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The High-Performance and Disruptive Computing 
in Remote Sensing (HDCRS) Working Group (WG) 

was recently established under the IEEE Geoscience and 
Remote Sensing Society (GRSS) Earth Science Informat-
ics (ESI) Technical Committee to connect a community 
of interdisciplinary researchers in remote sensing (RS) 
who specialize in advanced computing technologies, 
parallel programming models, and scalable algorithms. 
HDCRS focuses on three major research topics in the 
context of RS: 1) supercomputing and distributed com-
puting, 2) specialized hardware computing, and 3) 
quantum computing (QC). This article presents these 
computing technologies as they play a major role for the 
development of RS applications. The HDCRS dissemi-
nates information and knowledge through educational 
events and publication activities which will also be in-
troduced in this article. 

INTRODUCTION
RS has come a long way since 1858, when Gaspard-Félix 
Tournachon captured the first aerial photograph from 
a hot air balloon over the Bièvre Valley in France [1]. At 
the beginning of 1972, Landsat data kickstarted the big 
data era by capturing images of the whole Earth’s sur-
face every two weeks [2]. The development of artificial 
satellites in the latter half of the 20th century allowed RS 
to progress to a global scale and monitor the entire plan-
et in high resolution, on demand, and in near-real time.

Since 2008, with the emergence of the free and open 
data access policy for Landsat data [3], [4], many govern-
ments and space agencies have opened their archives, 
making large collections of satellite RS data available to 
everyone [e.g., the European Space Agency’s (ESA’s) Co-
pernicus] [5]. RS was and further is a stimulating factor 
in the development of disruptive and high-performance 

computing (HPC) technologies. An example is the case 
of synthetic aperture radar (SAR) image formation. SAR 
is an active, coherent imaging system operated in the 
microwave domain. An SAR system records millions of 
samples per second. The transformation of the received 
echoes, i.e., the focusing process, requires application of 
matched filters, principally involving the computation 
of Fourier transforms. In the early 1960s, this was a ma-
jor big data and HPC challenge, stimulating the use and 
development of new technologies. At the time, optical 
coherent processing was one of the first novelties that 
HPC technology used [6]. Moreover, at the end of the 
1970s, SAR focusing was one of the first applications for 
supercomputers. Wolf et al. present the assessment of 
implementing an SAR processor on a Cray-1 S Super-
computer [7]. Today, the implementation of quantum 
radars [8] and the use of quantum computers for further 
progress of SAR data processing and analysis is studied.

Other RS big data are generated from a multitude 
of sources, including ground and airborne sensors [e.g., 
unmanned aerial vehicles (UAVs)] [9], social media, 
machine-to-machine communications, and crowd-
sourcing. Meanwhile, planetary-scale applications in 
Earth science and environmental studies are further 
increasing the complexity of RS data. RS data can 
therefore be characterized by multisource, multiscale, 
high-dimensional, dynamic-state, and nonlinear char-
acteristics [10]. Processing such large amounts of com-
plex data necessitates rapid development in innovative 
computing technologies and creating novel tools for 
addressing data storage challenges and improving data  
processing workflows.

An increasing number of research groups have 
been working in the field of high-performance and 
cloud computing applied to RS, especially during the 
last few years [11], [12]. The GRSS is the right forum 
to foster bonds among these researchers and promote 
the use of these technologies by an ever-increasing 
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community. The HDCRS WG was founded with these 
objectives. Through its dedicated website, HDCRS dis-
seminates information, including activities organized by 
its members. IEEE Members can register as new members 
using the website.

The first activities of HDCRS were organized in 2021 and 
focus mainly on education and research promotion, with 

the goal of creating a com-
munity. The group encourages 
members to promote their 
related initiatives. In particu-
lar, HDCRS organized its first 
summer school at the Univer-
sity of Iceland from 31 May to 
3 June 2021. The overall objec-
tive of the school was to give 
participants a comprehensive 
overview of current topics and 
methods in the field of HPC, 
machine learning (ML), and 

QC in RS. A second objective was to establish a venue for 
students and young professionals to network with senior re-
searchers and professors who are world-renowned leaders in 
the field of RS, and work on the interdisciplinary research 
addressed by HDCRS.

The first edition took place online due to the COVID-19 
pandemic conditions. Prof. Jón Atli Benediktsson, rector of 
the University of Iceland, gave the opening remarks, sum-
marizing the opportunities offered within the GRSS and 
its connection with the activities of the WG, which was 
presented by one of the chairs, Dr. Gabriele Cavallaro. The 
given lectures were organized into the following three the-
matic groups:
1) “From HPC to Quantum Paradigms in Earth Observation”
2) “Programming Graphics Processing Units and Accelera-

tors with Directives”
3) “Scaling Machine Learning for RS Using Cloud Computing.”

Out of 180 registrations from all over the world, the 
maximum number of attendees, 30, were admitted into the 
Zoom sessions and received access to computing resources. 
The rest attended via YouTube live streams of the Zoom 
sessions. Recordings of all the summer school lectures are 
available on the GRSS YouTube Channel.

HDCRS was happy to receive very favorable feedback for 
the summer school and is looking forward to organizing 
the second edition as a physical event at the University of 
Iceland, along with several social activities. Registrations 
will open on the HDCRS’s website on 1 March 2022. It is 
envisioned that future editions of the summer school could 
be moved to other locations.

