental results with more realis-
tic, many-clients interference scenarios using the well-known
Yahoo! Cloud Serving Benchmark (YCSB) framework [17].
Finally, we provide a more detailed and up-to-date discussion
of related research.

B. Paper Overview

The rest of this paper is organized as follows: Section II
introduces background concepts about MongoDB and CPU
scheduling in Linux, which are useful for a better understanding
of what follows; Section III describes how the proposed mod-
ifications have been integrated into the internals of MongoDB;
Section IV provides experimental data from executions of the
modified MongoDB, demonstrating the effectiveness of the
proposal and highlighting what trade-offs between throughput
and individual response times are achievable. Section V briefly
discusses related industrial and academic works. Finally, Sec-
tion VI provides concluding remarks, and it addresses possible
directions for future research on the topic.

II. BACKGROUND

This section introduces basic concepts about MongoDB and
its internals, and some details on the default scheduler within the
Linux kernel. The goal of this section is to provide the necessary
background information to understand the reasoning behind our
proposed modifications to MongoDB, which are described in
Section III.

A. MongoDB Overview

MongoDB1 is an open-source, document-oriented NoSQL
data store [18]. In what follows, the discussion refers to ver-
sion 4.4.2 Data is stored in the form of document collections,
which are analogous to tables in relational databases, but since
MongoDB is schema-less, a collection can accommodate het-
erogeneous documents with different attributes. Documents are
defined using the JSON format, and they are transmitted and
stored in a binary-encoded serialized format for efficiency in
storage space and scan speed. A user interacts with a Mon-
goDB system using libraries called drivers, available for var-
ious programming languages, that implement an application-
programming interface (API) exposing a JSON-based query
language. The simplest MongoDB deployment, which does not
allow for redundancy nor scalability, is called a standalone
deployment and comprises a single instance of the mongod
daemon. This is a multi-threaded C++ program implementing

1See: https://www.mongodb.com/
2See: https://github.com/mongodb/mongo/tree/v4.4

https://www.mongodb.com/
https://github.com/mongodb/mongo/tree/v4.4

ANDREOLI et al.: PRIORITY-DRIVEN DIFFERENTIATED PERFORMANCE FOR NOSQL DATABASE-AS-A-SERVICE 3471

the core database activities: management of user connections,
query planning and all the “background” activities, such as
replication, monitoring and throttling. MongoDB supports data
redundancy by deploying a replica set, a group of mongod
instances residing on different physical machines that store
replicated versions of the same data set: the so-called primary
node receives all the write requests and tracks the changes to
the data set, whereas the secondary nodes replicate the state of
the primary to reflect the changes. Read operations are usually
also directed to the primary node, but it is possible to tweak
availability by changing the read preference request parameter,
at the cost of sacrificing full consistency and data freshness,
because a secondary node may return stale data. A replicated
MongoDB deployment allows leveraging data durability and
throughput on a per-request or per-client basis through the write
concern and read concern options, which respectively define
the number of replica set members that must acknowledge a
write operation before returning a positive response to the client,
and the number of replica nodes that have acknowledged and
persisted the data requested by a read operation: high values
lead to high reliability but poor system throughput, whereas
low values lead to quicker responses from the database but also
to a higher risk of data loss in case of hardware failures. The
combination of the two concern options enables different causal
consistency guarantees [19]: for instance, the write concern
value to guarantee that a write operation on a given document
is completed before any successive write operation (i.e., mono-
tonic write) is �#nodes

2 �+ 1, the majority of the replica set.
MongoDB supports also data sharding, which allows parti-

tioning a document collection into smaller fragments (shards)
distributed across a cluster of many machines according to
user-defined criteria. The resulting sharded cluster requires a
set of mongod instances handling the individual shards, possibly
arranged in replica sets. A sharded cluster interfaces with the
clients through a router component called mongos, which be-
haves like a regular mongod instance, but it uses internally a local
shard metadata database to look up which mongod instances can
actually handle each request.

B. MongoDB Internals

There are mainly two technical points regarding the internal
architecture of MongoDB that interest the present proposal: how
concurrent user connections are handled and how the replication
internal activities are carried out. MongoDB uses a client-server
architecture: a client communicates with the database server
(i.e., a stand-alone mongod instance, a replica set member, or a
mongos instance) using a simple socket-based, request-response
protocol called MongoDB Wire Protocol. A client, which could
be either a secondary node fetching data changes or a user appli-
cation performing a database operation, establishes a connection
with the database using an IP address and a port. For the sake of
simplicity, the term external client refers to a user connection,
whereas internal client refers to a replica member connection.

The server manages each individual connection context (the
so-called session) synchronously using a thread pool: a unique
client worker thread is reserved for every connection to handle

Fig. 1. The FSM modeling the session life-cycle of a client connection.

the server-side activities that determine the life-cycle of the
interaction. Therefore, the underlying worker thread does not
change for the duration of the client session. Fig. 1 presents the
workflow of interaction as a finite-state machine (FSM), where
each state corresponds to a set of activities performed by the
underlying client worker thread. First, a client thread creates the
context of the connection (Session-Created state), then it waits
for incoming messages from the client (Wait-Request state).
Upon receiving a message, the worker thread processes the
operation enveloped into the request message (Process-Request
state) and handles possible interactions with other mongod
instances, waiting for their responses (Wait-Response state),
e.g., in case of replication with write concern higher than 1.
Then, the client thread waits for another request from the client.
Eventually, the connection to the database is terminated, or a
failure occurs, thus causing the session to end (Session-End
state). The underlying worker thread then performs clean-up
operations, becoming ready to be destroyed, or being reused
for another client connection, depending on the server config-
uration. The bold path depicted in Fig. 1 corresponds to the
so-called standard transition path, which models the traditional
client-server interaction: wait for a client request, process it, and
send a response back.

MongoDB is capable of achieving high throughput for concur-
rent read and write operations thanks to the WiredTiger3 storage
engine. This implements an optimistic version of the classic
Multi-Version Concurrency Control (MVCC) mechanism [20]
at document-level, allowing for multiple write operations to
different documents to occur at the same time. The term “op-
timistic” refers to how write conflicts are handled: a write
conflict occurs whenever simultaneous update operations affect
the same document, and it is resolved by accepting only a single
operation as valid, while transparently retrying the others. Data
consistency is enforced by periodic point-in-time snapshots of
the data to present a consistent view to the clients. Therefore,
new changes are visible for read operations only after all write
conflicts are resolved and a new snapshot of the data set is taken.

C. Replication Internals

Regarding the internals of the replication mechanism, the
primary node keeps track of the changes to the data set in the
operation log (oplog in short), a fixed-size MongoDB collection.
Changes to an oplog entry are described in an idempotent

3See: https://source.wiredtiger.com/

https://source.wiredtiger.com/

3472 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 4, OCTOBER-DECEMBER 2023

Fig. 2. The workflow of the replication process from the secondary node point
of view: fetch oplog entries, batch them, apply in parallel to the local copy of
the data set.

format: each oplog operation produces the same results whether
it is applied to the given dataset once or multiple times. In
order to enforce data consistency among replica members, each
oplog entry is paired with a timestamp, which is also used by
WiredTiger to return the correct view of the data to a read
operation. A secondary node periodically connects to a source
node, which could be either the primary node or an up-to-date
secondary node, then copies and applies asynchronously these
operations in order to reflect the changes to its local copy
of the data set. More specifically, the replication process is
performed by the following components, depicted in Fig. 2:
the OplogFetcher establishes the connection to the primary
node, retrieves the oplog entries in several batches (i.e., multiple
runs of the standard transition path) and stores them in the
OplogBuffer; the OplogBatcher pulls the fetched entries from
the buffer and creates the next batch to be applied to the local
data set; lastly, the OplogApplier distributes the newly created
batch to a pool of parallel writer threads that apply them. As the
chronological order of oplog entries within a batch cannot be
controlled, some database operations like removing a collection
require a singleton batch. After the batch has been applied,
the secondary node notifies the primary, which in turn sends
a successful response to the pending user operations that took
place before the timestamp of the last applied oplog entry, if the
number of received notifications matches with the write concern
requirement.

