
PERSPECTIVES

117 DECEMBER 2020    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE

JENNIFER L. JEWISS, MOLLY E. BROWN, AND VANESSA M. ESCOBAR  

T his article considers the tremendous potential for 
satellite remote sensing information delivered via 

mobile digital applications to improve decision mak-
ing in emerging agricultural economies. Earth observa-
tions have been available for use in weather and other 
models to support decision making since the late 1970s, 
with the launch of the advanced very-high-resolution 
radiometer and the Landsat sensors [1]. Despite early 
recognition of the potential for satellite remote sensing 
to transform farm-level decision making, information 
from satellite data is still not widely used by farmers 
day to day except in highly mechanized precision agri-
cultural systems that represent a very small minority of 
farmers globally [2].

With the advent of cloud computing, high-speed In-
ternet, expanding rural cellular coverage, and powerful 
mobile devices, the potential to use Earth observations 
for improving agricultural decision making is grow-
ing. However, two key issues are less well understood: 
how information derived from satellite remote sensing, 
delivered via mobile phones, is used and how it can 
change agricultural outcomes outside Western contexts. 
Digital agriculture is a new industry combining data 
sources, such as Earth observations and weather data, 
with advanced crop and environment models to provide 
actionable on-farm decisions in low-income settings. 
According to market research, the digital agriculture sec-
tor is expected to reach US$23.14 billion by 2022, rising 
at approximately 20% a year [3]. This explosive market 
growth is primarily attributed to the increasing demand 
for higher crop yield, the growing penetrate of informa-
tion and communication technology into farming, and 
an increasing need for climate-smart agriculture.

This discussion focuses on organizations and indi-
viduals in agricultural value chains that are far from the 

data-rich environments of the United States and Europe 
but still need actionable, high-quality information to 
support decision making. A value chain is a series of ac-
tivities conducted by a set of actors that transforms raw 
materials into finished products, allowing for the gen-
eration of income. Figure 1 outlines how satellite remote 
sensing information can inform decisions made by vari-
ous actors at different points along the chain [4].

The challenge of feeding a growing global popu-
lation with a constrained resource base and rapidly 
changing climate underscores the need for enhanced 
labor efficiency and higher productivity in agriculture. 
In both high and low-income countries, digital tools 
delivered via mobile devices increasingly offer oppor-
tunities for farmers to receive and respond to informa-
tion. Given the growing global demand for food and 
a persistent yield gap between low and high-income 
countries [5], there is significant potential for relevant 
information derived from satellite remote sensing to 
transform decision making in agriculture [13]. Thus, 
to inform the development of future products and in-
struments in the Earth science sector, it is imperative 
to gain a better understanding of the use of satellite 
remote sensing information for decision making in 
emerging agricultural economies.

USES OF SATELLITE DATA WITHIN  
DIFFERENT SECTORS
Satellite data have the potential to transform agricul-
tural practices if they are made available to farmers 
and other important actors along the agricultural value 
chain in ways that support decision making in an ac-
cessible and effective manner. This is particularly true 
in countries with infrequently updated agricultural 
statistics and poorly developed supporting infrastruc-
ture—settings in which small farms dominate [9]. How-
ever, as the saying goes, “the devil is in the details,” and 
many details must be understood and a host of practical 
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 considerations addressed to provide accessible and effective 
decision support. The following discussion outlines the ways 
in which satellite data are positioned to support decisions 
by various actors, including farmers, agribusinesses and 
nongovernmental organizations (NGOs) that interface with 
farmers, agricultural processors, and banks that offer loans 
to farmers. Thereafter, we describe challenges that limit the 

use of remote sensing data and 
identify opportunities for ad-
dressing those challenges.

COMMERCIAL FARMERS
In emerging economies, ag-
ricultural and technological 
conditions are often vastly dif-
ferent from those in the Unit-
ed States and Europe. Howev-
er, a massive shift is starting to 
occur as digital technologies 
introduced into developing 

economies create new opportunities for farmers to utilize 
digital platforms that employ satellite imagery as a means 
of identifying individual plots and accessing data on culti-
vation activities and yields over successive planting seasons. 
In fact, a frequently overlooked contribution remote sensing 
can make in under-resourced areas is that of providing an 
accurate assessment of field size, which enables more precise 
purchasing and application of agricultural products such as 
fertilizers, herbicides, and pesticides in keeping with product 
specifications. The overuse and misuse of agricultural chem-
icals can be a significant source of negative health impacts, 
despite such chemicals’ contribution to improved yields [10].

Before delving into the types of decisions satellite data 
may support at the field level, it is important to acknowl-
edge that Earth observation data provide little to no direct 
decision-making support to smallholder farmers in Africa 

and Asia. Farmers in these settings often tend fields of less 
than one hectare in size, enabling them to directly moni-
tor their plots for any emerging problems and estimate 
yields [11].