HDCRS has also organized two tutorials at the Inter-
national Geoscience and Remote Sensing Symposium 
(IGARSS) conference. The first one, “Scalable ML With High 
Performance and Cloud Computing,” provided a complete 
overview of supercomputing and cloud computing technol-
ogies for solving RS problems that require fast and highly 

scalable methods. The second tutorial, “From Big EO Data to 
Digital Twins: Hybrid Artificial Intelligence and Quantum-
Based Paradigms,” covered quantum information theory, 
quantum algorithms and computers, presented the first re-
sults, and analyzed main perspectives for Earth-observation 
(EO) applications.

A special session at the IGARSS 2021 conference was also 
organized by HDCRS. Papers in the most advanced areas 
exploiting new high-performance and distributed comput-
ing technologies and algorithms to expedite the processing 
and analysis of big RS data were collected. They included

 ◗ “Practice and Experience in Using Parallel and Scalable 
Machine Learning in Remote Sensing From HPC Over 
Cloud to Quantum Computing” [13]

 ◗ “Comparing Area-Based and Feature-Based Methods for 
Co-Registration of Multispectral Bands on GPU” [14]

 ◗ “An FPGA-Based Implementation of a Hyperspectral 
Anomaly Detection Algorithm for Real-Time Applica-
tions” [15]

 ◗ “Enhancing Large Batch Size Training of Deep Models 
for Remote Sensing Applications” [16]

 ◗ “Evolutionary Optimization of Neural Architectures in 
Remote Sensing Classification Problems.” [17]
HDCRS will organize new special sessions on different 

topics in the future editions of IGARSS.

HDRCS RESEARCH TOPICS
There is an increasing number of applications that benefit 
from the amount of data acquired by the most affordable 
and widely available RS sensors. Some of them require pro-
cessing in real time and most of them are complex, thus 
requiring high computational power. This requirement 
makes necessary the use of innovative computational ap-
proaches, from HPC platforms such as clusters, grids, or 
clouds, to accelerators such as GPUs or field-programmable 
gate arrays (FPGAs) or QC solutions, among others. The 
more adequate computing platform depends on the prob-
lem being solved as well as the environment where the 
problem needs to be solved. In some cases, for example, 
transferring data to supercomputers makes sense. In other 
cases, the problem is better solved in situ, using commod-
ity hardware. In this section, a perspective of the potential 
and emerging challenges of applying HPC paradigms to RS 
problems is offered.

To solve a computational task, the first step is to split 
it into instructions that a processor can execute. The main 
objective is to process these instructions as fast as possible. 
This can be achieved in three different ways to make the 
processor 1) work harder (increase the raw power of the 
hardware, i.e., its clock speed on a single core, also referred 
to as single-thread performance), 2) work smarter (optimizing 
the task, use instruction-level parallelism and exploit cach-
ing, and so on), or 3) work in a team (more cores working in 
concert). Although the first two strategies formed the basis 
of the main computing trend in the first 50 years of hard-
ware computing, the latter one is currently the main trend.
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The semiconductor industry has been shrinking the 
technology to try to follow Moore’s law [18]: 

… the number of transistors that can be inexpen-
sively placed on integrated circuits is increasing expo-
nentially, doubling approximately every two years … .

—Gordon Moore, 1965

The result was that by doubling the density of semi-
conductor over integrated circuits, the single-thread per-
formance constantly increased. This trend was also iden-
tified by Robert H. Dennard, who in 1974 predicted that 
the power density (i.e., power dissipated per unit area) of 
transistors would remain constant while their size would 
continue to decrease [19] (i.e., as the physical parameters 
of transistors reduce, they can be operated at lower voltage 
and thus at lower power). This meant that it was possible 
to constantly increase single-thread performance without 
raising power consumption.

Dennard scaling (also known as MOSFET scaling) started 
to reach its physical limits around 2004 to an extent that the 
voltage could not be scaled down as much as the gate’s length 
of the transistor. This, along with a rise in leakage current, 
resulted in increased rather than constant power density (i.e., 
more heat generated, which has to be dissipated through 
cooling solutions, as an increase in temperature beyond a 
certain level results in unreliable functionality of the chip). 
As a consequence, beginning in early 2000, single-thread 
performance improvements started plateauing, as shown in 
Figure 1. This resulted in a unique situation in which Moore’s 
law [18] was still holding, but the computing performance, 
in return, was no longer as substantial as before [20].

Novel hardware architectures, along with shifts in code 
paradigms, became the focus of the industry to continue 
the same trends. Expanding the number of logical cores in 
CPUs and shifting toward accelerators and coprocessors, 
which work on lower frequencies but have considerably 
higher amounts of cores than CPUs, proved to be the most 
significant move. The result was a mainstream shift of focus 

toward parallelization. Heterogeneous computing unifying 
different hardware architectures emerged as the most ef-
fective way to keep up with the need for ever-higher com-
puting performance. In this context, the responsibility for 
reaching better computational performance is outsourced 
to software developers and programmers (i.e., algorithms 
need to be optimized to fully exploit new parallel comput-
ing environments) (see Figure 2). 