D. Linux Scheduler / POSIX Niceness

A multi-tasking OS has to serve multiple concurrently running
threads or processes, often generically referred to as tasks [21],
assigning them time slices over the available CPU(s). The
component responsible for granting CPU time to the tasks is
the scheduler, which chooses the execution order depending on
the scheduling policy and per-task scheduling parameters. For
instance, the Linux kernel provides a framework that comprises
three scheduling policies, each suitable for specific use cases:
fair scheduling for general-purpose applications, fixed-priority,
and reservation/deadline-based scheduling for real-time scenar-
ios. The last two categories are deterministic policies used for
embedded real-time scenarios where the total real-time work-
load is known upfront: failing a proper analysis of the require-
ments causes problems that could compromise the functioning
of the entire system. However, there are studies [22] exploring
the applicability of these scheduling strategies to deploy highly
time-sensitive applications in Cloud infrastructures. Notice that
these scheduling policies are associated with a static ordering, so

that deadline-based tasks run before, and preempt, any priority-
based and general-purpose tasks which determine the tasks to
run next. Given the nature of real-time tasks, they are always
scheduled before general-purpose tasks.

The default Linux scheduler for general-purpose applications,
the Completely Fair Scheduler (CFS) [23], provides a weighted-
fair partitioning of the time available on each CPU among the
ready-to-run tasks in its ready queue. CFS employs UNIX nice
levels to manipulate the weight associated with a task in the
weighted-fair share scheduling algorithm: more specifically, a
numerically large nice value increases the willingness of a thread
to give precedence to others. The valid range of nice level values
is between -20 (highest priority) and 19 (lowest priority), where
each nice value increment/decrement corresponds roughly to a
relative modification of the task weight of 10%.4 Negative nice
values are usually only available to privileged tasks, but it is
possible to make them accessible to unprivileged ones as well,
by proper configuration of the permissions in limits.conf.5

III. PROPOSED APPROACH

This section explains how the internal MongoDB architecture
design is leveraged to achieve differentiated performance on
a per-request/client basis without compromising the correct
functioning of the data store, with near zero overhead when the
prioritization mechanism is not in use. Our modifications can be
summarized in 5 main points, which are further detailed in the
subsections that follow:

1) UNIX nice levels are exploited to prioritize higher-priority
client threads over lower-priority ones;

2) An instance of busy-waiting in WiredTiger is modified to
avoid priority inversion and starvation of client threads in
mongod;

3) when replication is used, request batches are truncated
earlier when containing mixed-priority requests, to avoid
a large number of lower-priority requests to slow down
the time needed to complete higher-priority ones;

4) a custom semaphore allows for containing the volume
of lower-priority requests that hit the disk while higher-
priority requests are pending;

5) the access control model of MongoDB is extended to
allow an administrator to configure what users are allowed
access to higher-priority requests.

A. Prioritization Using Nice Levels

The proposed mechanism enriches the query language of
MongoDB with two new features: a new database command,
calledsetClientPriority, which allows a client to change
the priority for the current session, and a new option for therun-
Command general-purpose database command, which allows
prioritizing a single request. Both features allow for specifying
the new priority level as either high, normal, or low. However,

4More information at: https://github.com/torvalds/linux/blob/master/kernel/
sched/core.c#L11185.

5More information at: https://manpages.debian.org/jessie/libpam-modules/
limits.conf.5.en.html.

https://github.com/torvalds/linux/blob/master/kernel/sched/core.c#L11185
https://github.com/torvalds/linux/blob/master/kernel/sched/core.c#L11185
https://manpages.debian.org/jessie/libpam-modules/limits.conf.5.en.html
https://manpages.debian.org/jessie/libpam-modules/limits.conf.5.en.html

ANDREOLI et al.: PRIORITY-DRIVEN DIFFERENTIATED PERFORMANCE FOR NOSQL DATABASE-AS-A-SERVICE 3473

while the setClientPriority command changes priority
for all the following requests till the end of the session, the
priority declared by a runCommand operation persists for a
single client-server interaction only (i.e., a single loop involving
transitions Wait-Request→ Process-Request→Wait-Response,
in the FSM in Fig. 1), then the subsequent requests keep being
served at the configured session priority.

The main mechanism by which we provide priority-driven
differentiated performance in MongoDB is to alter the CPU
scheduling settings of client worker threads so that those serving
higher-priority requests are favored. The current implemen-
tation on Linux exploits the UNIX nice levels through the
setpriority() system call,6 but an analogous Windows-based
implementation could leverage the setThreadPriority()
Win32 API.7 The priority specified for a request, or a whole
client session, is mapped to a precise nice value: the MongoDB
command setClientPriority(high-priority) has
the effect of setting the nice level of the underlying worker
thread to the lowest value of −19 (if the client is authorized
to do so, see Section III-E); the option normal-priority restores
the default nice value of 0, and low-priority sets it to the high-
est value of +20. Since MongoDB v4.4 reserves a dedicated
server-side worker thread for each incoming user connection,
and these threads are concurrently running while repeatedly
carrying out the actions in Fig. 1, it is clear that prioritizing
some of the threads results in giving them a higher chance to
run and complete earlier their pending operations when these
threads are competing for being scheduled on the same CPU(s).
Notice that our usage of nice levels requires a minimum of
additional permissions in order to be deployed correctly on
Linux. Specifically, the mongod server needs to be able to set
negative nice values, something that can conveniently be done by
configuring in limits.conf the allowed niceness range for
the OS user through which MongoDB is launched on the server.

B. Modifications to WiredTiger Busy-Waiting

WiredTiger employs busy-waiting in a number of instances
where the wait duration for a condition is expected to be shorter
than the overhead of context switching and re-scheduling, which
is typical of blocking synchronization primitives. For instance,
WiredTiger busy-waits during the snapshot creation procedure,
more specifically when initializing new transactions and allocat-
ing their transaction IDs. This is because individual completion
times are expected to be short, therefore WiredTiger attempts to
group together as many transactions as possible, among those
being concurrently issued by different worker threads.

However, busy-waiting is generally considered an anti-pattern
if: 1) interrupts are not disabled, which is not possible in user-
space; 2) task-core pinning is not 1:1, which is not enforced
by MongoDB nor WiredTiger – an arbitrary number of clients
can be connected and issue requests to a mongod instance at
any time, resulting in an arbitrary number of client threads

6More information at: https://man7.org/linux/man-pages/man2/setpriority.2.
html.