In general, the development of parallel and scalable 
codes for complex algorithms is complicated and error 
prone. It usually involves handling data slicing and dis-
tribution, task partition, message passing among distrib-
uted memory spaces and shared memory management for 
multicores, synchronization, and communication with 
low-level application programming interfaces [22]. Never-
theless, as was previously shown 10 years ago by Lee et al. 
[23], HPC and parallel programming are the only effective 
solutions that can address the computational challenges of 
data-intensive RS applications.

RESEARCH TOPICS
The essential concepts and principles, and the key tech-
niques related to different computing technologies are 
elaborated on in the following sections. They describe how 
they RS applications are enhanced and provide future per-
spectives in the context of EO.

2021 HDCRS Summer School

FIGURE 1. The speakers at the 2021 HDCRS Summer School. Top 
row, from left: Gabriele Cavallaro, Mihai Datcu,  Drew Bollinger, 
Jón Atli Benediktsson, and Manil Maskey. Bottom row, from left: 
Shubhankar Gahlot, Sergio Bernabé García, Muthukumaran  
Ramasubramanian, Iksha Gurung, and Carlos García Sánchez. 
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FIGURE 2. Forty-two years of microprocessor trend data [21]. 
The orange points: Moore’s law trend. Circa 2003, the clock speed 
curve (blue points: single-thread performance) starts to flatten 
(i.e., the Dennard scaling breakdown). The green and red points: 
immediate consequences of the Dennard scaling breakdown; black 
points: from 2003, the era of parallelism begins (i.e., obtaining of 
processing speed up with many cores). SPECint: the integer perfor-
mance testing component of the Standard Performance Evaluation 
Corporation test suit.  



332 IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE    JUNE 2022

SUPERCOMPUTING
The action of solving processing tasks on a supercomputer is 
widely termed supercomputing and is synonymous with HPC. 
HPC is a multidisciplinary field of research that combines 
hardware technologies and architecture, operating systems, 

programming tools, software, 
and end-user problems and 
algorithms. It engages a class 
of electronic digital machines 
referred to as supercomputers to 
perform a wide array of com-
putational problems or “appli-
cations” (alternatively, “work-
loads”) as fast as is possible. A 
supercomputer is a mixture of 
shared- and distributed-mem-
ory systems. While in a shared-
memory system (i.e., desktop 
computer, laptop), a number 
of CPU cores have access to a 
common, shared physical ad-
dress space, in a distributed-

memory system, each process is connected to exclusive local 
memory (i.e., no other process has direct access to it).

Supercomputers have been used in various fields of re-
search since the 1980s [24]. At that time, a vector architec-
ture was the mainstream, and developers could improve 
the performance of programs by exploiting vector instruc-
tions. A vector instruction is single-instruction multiple data, 
which refers to the vector registers where multiple data re-
side. The first commercial supercomputer (i.e., the Cray-1 
[25]) included eight registers, where each was a vector of 64 
double-precision floating point numbers.

Single-thread exponential speed growth was the driving 
force of HPC in the first 25 years [21]. At first, each manu-
facturer of a distributed-memory system had its own library 
and set of functions that could do simple point-to-point 
communication as well as collective communication pat-
terns like broadcasting. To simplify programming in net-
work environments and realize component-based software 
architectures, many models and portable libraries have 
emerged as possible standards (i.e., a distributed compo-
nent object model [26], parallel virtual machine [27], mes-
sage passing interface (MPI) [28], and so forth).

MPI was released in 1994 and developed as a standard 
library of defined message passing. Since then, MPI has be-
come extremely successful and been adopted by many dif-
ferent scientific applications for distributing their computa-
tions on distributed-memory clusters (e.g., hydrogeology, 
traffic simulation, weather forecasting, and so on [29]). 
MPI has become the de facto standard for parallel scientific 
computing, and they are the most mature method currently 
used in parallel programming.

Supercomputers have been widely used in RS applica-
tions to accelerate and scale the process of image mosaick-
ing [30], [31], classification [32]–[37], object detection [38], 

[39], clustering [40]–[42], interband registration [43], su-
perresolution [44], data fusion [16], compression [45], fea-
ture selection/extraction [46]–[48], spectral unmixing [49], 
data assimilation [50], and scalable-processing workflows 
[51]–[56]. In the context of HPC, there were also important 
efforts in academic journals and conferences, launching 
multiple special issues devoted to the processing and analy-
sis of RS data [57]–[60].

The next generation of supercomputers (i.e., exascale super-
computers) will be used to model and simulate more com-
plex and dynamic systems in higher resolution and with 
unprecedented fidelity (e.g., biological systems, molecular 
interactions of viruses, material design, and so forth). In 
the context of EO, exascale supercomputers will enable the 
development of a high-precision digital model of Earth 
(i.e., Destination Earth [61]). This will help analyze, with 
very high precision, the effects of climate change together 
with possible adaptation and mitigation strategies (e.g., to 
predict major environmental degradation and natural di-
sasters with unprecedented fidelity and reliability).

CLOUD COMPUTING
Cloud computing is an overarching term that describes a 
category of on-demand computing services [62]. These ser-
vices were initially offered by commercial companies such 
as Amazon, Microsoft, and Google. Now there are many 
new commercial and public cloud computing providers. 
The underlying principle behind cloud computing is the 
idea of providing access to storage, compute, and software 
“as a service,” which may not be on premise. The common 
characteristics of cloud computing include 

 ◗ elasticity: the ability to scale resources both up and down 
as needed

 ◗ reliability: implies that the service is available and works 
as intended

 ◗ pay as you go: only users pay for what they use
 ◗ resource pooling: allows a cloud provider to serve its users 

in a multitenant model
 ◗ minimal management effort: users can use and procure 

cloud services without much difficulty.
The concept of cloud computing is not new. Grid com-

puting [63], which was introduced in the 1990s, included 
a type of parallel and distributed system that enabled 
the sharing of geographically distributed resources. The 
power of grid computing was enabled by the ability to dy-
namically scale up and down resources based on the us-
er’s need. The concept of grid computing evolved to solve 
large-scale processing workloads that required more than 
a single computer. Cloud computing automated some of 
the nuances of grid computing, specifically in the area of 
virtualization and on-demand scaling. Compared to the 
grid computing approach, which requires allocation of 
resources in advance, cloud computing is more attractive 
as real-time provisioning of resources is possible.

As cloud computing has advanced, the main services 
offered by many providers have evolved into three classes 
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based on the abstraction level of the capability that they 
provide: 1) infrastructure as a service (IaaS), 2) platform as 
a service (PaaS), and 3) software as a service (SaaS) [62].

Figure 3 depicts the three layers, which shows the 
stacked organization from the infrastructure to the applica-
tion layer. Each higher layer can utilize the services from 
the bottom layers.

IaaS uses virtualization technology to deliver computa-
tion, storage, and networking on demand. The cloud pro-
viders enable on-demand provisioning of servers, which 
can be used to develop applications. The users of IaaS will 
require system administration knowledge and usually have 
full control over the virtualized machine. Amazon Elastic 
Compute Cloud (http://aws.amazon.com/ec2/) is an ex-
ample of IaaS.

PaaS is an environment where users can create custom-
ized solutions using tools and services that the platform 
provides. This layer is at a higher level of abstraction, which 
makes a cloud easily programmable. Often, a PaaS tool is 
a fully integrated development environment, that is, all the 
tools and services are a part of the PaaS service, which sup-
ports a complete lifecycle of building and deploying appli-
cations. Google App Engine is an example of PaaS.

SaaS is a complete cloud computing service model where 
the computing hardware, software, and a particular solu-
tion itself are provided by a vendor as a complete service 
offering. The services provided by this layer can be accessed 
by end users through browsers. For this reason, many us-
ers are increasingly shifting to online software services. The 
Aeronautical Reconnaissance Coverage Geographic Infor-
mation System (ArcGIS) implementation on the cloud is an 
example of SaaS.

With the advances in sensor technology and highly 
competitive and vibrant space industry, the RS data are be-
ing collected at massive scale. Moreover, there are upcom-
ing missions with higher spatial, spectral, and temporal 
resolution, which pose challenges for not only storing the 
data but also processing needs. To address these challenges, 
many agencies have already explored cloud computing as a 
viable solution. Cloud computing provides elasticity in stor-
age and computing, which traditional data centers cannot 
support. Cloud computing also facilitates large-scale scien-
tific processing enabled by the cloud-native services that 
are collocated with the data. During the last two decades, 
there has been an accelerated adoption of cloud comput-
ing within the RS community. This adoption trend can be 
observed in the number of periodicals by major RS research 
publishers that are related to cloud computing.

NASA has started migration of its Earth science data 
to the cloud computing environment (https://earthdata.
nasa.gov/eosdis/cloud-evolution) to support the large data 
volume missions that will be launched in the near future. 
Toward that end, NASA has developed a generalized cloud-
native ingest archive pipeline called Cumulus [64]. In the 
meantime, there are parallel efforts to train scientists to per-
form scientific analysis in cloud computing environments 

as it is more economical to perform analyses in the cloud 
than download a large amount of data from the cloud to on 
premise. Hence, cloud computing has also emerged as the 
analysis and processing platform for many applications 
[65]. In RS, there are many 
examples of data process-
ing frameworks developed 
in cloud computing [66]–
[70]. In fact, many new RS 
data products are being gen-
erated using cloud comput-
ing (https://earthdata.nasa.
gov/learn/articles/hls-cloud 
-efforts). Cloud computing 
has also advanced the data 
storage and access techniques 
of RS data sets. Such advances have allowed dynamic data 
visualization and analysis, which are otherwise not possible 
[71], [72]. Finally, the development of end-to-end, RS-based 
situational awareness tools [73] are enabled by cloud- 
native services, which are capable of delivering reliable, on-
demand needs.

With cloud computing, any researcher around the world 
is able to use a browser and open RS data to perform scien-
tific research. RS has especially benefited from cloud com-
puting, and many existing legacy applications have the po-
tential to adapt to and take advantage of cloud capabilities. 
However, there are challenges in adopting the cloud. These 
challenges include security, evolving cloud-native services, 
multicloud portability, and the learning curve required to 
perform science experiments on the cloud. 