7More information at https://docs.microsoft.com/en-us/windows/win32/api/
processthreadsapi/.

concurrently using the WiredTiger API to commit transactions
to disk. This “unsafe” use of busy-waiting within WiredTiger,
in combination with the nice level manipulation detailed above,
causes extremely high worst-case latency values for write op-
erations when the number of client worker threads exceeds
the number of free physical cores. For instance, we measured
worst-case latency values of up to 1 s (300% more than the
average) in a quad-core standalone deployment of mongod with
8 connected clients. This is due to an instance of priority in-
version: one or more high-priority worker threads busy-wait
on a transaction-related condition that only a lower-priority
thread can unblock. However, if there are no free physical cores
available at that time, the latter thread is not given CPU time,
since the CFS keeps scheduling the higher-priority threads that
keep spinning, until the exhaustion of their time-slices. At that
point, the lower-priority thread exits starvation, thus it is able
to finally allocate its transaction ID and unblocks the condition
other spin-waiting higher-priority threads were waiting for, so
they can finally proceed. Nice levels induce small variations
in the scheduling evaluation (see Section II-D), without com-
promising the functioning of the system. Thus lower-priority
threads get anyway a chance to run, albeit rarely. However, the
use of real-time priorities and the POSIX real-time scheduling
policy, instead of UNIX nice values, caused in some experiments
a complete stall of the database when configured with a few
physical cores. This happens because the thread with the highest
real-time priority keeps running undisturbed. Note that such
priority inversion problem occurs also in the regular, unmodified
version of MongoDB, albeit it is far less noticeable. When all
threads have the same nice value, the CFS essentially becomes
a round-robin scheduler, with a time-slice between 3 ms and
24 ms, depending on the number of concurrently active threads.8

Indeed, in such a scenario, worst-case latency peaks of 20 ms
are easily observable in MongoDB deployments with a reduced
number of CPU cores (e.g., quad-core).

For this reason, we integrated a simple back-off strategy to
the busy-waiting logic in WiredTiger, which spins 100 times,
and then sleeps for 50 microseconds. This way, the WiredTiger
transactions corresponding to higher-priority requests that try
to spin-wait for too long, are temporarily put to sleep so that
the transactions corresponding to lower-priority requests are no
longer heavily starved and the system can move forward.

C. Truncation of Oplog Batches

Solely using nice levels is not enough to assure priority-driven
differentiated performance. This is because, in replica set de-
ployments where concurrent user operations require a write con-
cern higher than 1, we have an instance of what we call unbiased
replication: since the primary node does not respond to the user
until a subset of secondary nodes replicate the batch in which the
operation resides, this leads to an inevitable priority inversion, as
the OplogApplier applies the oplog entries in parallel, and thus
each batch represents a “limbo” state where no chronological
or priority order is enforced. A simple propagation of priorities

8The actual boundaries can be tuned via sysctl parameters.

https://man7.org/linux/man-pages/man2/setpriority.2.html
https://man7.org/linux/man-pages/man2/setpriority.2.html
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/

3474 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 4, OCTOBER-DECEMBER 2023

Algorithm 1: Truncate Oplog Batch.
Input: oplogBuffer, list of to-be-applied oplog entries
1: entries← ∅

2: while ¬ oplogBuffer.empty() do
3: entry ← oplogBuffer.pop()
4: if entries.back().prio > entry.prio then
5: Send entries to OplogApplier
6: entries← ∅

7: end if
8: entries.append(entry)
9: end while

through the oplog does not solve the issue: intra-batch oplog
re-ordering by priority is pointless since the next batch does
not get processed until the current one is exhausted; inter-batch
priority re-ordering does not comply with the data consistency
model implemented by WiredTiger (see Section II), because
the chronological order of the timestamps coupled to oplog
entries would get mixed up between batches, causing critical
internal errors. The ideal solution for oplog re-ordering would
be a re-design of the replication process, but that would in turn
require a complete overhaul of the database architecture and a
more relaxed implementation of the data consistency model [19].

In the proposed approach herein presented, we undertake
a minimally-invasive approach to the problem just mentioned
above, with no changes at all in the replication protocol, and
a slight modification to the batch creation logic, i.e., batch
truncation: when the OplogBatcher identifies a priority fall be-
tween two continuous oplog entries in the batch, it prematurely
“cuts” the batch being assembled, so to speed-up the commit
to persistent storage of the prioritized entry(ies) preceding the
lower-priority request(s) following in the batch. Naturally, this
speeds up the secondary node acknowledgment to the primary,
as described in Section II-C. Pseudocode 1 presents the batch
truncation implementation logic. Note that the following priority
order is assumed in the pseudocode: HIGH > NORM >
LOW .

D. Custom Semaphore

In a typical server-class multi-core mongod deployment with
dozens of cores, while a single high-priority request is being
processed, many lower-priority ones may be concurrently han-
dled by other client threads running on other cores, resulting
in additional transactions to be performed on disk before the
high-priority request can be acknowledged to the client. This still
happens even in the presence of the batch truncation mechanism
described above, as the system will anyway keep taking a large
number of lower-priority requests that, albeit postponed by
de-prioritization and/or batch truncation, will have to be syn-
chronized on disk, and/or transferred to replicas, sooner or later,
impacting on higher-priority requests, given the serializable
nature of MongoDB transactions. Therefore, for guaranteeing a
better service to higher-priority requests, lower-priority worker
threads must be slowed down so that oplog entries correspond-
ing to high-priority requests are naturally scheduled first and

Fig. 3. The FSM modeling the session life-cycle of a client connection,
integrated with the custom semaphore.

subsequently grouped together when processed by the Oplog-
Batcher. Therefore, our modification includes a semaphore-like
mechanism integrated within the client session life-cycle, that
mitigates the effect of unbiased replication, by keeping track of
the number of worker threads currently in the Process-Request
state, and applying a simple priority rule: if the number of
higher-priority requests being processed is beyond a tunable
threshold, then temporarily block the worker threads which
are processing lower-priority requests. This custom semaphore
allows the creation of a prioritized channel to WiredTiger with
close to no interferences from lower-priority requests. Whenever
the number of higher-priority requests returns below the thresh-
old, the blocked threads performing lower-priority requests are
resumed and continue execution.

Theoretically, this mechanism would allow high-priority re-
quests to undergo near-zero interference from lower-priority
ones, that are paused during execution of higher-priority re-
quests. If this is applied regardless of the number of high-
priority requests being processed, then the overall throughput
of MongoDB risks undergoing quite a big impact, as the paral-
lelism capabilities of the database are effectively reduced. For
this reason, the proposed mechanism allows for customizing
an activation threshold value, which specifies the maximum
number of concurrent high-priority requests in the process-
ing state required to activate the priority channel. Below such
threshold, the lower-priority requests are still served. A high
value implies a lower rate of semaphore activations (i.e., fewer
blocked threads), whereas a low value implies a higher rate of
semaphore activations (i.e., more blocked threads). This option
allows blocking lower-priority requests only under significant
volumes of higher-priority traffic, thus achieving different trade-
offs between response time to higher-priority requests, and drop
in overall throughput of the system.