SPECIALIZED HARDWARE COMPUTING
Numerous research efforts have been directed toward the 
incorporation of specialized hardware for accelerating RS-
related applications during the last decade [74]–[76]. The 
emergence of specialized hardware devices such as FPGAs 
[77] or GPUs [78] have exhibited the potential to bridge the 
gap toward onboard and fast on-the-ground analysis of RS 
data. The small size and relatively low cost of these devices as 
compared to clusters or networks of computers makes them 
very appealing for parallel computing in general, and for RS 
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FIGURE 3. Cloud services—a layered view. 
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in particular. GPUs can also significantly increase the com-
putational power of cluster-based systems and, today, they 
can be found in the most powerful nondistributed computer 
systems in the world (http://top500.org). In the case of FP-
GAs, their main advantage is configurability, although they 
are generally more expensive than GPUs (see Figure 4).

FPGAs have been consolidated as the standard choice for 
onboard RS image processing due to their programmable 
nature, dynamic reconfiguration capabilities, smaller size, 
weight, and power consumption as well as for the existence 
of radiation-hardened and radiation-tolerant FPGAs [79]–

[82]. However, these devices 
are more expensive, physi-
cally larger, and often tech-
nology-generations behind in 
both performance and func-
tionality than their commer-
cial counterparts [79], [80]. 
For this reason, the current 
trend for small satellites is to 
use commercial off-the-shelf 
(COTS) onboard electronic 
devices. Moreover, commer-
cial FPGAs based on static 
random-access memory are 
attracting attention because 

of their reconfiguration capabilities and low cost compared 
to application-specific integrated circuits [83]. Nonethe-
less, the use of COTS devices implies the necessity of ap-
plying mitigation techniques to increase the robustness 
of the application performance in environments exposed 
to radiation. In this sense, different radiation-hardened-
by-design (RHBD) strategies have been developed over 
the years to protect FPGA-based designs against radiation 
[84]–[86], such as dual-modular-redundancy schemes for 
detecting errors and triple-modular-redundancy designs 
for error masking.

Although recent literature features plenty of works relat-
ed to the utilization of FPGA devices for real-time onboard 
processing (including classification, detection, and spec-

tral unmixing [88], [89] among many other processes such 
as hyperspectral image classification [90], [91]), the more 
significant advances have been achieved in the field of on-
board compression. In fact, developing efficient compres-
sion solutions for space supposes a challenge: the employed 
algorithms must achieve the goal in terms of compression 
ratio while at the same time, they should have low com-
plexity to be executed on the available hardware resources 
on board satellites and the required timing performance to 
meet mission requirements.

There is an immense quantity of contributions to the 
field of FPGA implementations for onboard data and im-
age compression, both on COTS and RHBD devices. Of 
particular focus are those that follow the compression tech-
niques proposed by the Consultative Committee for Space 
Data Systems (CCSDS), an international organization com-
prising the main space agencies in the world to define a 
common way for developing space data and information 
systems. Within these implementations, it is worth high-
lighting the works that implement the CCSDS 121.0-B-2 
data compression standard [92], [93], which is based on 
Rice coding, onto space-qualified FPGAs as well as those 
that implement the CCSDS 123.0-B-1 lossless hyperspec-
tral image-compression standard, both in COTS and RHBD 
FPGAs [82], [94]–[97].

Although GPUs had traditionally been limited to graph-
ical operations, during the last decades they progressively 
evolved into highly parallel, multithreaded, many-core 
processors with tremendous computational speed and 
very high memory bandwidth [98]. In GPUs, more tran-
sistors are devoted to data processing than data caching 
and flow control. With the release of Nvidia’s Compute 
Unified Device Architecture (CUDA) (http://developer. 
nvidia.com) in 2007 and OpenCL [99] in 2009, the pro-
gramming model for GPUs was greatly simplified, intro-
ducing the possibility of including GPUs in many science 
and engineering applications. CUDA is an extension of 
the C programming language, offering the programming 
capabilities of GPUs for general-purpose computation. 
OpenCL was developed by a consortium and released in 
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2009. It aims at supporting more hardware and providing a 
standard for general-purpose parallel programming across 
CPUs, GPUs, and other processors [99]. Today, the com-
bined features of general-purpose supercomputing, high 
parallelism, high memory bandwidth, and low cost makes 
a GPU-based computer an appealing alternative to a mas-
sively parallel system made up of only CPUs [75], [100].

The first developments in CUDA presented highly cou-
pled and nonreusable GPU-parallel strategies. Many efforts 
were made for developing parallel programming templates 
[101] and libraries (https://docs.nvidia.com/cuda/) to sim-
plify the programming task. The extraordinary evolution in 
this aspect during the last few years has motivated the ex-
tended use of GPUs for accelerating many different RS and, 
in particular, hyperspectral imaging-related tasks [74]–[76], 
[100], [102], [103]. These include registration [14], [104], 
segmentation [105], classification [76], or change detection 
[106], among others.

Based on the capability to execute thousands of threads 
in parallel, primitives such as the inner and outer products 
can perform better in the CUDA platform, so the ML and, in 
particular, deep learning algorithms formed by these prim-
itives benefit from the computational capacity of CUDA 
[103]. For example, the convolutional neural network con-
volution, pooling, and activation calculation operations are 
readily portable to GPUs [107]. In this context, many tools 
have been developed to automatize the programming and 
execution of deep learning algorithms in GPU-based ar-
chitectures, among which TensorFlow is the most popular 
option [108]. This has contributed to the extensive use of 
GPUs for deep learning applied to RS for many operations 
[109], [110] including, for example, object detection [111] or 
classification [112]–[116].