In practice, the custom semaphore is implemented by modi-
fying the entry and exit points from the Process-Request state,
as depicted in Fig. 3, which shows the modified FSM rep-
resenting the client session life-cycle. Pseudocodes 2 and 3
present the implementation logic. The semaphore is designed
to block the worker threads before entering the code sections
related to the storage engine, and then resume them when the
higher-priority requests have been processed. The mechanism
does not interfere with the execution of requests that change the
user priority, nor with sessions corresponding to internal clients
(i.e., secondary node connections): this is essential for the correct

ANDREOLI et al.: PRIORITY-DRIVEN DIFFERENTIATED PERFORMANCE FOR NOSQL DATABASE-AS-A-SERVICE 3475

Algorithm 2: Semaphore Entry Logic.
Input:session, active database connection object
Input:thr_lvl, user-defined activation threshold
Input:high_proc, list of high-priority sessions in process
Input:norm_proc, list of normal-priority sessions in
process

Input:{norm,low}_wait, wait queues
1: if session.is_user then
2: if session.prio == HIGH then
3: high_proc.append(session)
4: else if session.prio == NORM then
5: norm_proc.append(session)
6: while len(high_proc) ≥ thr_lvl do
7: norm_wait.push(session)
8: session.cond_var.wait()
9: end while
10: else
11: while len(high_proc+ norm_proc) ≥ thr_lvl

do
12: low_wait.push(session)
13: session.cond_var.wait()
14: end while
15: end if
16: end if

functioning of the system. Note that the shown pseudocodes
are conceptual – the actual implementation comprises a series
of condition variables, mutexes, and atomic counters for keep-
ing track of the high-priority, normal-priority, and low-priority
users.

E. Security and Access Control

The prioritization mechanisms described above are fully
integrated into the role-based access control [24] model of
MongoDB to prevent “greedy” clients from draining all the
throughput capacity: this allows, for instance, an administrator
to provide different database accounts with properly configured
permissions so that users requesting interactive workloads are
allowed to submit prioritized requests, whereas users charac-
terized by batch-type workloads cannot leverage the priority
mechanism to their advantage. More precisely, the proposed
modifications to MongoDB let an administrator associate each
account with additional permissions that control whether an at-
tempt to switch to a high, normal, or low priority would succeed,
or fail with an unauthorized error code. Notice that authorized
clients still need to explicitly call the setClientPrior-
ity or the generic runCommand commands, specifying the
required priority value.

IV. EXPERIMENTAL EVALUATION

YCSB [17] is the industry-standard benchmark tool for
NoSQL data stores. It comprises a set of user-defined perfor-
mance tests, called workloads, that define parameters such as
the probability distribution of requests across the key space,

Algorithm 3. Semaphore Exit Logic
Input:session, active database connection object
Input:thr_lvl, user-defined activation threshold
Input:high_proc, list of high-priority sessions in process
Input:norm_proc, list of normal-priority sessions in
process

Input:{norm,low}_wait, wait queues
1: if session.is_user then
2: if session.prio == HIGH then
3: high_proc.remove(session)
4: else if session.prio == NORM then
5: norm_proc.remove(session)
6: end if
7: if len(high_proc) < thr_lvl then
8: while ¬norm_wait.empty() do
9: blck_session← norm_wait.pop()
10: blck_session.cond_var.signal()
11: if norm_wait.empty() then return;
12: end while
13: end if
14: if len(high_proc+ norm_proc) < thr_lvl

then
15: � SAME code as lines 8-13, but for low_wait
16: end if
17: end if

the number of pre-inserted records, and the proportion of read,
update, scan and insert operations to issue. YCSB evaluates
the deployment’s average request response time and overall
throughput via a multi-threaded workload generator which is-
sues to the targeted data store a predefined number of back-
to-back operations. In this paper, the purpose of YCSB is to
emulate realistic “noise” over the database instance, which
could be seen as the interference created by batch applications
interacting with the data store. At the same time, the individual
response times of a set of client connections are monitored.
These could be seen as user workloads with high responsiveness
requirements (simply called “time-sensitive” from now on). The
goal is to demonstrate how the proposed approach allows tuning
the effect of interference between the YCSB noise and the
time-sensitive workloads with respect to the unmodified version
of MongoDB, thus achieving priority-based performance differ-
entiation. Under ideal circumstances, where MongoDB is able
to dedicate a physical core for each client worker thread (i.e.,
#physical_cores > #worker_threads), there is no need for
performance differentiation, since it would efficiently handle
most workloads. However, this is not often the case, especially
in Cloud Infrastructures, where a multi-tenant architecture is
in place and services are encapsulated in fixed-size virtual ma-
chines. For this reason, the experiments have been performed on
a restricted number of physical cores such that the worker threads
are forced to contend CPU time, thus emulating the resource
contention scenario of a typical public Cloud Infrastructure. The
workflow of each experiment does not vary: the time-sensitive
clients connect to the database system while the YCSB workload

3476 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 4, OCTOBER-DECEMBER 2023

is running, declare their priority with setClientPriority
(in the case of modified MongoDB), and then start submitting a
fixed number of synchronous write operations, with no wait time
between subsequent requests. For the sake of the experimental
evaluation, we are interested in the response times of individ-
ual requests experienced by the time-sensitive clients, and the
average throughput achieved by the YCSB noise before, during
and after the time-sensitive workloads have been exhausted. For
instance, we are not considering the total completion time of
the YCSB noise, since we are assuming that it emulates a set of
indefinitely long-running, batch processes issuing synchronous
operations back-to-back. In our context, response time is defined
as the time taken to send a query to the MongoDB deployment,
execute it and receive back a response. Notice that it includes
possible time spent waiting at the semaphore for the correspond-
ing server-side worker thread. All client-related activities are
hosted on a dedicated, 96-core physical system (Arm 64 server
with 2 ThunderX 88XX CPUs and 64 GB of RAM) connected
to the MongoDB deployment by a 1 gbE link. This is to ensure
no interference with the server-side activities, which are hosted
on a different 112-core physical system (x86-64 server with 2
Xeon Gold CPUs and 125 GB of RAM) with CPU frequency
blocked at 2.20 GHz, and hyper-threading and turbo-boosting
disabled. The latter is accompanied by two 20-core twin systems
(x86-64 server with 2 Intel(R) Xeon(R) CPU E5-2640 CPUs and
64 GB of RAM) with a similar DVFS configuration, but CPU
frequency blocked at 2.40 GHz. They are used as secondary
nodes in replicated scenarios.

The first subsection verifies experimentally the correctness of
the proposed mechanism by visually showing how the requests
are ordered on a priority basis in a simple scenario with multiple
priority requirements, but no YCSB noise. Subsequently, the
remaining subsections demonstrate how the response times ob-
served by different clients are differentiated on a priority basis
with respect to the original version of MongoDB, in different
deployment set-ups involving also the update-heavy, predefined
YCSB workload (50% Updates, 50% Reads). Notice that in this
case only two priority levels are used to make the plots more
readable and the explanations clearer. For the sake of repro-
ducibility, the experimental evaluation can be replicated using a
small performance testing framework purposely developed for
this work,9 and a pre-configured instance of YCSB.10

A. Correctness of the Proposal

The first experiment aims at showing experimentally how the
modified MongoDB behaves in the presence of different-priority
requests hitting the system using a set of our time-sensitive
clients only, without any YCSB noise workload. We deployed
a 32-clients scenario in a quad-core standalone mongod deploy-
ment, where 4 out of the 32 clients are deployed with a high
priority level, whereas the remaining ones are equally divided
between normal and low priority. The CPU contention is quite
high since each physical core is shared among 8 worker threads.
Fig. 4 (Top) shows the response times (Y axis) over time (X

9https://gitlab.retis.santannapisa.it/rtnosql/mongodb-perf
10https://github.com/deRemo/rt-YCSB

Fig. 4. Response times (Y axis) over time (X axis) in a 32-client scenario with
different priorities using a quad-core deployment (Top). Three cases: unmodified
MongoDB, modified MongoDB with an activation threshold of 1, and modified
MongoDB with an activation threshold of 2. The corresponding experimental
cumulative distribution function of the response times for high-priority clients
is shown in the bottom panel.

axis) of 1,000 write operations issued per client: the original
version of MongoDB, shown in the first plot, achieves a flat
1,233 microseconds average response time for all the clients,
being unable to provide differentiated performance. The second
plot shows our modified version of MongoDB with activation
threshold set to 1 (default), which instead is able to transfer the
requested priorities to the underlying worker threads, reducing
the average response time for high-priority clients down to
511 microseconds (∼59% decrease). Naturally, this comes at
the cost of some temporary unstable performance for normal-
priority clients, as depicted by the average response time of
1700 microseconds with peaks of tens of milliseconds, and a
complete stall of the low-priority ones. Ultimately, this implies
an increase in the total duration of the test. The last timeline plot
demonstrates the tuning capabilities of the activation threshold
to reduce the drop in throughput: for instance, a value of 2
allows for high- and normal-priority clients to coexist at the
cost of almost doubling the average response time for the high-
priority clients with respect to the default activation threshold.

ANDREOLI et al.: PRIORITY-DRIVEN DIFFERENTIATED PERFORMANCE FOR NOSQL DATABASE-AS-A-SERVICE 3477

Fig. 5. Single time-sensitive client in a 32-client scenario. Each subfigure depicts 50th, 99th, 99.9th percentiles and mean response time (Left column) for the
time-sensitive client; throughput per second (Right column) achieved by 31 YCSB threads while the single time-sensitive client is running. Each row corresponds
to different degrees of CPU contention, from highest to lowest (Top to bottom).

Anyhow, response times for high-priority users are reduced by
∼26%, compared to original MongoDB, and the test duration is
roughly the same as the first timeline plot. Fig. 4 (Bottom) shows
the experimental cumulative distribution function (CDF) of the
response times experienced by high-priority clients in the three
considered cases. Regarding the computational overhead of the
proposal, the entry logic requires 125 CPU cycles, whereas the
exit logic requires 300 CPU cycles, corresponding to 52 and 125
nanoseconds, respectively, on our 2.20 GHz Xeon Gold CPU.
The exit logic lasts longer because it is in charge of deciding
which worker threads to re-activate based on the previously
expressed priority rule. Nonetheless, both overheads are not
much more expensive than an average main memory operation,
making them negligible.

B. Single Time-Sensitive Client

This subsection is dedicated to the experiments performed
with a single high-priority client in a 32-client scenario, where
the remaining 31 normal-priority connections are established
by YCSB. In this scenario, the activation threshold is set to
the recommended value of 1 so that the semaphore is in use,
otherwise the performance differentiation would be entirely
dependent on nice levels, with the problems already discussed
in Section III. Each time-sensitive client issues 15,000 write
operations, whereas each YCSB user submits continuously a
mix of 50%/50% read/write operations till termination. Fig. 5

shows the resulting response times of a time-sensitive client
and the corresponding throughput of YCSB noise. Each row
of plots corresponds to a different level of CPU contention
in mongod: from the highest (2-cores, topmost plots), where
each physical core is shared between 16 worker threads, to the
lowest (16-cores, bottommost plots), where each physical core is
shared between 2 worker threads. Notice that a lower contention
scenario allows naturally for a higher throughput.

Fig. 5(a) presents the results in a standalone MongoDB de-
ployment, thus no data durability guarantees. The proposed
mechanism keeps the response times of time-sensitive users
close to the scenario with no YCSB noise, hereinafter called the
“baseline”, whereas the original MongoDB is unable to achieve
low responsiveness, especially in a high-contention scenario.
In the 2-core deployment, the proposed approach achieves a
∼71% decrease in median response time for the time-sensitive
client, with respect to the original version of MongoDB. Most
notably, our proposal experiences a ∼96% decrease in 99.9th
percentile (P999) response time, closely resembling the base-
line. This comes at the cost of a ∼33% decrease of the YCSB
clients throughput for the duration of the time-sensitive clients,
as depicted by the throughput drop in the right-column plot
(roughly from time 10 to 17). In lower contention scenarios, the
throughput drop is naturally higher, since more physical cores
available implies more running client threads, and therefore the
semaphore activates more often. Notice that in the 16-core case
(bottommost plots), the decrease in average response time is

3478 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 4, OCTOBER-DECEMBER 2023

Fig. 6. Time-sensitive requests timeline in a 32-client scenario using a 16-core
replica set deployment, comparing the original MongoDB with the modified one.
The grey dashed line highlights the end of the YCSB stress test.

negligible with respect to the original version of MongoDB,
because it is already close to the baseline (shown in the response
time plot). Nonetheless, the 99th percentile (P99) response time
is ∼20% better.

Fig. 5(b) presents the results of analogous experiments but
performed in a 3-member replica set deployment with write
concern set to majority for the time-sensitive workload. The
replication process adds up a noticeable overhead to the in-
dividual latencies. As described in Section II-C, the primary
node waits for a subset of secondary nodes before answering
a query to ensure data consistency. The modified MongoDB
provides significantly reduced response times for time-sensitive
clients, w.r.t. the original MongoDB. This is especially evident
in high throughput scenarios (i.e., less CPU contention): a
higher throughput implies more crowded oplog batches to be
processed by secondary nodes, which in turn causes extremely
high latencies for write operations with data durability require-
ments. Therefore, the oplog entries corresponding to YCSB
noise operations may backlog time-sensitive requests in the
original version of MongoDB, whereas the proposed approach is
able to keep the performance differentiated. This has dramatic
repercussions in low CPU contention scenarios: for instance,
the original version of MongoDB experiences excessively long
latencies in the 16-core deployment case (corresponding to
the bottommost plot in Fig. 5(b)). Our proposal beats original
MongoDB by∼93% on median response time, and by∼94% on
P999, closely matching the baseline response time. The effect of
the backlog is further highlighted in the timeline plot in Fig. 6:
the YCSB workload has been prematurely terminated, in the
original version of MongoDB, to complete the experiment in a
reasonable amount of time. Conversely, the modified version
of MongoDB is able to almost temporarily halt the YCSB
throughput, decreasing the original rate by 99% for the duration
of the time-sensitive workload. Notice this rate reduction is
justifiable considering the number of time-sensitive requests
and the average baseline response time of 2200 microseconds:
a write request with a majority write concern takes almost 6
times longer to complete, w.r.t a “normal” write request in our
replica set deployment. For the majority of such a time span, the

high-priority client keeps the priority channel active. This results
in 33 seconds of total completion time for the time-sensitive
workload, and therefore at least 33 seconds of total waiting time
for the lowest priority loads with an average categorical stop
period of 2,200 microseconds.