As explained previously, FPGAs and GPUs clearly help 
in processing RS data by accelerating computations and pro-
viding solutions for time-critical applications on board and 
on ground, which opens a wide variety of use cases related 
to Earth monitoring. Benefiting from them requires the 
careful selection of algorithms that better adapt to FPGA 
and GPU architectures. For the particular case of GPUs, 
many papers present algorithms and techniques adapted to 
them, as mentioned in the previous paragraphs, but GPUs 
are not being extensively exploited yet. More research is re-
quired for the development of new techniques, algorithms, 
and applications to exploit all the potentials for execution-
time improvement that the wide variety of systems using 
GPUs offer. 

EDGE COMPUTING
With the rapid advance in Internet of Things (IoT) tech-
nology, the number of network edge devices and amount 
of data generated by edge devices have shown explosive 
growth in recent years. Due to limited network communi-
cation capacity, the centralized processing mode in cloud 
computing may not be able to process massive amounts of 
data efficiently and quickly.

In 2013, the concept of edge computing was first men-
tioned by Ryan Lamothe of the Pacific Northwest National 
Laboratory. In 2016, Weisong Shi proposed that edge com-
puting refers to the technologies computing at the edge of 
the network. This includes the processing of downstream 
and upstream data by cloud services and IoT services, re-
spectively [117].

Generally, edge computing has two operation modes: 1) 
binary offloading, which refers to a deeply integrated or com-
paratively simple computing task that cannot be divided and 
has to run either directly on the edge device or offloaded to 
the cloud, and 2) partial offloading, which refers to a portion 
of the tasks originally located in the cloud data center that are 
allowed to be offloaded to the 
edge of the network. Through 
the two operation modes, 
edge computing can flexibly 
adjust the load of cloud and 
edge servers via offloading so 
as to realize the requirements 
of massive connection and 
low response delay of IoT de-
vices. In certain cases, users 
can save more than 30% of 
the cost of computation, stor-
age, and bandwidth. Mobile 
edge servers can also control 
the proximity between edge devices and terminal users so 
that they can track the real-time information of terminal us-
ers, such as action, location, and environment. In addition, 
mobile edge computing can protect privacy and enhance the 
security of mobile applications [118].

Benefiting from the advantages of low latency, low pow-
er, and strong privacy, edge computing has attracted con-
siderable attention from researchers, and it has been widely 
used in industrial fields such as autonomous driving en-
vironment monitoring, intelligent home virtual enhance-
ment, medical and health industry production, and so on. 
For example, in the field of autonomous driving, a car does 
not need to send all the generated data to the cloud for pro-
cessing. Most of the data are stored and calculated at the 
edge nodes (i.e., the car itself).

Although it is effective in reducing computing delay and 
power consumption, edge computing is also facing new 
challenges. First, limited by the computing capacity of edge 
devices, the accuracy of calculation results needs to be fur-
ther improved. Second, most of the devices in edge com-
puting are heterogeneous computing platforms, and the 
operating environment and data on each device are quite 
different. Therefore, it is challenging to deploy user applica-
tions in edge computing scenarios. In addition, as of yet, 
there are no comprehensive and uniform benchmarks for 
evaluating system performance.

Edge computing has been extensively used in various 
fields of RS. As the computing capacity of most edge de-
vices is limited, the most common use of edge computing 
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in RS applications is data preprocessing, which is able to 
mitigate transmission pressure and decrease computing 
cost in the cloud. In [119], a multiple Industrial IoT (IIoT) 
system architecture based on UAVs is proposed in which 
the RS images collected by sensors in the IIoT are directly 
transmitted to the UAVs for processing. Based on RS image 
analysis and the neural computation model, the authors 
in [120] built a forest ecotourism evaluation scheme and 
designed a cloud-based MEC model to construct efficient 
prediction scenarios [120]. In [121], the image recogni-
tion performance of a hierarchical discriminant analysis 
(HDA) algorithm was implemented by combining an edge 
computing environment with an HDA algorithm for early 
warnings of mountain fires. 

With the increasing applications of edge computing in RS, 
there are many aspects that need to be further researched. 
First, the performance of edge equipment, the ability to col-
lect RS information, and data processing need to be strength-
ened so as to promote the accuracy of the edge calculation 
result. Second, cloud-edge offloading strategies for RS need 
to be proposed to allocate computing resources more reason-
ably so as to reduce computing delay and power consump-
tion in RS applications.

QC
At the beginning of the 1980s, Richard Feynman [122] ob-
served that the numerical simulation of quantum mechani-
cal systems required an exponentially growing—with the 
quantum mechanical system dimension—number of com-
putational resources, such as CPU time and memory. This 
observation has led to the conclusion that, for the simula-
tion of quantum mechanical systems, one should employ 
easily controllable quantum devices whose complexity can 
grow subexponentially with the growth of the quantum 
mechanical system dimension. Feynman named this eas-
ily controllable device a quantum computer. The first formal 
formulation of QC was proposed in 1985 by David Deutsch 
[123]. In 1992, Deutsch and Richard Jozsa proposed the 
first quantum algorithm that could outperform its classi-
cal counterpart [124]. In subsequent years, many other im-
portant quantum algorithms were proposed, such as Shor’s 
algorithm for factoring integers [125], [126], Grover’s search 
algorithm [127], and the Harrow–Hassidim–Lloyd algo-
rithm for solving a linear system of equations [128].