C. Multiple Time-Sensitive Clients

Additional experiments have been performed with a num-
ber of high-priority clients in a 32-client scenario, where the
remaining normal-priority clients come from YCSB (Fig. 7).
The testing approach is the same as in the previous subsection,
although these experiments have been arranged so that: the
number of time-sensitive clients is always equal to the amount of
allocated physical cores; the total number of concurrent clients
(i.e., time-sensitive + YCSB noise) is kept constant throughout
the different levels of CPU contention to ensure a fair compar-
ison between the various cases shown in the plots. Unlike the
experiments in the previous subsection, the activation threshold
can be set higher than 1 to allow for different trade-offs between
response time of time-sensitive clients and overall throughput.
Fig. 7(a) presents the results in a standalone MongoDB deploy-
ment, thus with no data durability guarantees. The results follow
the trend of previous experiments in Fig. 5(a), especially the
base case of activation threshold equal to 1. A higher activation
threshold consistently implies worst performance for the time-
sensitive workload but with the advantage of having a lower
throughput drop in the YCSB noise. Notice that the performance
degradation for the time-sensitive clients mostly impacts the
P99 and P999 response time. A higher activation threshold
implies worse performance for the time-sensitive workload if
the number of high-priority clients is not equal to or higher
than the threshold. This happens especially toward the end of
an experiment since some high-priority clients exhaust their
workload first. The effect is more noticeable in lower CPU
contention scenarios with fewer semaphore activations (i.e., a
higher threshold value), where the performance differentiation
is more subtle regardless of the drop in YCSB throughput, as
can be seen from plots. Fig. 7(b) presents the experimental
results performed in a 3-member replica set deployment with
write concern set to majority for the time-sensitive workload.
Notice that in this case, the activation threshold parameter is
almost irrelevant, due to the amount of waiting time required
for a single high-priority request to be processed, as already
described at the end of the previous subsection.

V. RELATED WORK

Real-time database systems [25] were the first to move
away from the conventional goal of providing fast average
response times or overall high throughput. Unlike traditional
databases [26], a real-time one must meet the timing constraints
of a set of real-time applications by employing appropriate
scheduling protocols for data processing, CPU, I/O, and memory
access, so that there are no missed deadlines, or their number is
minimized. However, real-time database system research is of
interest only for the hard real-time system niche, with no recent
academic literature on the topic.

ANDREOLI et al.: PRIORITY-DRIVEN DIFFERENTIATED PERFORMANCE FOR NOSQL DATABASE-AS-A-SERVICE 3479

Fig. 7. Multiple time-sensitive clients in a 32-client scenario. Each subfigure depicts 50th, 99th, 99.9th percentiles and mean response time (Left column) for
time-sensitive clients; throughput per second (Right column) achieved by several YCSB threads while the time-sensitive clients are running. Each row corresponds
to different degrees of CPU contention, from highest to lowest (Top-Bottom). Note that the total number of concurrent clients (i.e., time-sensitive + YCSB noise)
always sums up to 32.

An orthogonal line of research addresses the need for im-
proved latency by fine-tuning the underlying runtime environ-
ment, and by using optimized file systems, I/O subsystems,
and cutting-edge storage devices. The first section of Table I
summarizes a subset of papers in the context of “local storage
optimization”. Kim et al. [27] propose an I/O stack schema
within the Linux kernel that takes advantage of both zero-
copying and the use of the page cache for modern low-latency
solid-state drives (SSDs) to reduce latency. Litz et al. [28]
present an SSD device-level redundancy technique to enforce
predictable low-tail latency for Flash accesses: more specifically,
the mechanism provides an alternative read data path when a
NAND chip is temporarily inaccessible, thus eliminating the
possibility of reads being stalled by high latency operations
(read-after-write serialization). Kang et al. [29] propose an
optimized firmware for NVMe SSDs to enable strong physical
isolation for co-located virtualized services. The device-level
interferences are reduced by setting up exclusive I/O paths and
cache regions, thus hugely improving the tail latency. Pine [30]
is an isolation tool for storage services with differentiated perfor-
mance. Pine dynamically manages the disk resource allocation
and the I/O concurrency level for each service according to
their latency and throughput requirements. Although this is
one of the few works that closely matches our context (i.e.,
differentiated performance), it does not prioritize time-sensitive

storage services. Moreover, it only focuses on a single physical
machine. In general, these low-level mechanisms are useful for
local storage optimizations, however, to support differentiated
levels of service performance in a distributed environment, the
database software itself needs to be changed with non-trivial
modifications to the request processing and handling code paths.

The advent of web-based interactive applications with high
responsiveness requirements, together with the developments of
highly scalable cloud infrastructures, have fostered the growth
of NoSQL architectures, capable of ingesting arbitrarily high
volumes of data and scaling at will on several nodes. In the
academic literature, no studies address the challenge of differ-
entiating query response times on a priority basis. Anyhow, there
are a number of works proposing whole performance-aware
NoSQL database prototypes, with very few papers proposing
ready-to-use mechanisms integrated into a production-grade
database system such as MongoDB. These works could be
coupled with strong real-time design principles to guarantee
predictable response times and sufficient resources for time-
sensitive activities. The second section of Table I presents a
qualitative analysis of a subset of works on novel NoSQL
data stores. AQUAS [31], [32] is a QoS-aware allocator that
enriches the Cassandra [37] NoSQL database with several task
scheduling policies and a cost estimation component to satisfy
individual clients’ performance requirements expressed as a set

3480 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 4, OCTOBER-DECEMBER 2023

TABLE I
RELATED WORKS

of user-defined Quality-of-Service (QoS) and Quality-of-Data
(QoD) constraints. However, the work does not provide an ex-
haustive evaluation. Xyza [33] is an extension of MongoDB that
combines classic and novel design techniques to overcome the
scalability limits of current concurrency control mechanisms.
For instance, it replaces the complex lock manager with a
simpler wait-signal mechanism based on atomic primitives and
partitions the system-wide journaling system into a per-client
journal to avoid I/O contention. Although the paper refers to
an older version of MongoDB’s concurrency control and does
not evaluate the proposal in replicated scenarios, the idea of
per-client journaling could benefit our work too. Sophia [35] is
a reconfigurable NoSQL datastore that estimates performance
degradation and predicts workload pattern changes without
impacting data availability during reconfiguration. Szalay et
al. [36] propose a latency-aware and data access pattern-aware
method in the context of stateless applications. The latency
towards the most frequently accessed data entries is minimized
by monitoring the performance of the underlying infrastructure,
tracking the number of reads and writes, and then re-optimizing
data locations across the database instances. Cosine [34] is a
self-designing storage engine that introduces a unified model
to produce an optimal key-value data structure given a budget,
a workload, and a target performance. It spans diverse storage
engine designs, such as B-trees and Log-Structured Hash-tables,
and picks the one which minimizes the expected cost and latency.

Outside academia, the are several fully-managed Database-
as-a-Service solutions that promise low latency and/or high
throughput. The most famous one is DynamoDB [13], which
allows its customers to specify the throughput requirements
(read and write capacity) for a given table, and then the service
allocates sufficient resources to the table to predictably achieve
real-time performance and stable latency values under 10 ms
at the 99th percentile. Predictability is achieved by performing

granular capacity planning at individual physical infrastructure
elements, like individual storage nodes and even individual
single SSD drives, coupled with optimizations, adaptive load-
balancing, and topology reconfigurations at the infrastructure
level. DynamoDB is the only industrial-grade database service
that closely matches our context: DynamoDB offers differenti-
ated performance throughput-wise with tail latency guarantees;
our proposal achieves differentiated performance between time-
sensitive and throughput-first applications via prioritization.
However, DynamoDB is proprietary software only available
through AWS, whereas our proposal is based on an open-source
code base. Scylla Cloud11 offers a fully-managed option of
their ScyllaDB NoSQL database, which employs a highly asyn-
chronous, shared-nothing architecture (i.e., each CPU core han-
dles a different subset of data, without sharing) that guarantees
high-throughput/low-latency workloads. ScyllaDB efficiently
allocates the resources to each shard of data thanks to custom-
made schedulers for CPU and I/O processing, taking full advan-
tage of low-level Linux primitives and the underlying hardware.
Other fully-managed services are Google Firestore [38] and
MongoDB Atlas.12 Despite the generic claims, only DynamoDB
quantifies its predictability guarantees. One of the latest breeds
of database systems is in-memory data stores, which employ
the main memory instead of disk storage for ultra-fast access
times. They are designed for applications where huge amounts
of data must be processed in real-time. A few industry-level,
fully-managed examples are Google Memorystore,13 Amazon
ElastiCache14 and Amazon MemoryDB.15 However, none of
these services offer a performance differentiation feature.

11See: https://www.scylladb.com/product/scylla-cloud/
12See: https://www.mongodb.com/atlas/database
13See: https://cloud.google.com/memorystore
14See: https://aws.amazon.com/elasticache/
15See: https://aws.amazon.com/memorydb/

https://www.scylladb.com/product/scylla-cloud/
https://www.mongodb.com/atlas/database
https://cloud.google.com/memorystore
https://aws.amazon.com/elasticache/
https://aws.amazon.com/memorydb/

ANDREOLI et al.: PRIORITY-DRIVEN DIFFERENTIATED PERFORMANCE FOR NOSQL DATABASE-AS-A-SERVICE 3481

VI. CONCLUSION

The paper describes a variant of the MongoDB NoSQL
database which embeds priority-driven scheduling on a per-user
or per-request basis so that higher-priority workloads are served
first. This is achieved by instantiating a prioritized channel for
higher-priority requests and revoking or restricting access to
the storage unit to lower-priority ones. In practice, the priority
order is enforced by a combination of nice level manipulation
and a semaphore-like structure that indirectly propagates the
priorities in replicated scenarios. Experimental results carried
on stand-alone and a 3-replica set deployment demonstrate how
higher-priority requests are consistently served with shorter
response times exhibiting less variance, with respect to lower-
priority requests. For instance, in most scenarios with a replica
set, the P999 response time of the proposal is less than or equal
to the median of original MongoDB. Then, it is demonstrated
how to fine-tune the trade-off between reduced response time
and overall system throughput when possible, by controlling
the loss in parallelism caused by the semaphore system. This is
especially noticeable in standalone scenarios with fewer high-
priority users, where requests with mixed priority are more
interleaved. Furthermore, this work highlights an issue with
the synchronization mechanism implemented by the underlying
storage engine (i.e., WiredTiger), and presents a workaround
that proved beneficial for the case study. To the best of our
knowledge, our proposal is the only open-source NoSQL data
store with such query prioritization feature.

As possible future work on the topic, it might be interesting
to investigate an interface that allows to specify the timing
constraints for a given request/user so that the database can
provide end-to-end response time guarantees. Such a feature
might be implemented by adding a capacity management layer
within MongoDB, and coupling the proposed mechanism with
an adaptive controller that automatically adjusts the activation
threshold and the priorities according to the workload require-
ments, or using more advanced CPU scheduling techniques,
like SCHED_DEADLINE [39]. Another option is to further
improve the worst-case latency values and increase the perfor-
mance predictability by simplifying the synchronization logic
of MongoDB and WiredTiger.

ACKNOWLEDGMENT

The authors would like to thank Sulabh Mahajan and the rest
of the MongoDB development team for their insightful support
on the internals of MongoDB and WiredTiger.

REFERENCES

[1] S. Bibi, D. Katsaros, and P. Bozanis, “Business application acquisition: On-
premise or SaaS-based solutions?,” IEEE Softw., vol. 29, no. 3, pp. 86–93,
May/Jun. 2012.

[2] D. Gannon, R. Barga, and N. Sundaresan, “Cloud-native applications,”
IEEE Cloud Comput., vol. 4, no. 5, pp. 16–21, Sep./Oct. 2017.

[3] M. A. S. Netto, R. N. Calheiros, E. R. Rodrigues, R. L. F. Cunha, and
R. Buyya, “HPC cloud for scientific and business applications: Taxonomy,
vision, and research challenges,” ACM Comput. Surv., vol. 51, no. 1,
Jan. 2018, Art. no. 8.

[4] M. García-Valls, T. Cucinotta, and C. Lu, “Challenges in real-time virtu-
alization and predictable cloud computing,” J. Syst. Archit., vol. 60, no. 9,
pp. 726–740, 2014.

[5] T. Li, J. Tang, and J. Xu, “Performance modeling and predictive scheduling
for distributed stream data processing,” IEEE Trans. Big Data, vol. 2, no. 4,
pp. 353–364, Dec. 2016.

[6] R. Mancini, T. Cucinotta, and L. Abeni, “Performance modeling in pre-
dictable cloud computing,” in Proc. 10th Int. Conf. Cloud Comput. Serv.
Sci., SciTePress, 2020, pp. 69–78.

[7] R. Shea, J. Liu, E. N. Ngai, and Y. Cui, “Cloud gaming: Architecture and
performance,” IEEE Netw., vol. 27, no. 4, pp. 16–21, Jul./Aug. 2013.

[8] S. M. Park and Y.-G. Kim, “A metaverse: Taxonomy, components, ap-
plications, and open challenges,” IEEE Access, vol. 10, pp. 4209–4251,
2022.

[9] G. Buttazzo, G. Lipari, L. Abeni, and M. Caccamo, Soft Real-Time Systems.
Berlin, Germany: Springer, 2005.

[10] R. Buyya, C. Vecchiola, and S. T. Selvi, Mastering Cloud Computing:
Foundations and Applications Programming. Oxford, U.K.: Newnes,
2013.

[11] A. Varasteh and M. Goudarzi, “Server consolidation techniques in virtu-
alized data centers: A survey,” IEEE Syst. J., vol. 11, no. 2, pp. 772–783,
Jun. 2017.

[12] C. Curino, E. P. Jones, S. Madden, and H. Balakrishnan, “Workload-aware
database monitoring and consolidation,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, New York, NY, USA, 2011, pp. 313–324. [Online].
Available: https://doi.org/10.1145/1989323.1989357

[13] S. Perianayagam et al., “Amazon DynamoDB: A scalable, predictably
performant, and fully managed NoSQL database service,” in Proc.
USENIX Annu. Tech. Conf., Carlsbad, CA: USENIX Association, 2022,
pp. 1037–1048. [Online]. Available: https://www.usenix.org/conference/
atc22/presentation/vig

[14] T. Cucinotta, L. Abeni, M. Marinoni, R. Mancini, and C. Vitucci, “Strong
temporal isolation among containers in openstack for NFV services,”
IEEE Trans. Cloud Comput., vol. 11, no. 1, pp. 763–778, First Quarter
2023.

[15] R. Andreoli, T. Cucinotta, and D. Pedreschi, “RT-MongoDB: A NoSQL
database with differentiated performance,” in Proc. 11th Int. Conf. Cloud
Comput. Serv. Sci., SciTePress, 2021, pp. 77–86.

[16] R. Andreoli and T. Cucinotta, “Differentiated performance in NoSQL
database access for hybrid cloud-HPC workloads,” in Proc. Int. Conf. High
Perform. Comput., H. Jagode, H. Anzt, H. Ltaief, and P. Luszczek, Eds.
Cham: Springer International Publishing, 2021, pp. 439–449.