Quantum computers can be understood as being analog 
and digital at the same time; analog because the state space 
of quantum devices during the computation process can be 
described by a set of continuous variables, and digital be-
cause the measurement outcome from a quantum comput-
er can be expressed as a binary string. Quantum computers, 
as with most analog computers, are prone to errors. Due to 
its uncontrolled interaction with the environment, the state 
of a quantum computer can become distorted during the 
computation process. This phenomenon is called quantum 
decoherence [129]. Fortunately, the influence of decoherence 
can be reduced by the use of quantum-error-correcting 

codes. These codes employ multiple physical qubits to form 
a single logical qubit [130] and use the digital aspect of the 
quantum measurement to correct quantum errors.

Currently, quantum computers have reached noisy in-
termediate-scale quantum era [131].  This means that they 
consist of roughly 100 noisy qubits, and therefore, classical 
computers are unable to simulate them efficiently. Simulta-
neously, it is possible to perform only short quantum pro-
grams before the quantum state becomes so distorted that 
it is no longer useful. Hence, it is impossible to execute such 
algorithms as Shors’ [125] and Grover’s [127] using current 
quantum hardware.

Currently, two paradigms of QC are implemented in the 
hardware. The first one is universal gate-based QC, and the 
second is quantum annealing. Today, gate-based QC is most-
ly used to execute variational QC algorithms [132], a class of 
algorithms that uses a quantum computer as a coprocessor 
to execute computationally costly subroutines in which the 
value of a quantum observable for a particular state gener-
ated by a parametrized quantum circuit is estimated. In varia-
tional quantum algorithms, parameters of the quantum 
circuit are optimized in an iterative process using a classical 
optimization technique. Variational quantum algorithms 
have applications in combinatorial optimization problems, 
finding low-energy states of molecules, and in ML.

Quantum annealing [133] is a heuristic computation 
method that implements approximately the adiabatic QC 
model. This model enables finding good, approximate so-
lutions to quadratic unconstrained binary optimization 
problems [134]. This is a class of computationally hard 
problems that find applications in logistics, scheduling, 
image processing, and ML, among others.

Even though the quantum advantage, that is, solving a 
particular computational task that is impossible to solve 
classically using a quantum computer, was claimed by 
Google [135] in 2019, current quantum computers have 
no practical applications as of yet. Fortunately, the field is 
progressing quickly, both in terms of algorithms and hard-
ware development.

Quantum ML (QML) [136], [137] is a term that can en-
capsulate both the techniques of using quantum computers 
as ML subroutines during training and inference, or using 
quantum computers to help train classical classifiers. QML is 
currently a very active area of research that, hopefully, could 
enable building better models for a variety of ML tasks.

In the field of RS, there are particular applications of QC 
that have been developed recently. For example, in [138]–
[141], QML algorithms such as support vector machines 
(SVMs) and neural networks are applied for classification of 
multispectral images. In [142], the authors use a quantum 
annealer to perform the following three tasks on hyperspec-
tral data: classification using a variant of SVMs, band selec-
tion for classification, and boosting of classical classifiers. 
Outside of the applications to hyperspectral imaging, the 
authors of [143] proposed a classification method for SAR 
images using a hybrid quantum-classical neural network.
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Today, the ESA considers QC and artificial intelligence 
taking center stage for the implementation of Digital Twin 
Earth (https://www.esa.int/Applications/Observing_the 
_Earth/Digital_Twin_Earth_quantum_computing_and 
_AI_take_centre_stage_at_ESA_s_Ph-week). Although 
QC technology concepts are broadening and growing in 
qubit capacities, their applications in RS and QML may 
have unexpected results. The analysis of data complex-
ity and identification of optimal data embedding may 
open novel perspectives. For instance, signatures of sat-
ellite images could be encoded as quantum states and 
transformed using quantum kernels for classification. 
It might be feasible to encode a time-varying sequence 
of EO images on a quantum state and analyze it us-
ing a quantum computer to understand changes to the 
Earth’s surface. But to achieve that, more efforts in both 
the theoretical development of quantum algorithms and 
quantum hardware design and production will have to 
be made to push the boundaries of what is possible to 
achieve with QC. An important aspect is the close collabo-
ration with quantum computer developers and provid-
ing appropriate requirements [e.g., the European Quan-
tum Industry Consortium (https://qt.eu/about-quantum 
-flagship/the-quantum-flagship-community/quic/)].

BLOCKCHAIN
Open data have become a significant vector in all of the 
services consumed today, as enormous quantities of data 
are quickly accessible. Most of the time, distributing and re-
trieving data are drained through mediators, which impose 
control and evaluation policies for reliability and integrity 
of the data. As connections between data owners and data 
consumers are generally maintained through a central au-
thority for practical goals, thus limiting the actions of us-
ers, intermediary technologies are necessary to ensure trust 
among participants, data availability, data validity, and 
data integrity, all in a transparent way.