[17] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proc. 1st ACM
Symp. Cloud Comput., New York, NY, USA, 2010, pp. 143–154. [Online].
Available: https://doi.org/10.1145/1807128.1807152

[18] R. Cattell, “Scalable SQL and NoSQL data stores,” ACM SIGMOD Rec.,
vol. 39, no. 4, pp. 12–27, 2011.

[19] E. A. Brewer, “Towards robust distributed systems,” in Proc. 19th Annu.
ACM Symp. Princ. Distrib. Comput., Portland, OR, 2000, pp. 343477–
343502.

[20] P. A. Bernstein and N. Goodman, “Multiversion concurrency control–
theory and algorithms,” ACM Trans. Database Syst., vol. 8, no. 4, pp. 465–
483, Dec. 1983.

[21] T. Anderson and M. Dahlin, Operating Systems: Principles and Practice,
vol. 1. Albany, CA, USA: Recursive Books, 2014.

[22] T. Cucinotta, L. Abeni, M. Marinoni, A. Balsini, and C. Vitucci, “Reducing
temporal interference in private clouds through real-time containers,” in
Proc. IEEE Int. Conf. Edge Comput., 2019, pp. 124–131.

[23] C. S. Wong, I. Tan, R. D. Kumari, and F. Wey, “Towards achieving fairness
in the Linux scheduler,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 34–43,
Jul. 2008.

[24] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli,
“Proposed NIST standard for role-based access control,” ACM Trans. Inf.
Syst. Secur., vol. 4, no. 3, pp. 224–274, 2001.

[25] B. Kao and H. Garcia-Molina, “An overview of real-time database sys-
tems,” in Proc. Real Time Comput., W. A. Halang and A. D. Stoyenko,
Eds. Berlin, Heidelberg: Springer, 1994, pp. 261–282.

[26] J. M. Hellerstein, M. Stonebraker, and J. Hamilton, Architecture of a
Database System. Boston, MA, USA: Now, 2007.

[27] S. Kim, G. Lee, J. Woo, and J. Jeong, “Zero-copying I/O stack for low-
latency SSDs,” IEEE Comput. Archit. Lett., vol. 20, no. 1, pp. 50–53,
Jan.–Jun. 2021.

[28] H. Litz, J. Gonzalez, A. Klimovic, and C. Kozyrakis, “RAIL: Predictable,
low tail latency for NVMe flash,” ACM Trans. Storage, vol. 18, no. 1,
Jan. 2022, Art. no. 5. [Online]. Available: https://doi.org/10.1145/3465406

[29] L. Kang and B. Jacob, “Zoned FTL: Achieve resource isolation via
hardware virtualization,” in Proc. Int. Symp. Memory Syst., New York,
NY, USA, 2022, Art. no. 7. [Online]. Available: https://doi.org/10.1145/
3488423.3519326

https://doi.org/10.1145/1989323.1989357
https://www.usenix.org/conference/atc22/presentation/vig
https://www.usenix.org/conference/atc22/presentation/vig
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/3465406
https://doi.org/10.1145/3488423.3519326
https://doi.org/10.1145/3488423.3519326

3482 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 4, OCTOBER-DECEMBER 2023

[30] Y. Li, J. Zhang, C. Jiang, J. Wan, and Z. Ren, “PINE: Optimizing
performance isolation in container environments,” IEEE Access, vol. 7,
pp. 30410–30422, 2019.

[31] C. Xu, F. Xia, M. A. Sharaf, M. Zhou, and A. Zhou, “AQUAS: A quality-
aware scheduler for NoSQL data stores,” in Proc. IEEE 30th Int. Conf.
Data Eng., 2014, pp. 1210–1213.

[32] C. Xu, M. A. Sharaf, X. Zhou, and A. Zhou, “Quality-aware schedulers
for weak consistency key-value data stores,” Distrib. Parallel Databases,
vol. 32, no. 4, pp. 535–581, 2014.

[33] Y. Patel, M. Verma, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“Revisiting concurrency in high-performance NoSQL databases,” in Proc.
10th USENIX Workshop Hot Topics Storage File Syst., Boston, MA:
USENIX Association, 2018, Art. no. 12.

[34] S. Chatterjee, M. Jagadeesan, W. Qin, and S. Idreos, “Cosine: A cloud-
cost optimized self-designing key-value storage engine,” in Proc. VLDB
Endowment, vol. 15, no. 1, pp. 112–126, 2021.

[35] A. Mahgoub et al., “SOPHIA: Online reconfiguration of clustered NoSQL
databases for time-varying workloads,” in Proc. USENIX Annu. Tech.
Conf., 2019, pp. 223–240.

[36] M. Szalay, P. Matray, and L. Toka, “AnnaBellaDB: Key-value store made
cloud native,” in Proc. 16th Int. Conf. Netw. Service Manage., 2020,
pp. 1–5.

[37] A. Lakshman and P. Malik, “Cassandra: A decentralized structured storage
system,” ACM SIGOPS Operating Syst. Rev., vol. 44, no. 2, pp. 35–40,
2010.

[38] R. Kesavan, D. Gay, D. Thevessen, J. Shah, and C. Mohan, “Firestore: The
NoSQL serverless database for the application developer,” in Proc. IEEE
39th Int. Conf. Data Eng., 2023, pp. 3367–3379.

[39] J. Lelli, C. Scordino, L. Abeni, and D. Faggioli, “Deadline scheduling in
the Linux kernel,” Softw. Pract. Exp., vol. 46, no. 6, pp. 821–839, 2016.

Remo Andreoli received the MSc degree with honors
in computer science from the University of Pisa. He is
currently working toward the PhD degree with SSSA
investigating on resource management optimization
techniques for cloud infrastructures. He held a re-
search scholarship from Sant’Anna School of Ad-
vanced Studies (SSSA), during which he worked on
differentiated performance mechanisms for NoSQL
databases, earning a best student paper award with
CLOSER 2021.

Tommaso Cucinotta received the MSc degree in
computer engineering from the University of Pisa,
Italy, and the PhD degree in computer engineering
from Scuola Superiore Sant’Anna (SSSA) in Pisa,
where he has been investigating on real-time schedul-
ing for soft real-time and multimedia applications,
and predictability in infrastructures for cloud com-
puting and NFV. He has been MTS in Bell Labs in
Dublin, Ireland, investigating on security and real-
time performance of cloud services. He has been
a software engineer in Amazon Web Services in

Dublin, Ireland, where he worked on improving the performance and scalability
of DynamoDB. Since 2016, he is an associate professor with SSSA and head
of the Real-Time Systems Lab (RETIS) since 2019. He has also brought a
number of funded research projects to the RETIS lab, notably EU projects, and
international collaborations with private companies, including some big-tech
ones. He coauthored roughly a hundred international peer-reviewed scientific
publications on topics in his areas of interest, and more than 20 filed and 9
granted patents. He is in the technical program committee of a number of
international workshops and conferences related to his research topics, and
he also performs regularly peer-reviewing for papers submitted to prestigious
international journals.

Daniel Bristot De Oliveira received the joint PhD
degree in automation engineering from UFSC (BR)
and embedded real-time systems from Scuola Supe-
riore Sant’Anna (IT). Currently, he is senior prin-
cipal software engineer with Red Hat, working on
developing the real-time features of the Linux kernel.
He helps in the maintenance of real-time related
tracers and toolings for the Linux kernel and the
SCHED_DEADLINE. He is an affiliate researcher
with the Retis Lab, and researches real-time and
formal methods.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