The advent of technological progress and evolution in 
open source and distributed ledger technologies (DLTs) 
has demonstrated that it is possible to develop systems that 
prioritize individual jurisdiction over centralized control. 
Distributed ledgers are collections of replicated, shared, 
and synchronized digital records that are stored across 
multiple geographically disseminated sites. A blockchain 
is an example of a DLT that is fundamentally an append-
only, permanently verifiable data structure maintained by 
a set of nodes that do not fully trust each other. These nodes 
comply with a set of global states for an ordered collection 
of blocks, each containing multiple verification records 
(i.e., transactions). Each block is linked in a chain of blocks 
where the subsequent block, additionally, has a verifica-
tion record of the previous block (i.e., a unique hash finger-
print). In this way, it is impossible to add new information 
to older blocks in the chain without changing subsequent 
blocks. Each node keeps replicas of the data and grants an 
execution order, thus producing an immutable log of or-

dered transactions within a distributed transaction man-
agement context.

Blockchains have manifested great promise in several 
fields like cryptocurrency (Bitcoin [144], Ethereum [145], 
and so forth), governance, land registration, justice, iden-
tity management, asset tracking, and the IoT, materializing 
in large-scale adoption as the result of solving limitations in 
previous systems. Blockchain technology has also started 
to evolve within the new space sector (i.e., Space 4.0) over a 
range of potential applications, from satellite communica-
tions to procurement. In a white paper, the ESA accentu-
ated the relevance of assimilating blockchain into RS ap-
plications [146], supporting action automations through 
smart contracts and transfer of value without a pivotal 
authority. The data gathered via close-range sensors, e.g., 
IoT sensor networks or personal drones, can massively en-
rich EO applications in consistency and accuracy. The data 
owners can keep ownership, providing reliability through 
a blockchain solution.

Due to the verifiable and immutable nature of block-
chain’s technology, it can be used as a distributed database 
of digital fingerprints (e.g., mapping, cadastre, land reg-
istration [147], sharing continuously updated ML models 
[148], and so on.) As corruption can be a big challenge 
within administrative systems, the registration of land and 
real estate ownership using blockchain enhances trans-
parency and accountability, bringing actors in control 
of their own data. The enormous repositories of data are 
transformed in intrinsically public open data by adopting 
blockchain and related technologies like the InterPlane-
tary File System [149], where no one controls data, anyone 
can access data, and anyone can audit the entire history 
of inputs. Novel blockchain protocols can also be used to 
precisely map physical world events in a temporal progres-
sion. For instance, cryptospatial coordinate (CSC) is an 
open and interoperable standard for location in Ethereum 
smart contracts. FOAM [150] is a CSC blockchain protocol 
that preserves geospatial data by validating the proof of lo-
cation associated with the entry’s specific time.

Blockchain technology brings important contributions 
in process management within complex systems, offering 
capabilities of managing massive patterns of transactions 
in any combination of two entities: human and device. 
SpaceChain builds an open source satellite network [151] in 
which satellites incorporate blockchain as an operating sys-
tem and interface for decentralized applications to permit 
individuals to work on collaborative projects, with smart 
contracts on a space-based computing platform.

Blockchain can improve space communications and 
navigation, where the risk of transmission disruption can 
be eliminated by developing a decentralized, secure, and 
cognitive networking and computing infrastructure for 
deep space exploration [152]. A decentralized schema for 
verifying satellite locations in time through a type of proof-
of-location protocol is proposed in [153]. The intent in us-
ing a permissioned blockchain is to facilitate scalability and 
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trustless cooperation among satellite operators. The deploy-
ment and operation of small satellite constellations may en-
counter obstacles as satellite communications can be signifi-
cantly delayed. In this case, occasionally, cryptographically 
secure, telemetry-based challenges are completed by satel-
lites to verify the correctness of each other’s position [154].

Blockchain solutions bring advantageous capabili-
ties in data traceability and data reproducibility. A secure 
way of tracking down the changes made to the source 
data of the Sentinel-2 satellite is considered in [155]. The 
authors proposed a system that captures each modifica-
tion made to the original data set with the aim of being 
able to perform trace back and intermediate verification. 
In this design, data storage and data degradation problems  
still exist.

The synergy between blockchain and RS technologies 
is still fragile and sometimes divergent, but the dynam-
ics of technological interaction sustains an evolving sym-
biosis and finds RS use cases in space asset tracking [156] 
and space communications as well as precision agriculture 
[157], among others. A blockchain-based, RS data-sharing 
model seems to be an applicable service that generates 
properties like immutability, decentralization, security, 
credibility, and collective maintenance, which are indis-
pensable in communications among RS actors. 

CONCLUSIONS
As the availability of sensors producing high amounts of RS 
data has increased, new applications of RS have emerged. 
The requirement of rapid and effective solutions for the 
processing of this massive data has led to the extended use 
of parallel execution. This article introduced the HDCRS, 
which is a WG of the GRSS, founded at the beginning of 
2021, with the aim of promoting research, education, and 
job opportunities in the interdisciplinary field of RS and 
high-performance and disruptive computing. The key 
technologies involved in RS parallel computation—in 
particular, supercomputing, cloud computing, specialized 
hardware computing, QC, edge computing, and block-
chain—were also presented. The most recent literature 
shows that new research is rapidly maturing at the intersec-
tion of the very different disciplines of RS and HPC.
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