For midsize and larger farms, satellite-based data deci-
sion support offers a number of benefits and may be paired 
with targeted agronomic guidance. The normalized differ-
ence vegetation index (NDVI) [12] from optical satellite 
data helps identify the location of unhealthy crops and 
excessive greenness that may represent a weed infestation. 
These signals can be used to trigger an alert that directs the 
farmer to assess the location in question.

The remote monitoring of crops often allows farmers 
to identify problem areas sooner than is possible through 
traditional scouting techniques, which require farmers or 
staff from a contracted scouting company to drive to the 
site and monitor conditions through binoculars and/or by 
walking through the field in a “W” pattern. Given the long 
distances a scout would need to walk, large farms spanning 
5,000–10,000 hectares or more are impossible to monitor 
through traditional scouting. With remote sensing-based 
information accessed through mobile apps, owners can 
monitor their lands from any location and alert their em-
ployees to respond as needed.

AGRIBUSINESS
In emerging economies, agribusinesses interface with farm-
ers through a diverse network of retailers. Through the sup-
ply chain, these large input providers sell seeds, fertilizers, 
pesticides, and herbicides to farmers around the world. In 
addition, global agribusinesses that produce seeds man-
age contractors that produce hybrid seed for resale. They 
also have demonstration fields where local farmers get dis-
counted seeds and chemicals in exchange for posting pro-
motional signs near their fields and letting the company 
host marketing events with neighboring farmers.
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FIGURE 1. The users of and decisions based on information derived from satellite remote sensing. Derived from Jones et al. [4]. NGO: 
nongovernmental organization. 
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Agribusinesses are increasingly using satellite-based 
information to become more proactive in monitoring and 
managing contracted fields, particularly because each of 
the company’s agronomists may be responsible for over-
seeing several dozen fields located hundreds of kilometers 
apart. Satellite-based information enables agronomists to 
be much more efficient via remote monitoring to identify 
the subset of fields in the most need of attention.

Some agribusinesses are also providing their customers 
with mobile apps, paired with variety-specific agronomic 
guidance, at no charge. Once farmers are given mobile 
tools that enable them to digitize their fields, company 
agronomists can provide guidance throughout the growing 
season—indicating when to apply fertilizer, insecticide, 
and herbicide and when to scout for potential problems. 
Some experts hypothesize that such services will result in 
substantial increases in yields and profits, ultimately re-
turning greater revenue to both farmers and participating 
companies, as farmers realize the advantages and increase 
their purchasing.

This level of integration and real-time interaction be-
tween input providers and farmers has the potential to 
help address the perennial challenges of delivering goods 
to farmers when and where they are most needed. As a 
remote sensing scientist at a digital agriculture company 
stated, “One of the biggest problems and least talked about 
issues providers face is getting the right product to the right 
place at the right time in the right quantity” [11]. Digital 
platforms that identify a farm’s location, along with the 
particular products the farmer needs at a given time, enable 
suppliers to strategically position their products and sales 
agents based on real-time data. Increasingly, it appears that 
digital extension is moving toward end-to-end digitization 
that promises to be mutually beneficial to farmers and in-
put providers, particularly in regions with relatively under-
developed commercial agricultural sectors.

Digital tools can also be used to compare farmers’ fields. 
If one farmer is growing sugarcane extremely well at 80–
90% of potential NDVI values and a nearby farmer’s field 
is at 70–75%, company agronomists can advise the latter 
farmer of management practices to boost yield, such as 
applying certain fungicides, insecticides, and fertilizers. 
These remote monitoring and advisory functions are key to 
improving yields in regions where information on appro-
priate management strategies is often lacking [13].

AGRICULTURAL PROCESSORS
Digital agriculture companies are developing partnerships 
with agricultural processors, such as sugar factories and rice 
millers, because their business processes could be greatly 
informed by remote sensing information. Some processors, 
such as sugar factories in India, operate with a dearth of in-
formation, including how much sugarcane is planted in their 
catchment area. At the beginning of harvest season, staff 
members of these factories do not know if they will receive 
the same volume of sugarcane as the previous year, twice 

that volume, or a small fraction thereof. Combining Earth 
observation data with field-level data provided by farmers 
through a mobile application gives processors much better 
estimates of the volume they can expect. Furthermore, if 
farmers follow recommended management practices, their 
yields can be expected to in-
crease, positioning both farm-
ers themselves and factories 
for greater profits.

Rice millers face similar 
challenges and have the po-
tential to realize comparable 
benefits from the use of sat-
ellite data. In addition to 
needing better estimates of 
the amount of rice they will 
receive after the harvest, the 
quality of the rice is critical 
for getting the best price in 
export markets. Enhancing 
quality production through the use of digital platforms 
that combine field monitoring and agronomic recommen-
dations benefits farmers and processors alike. Export-
ers source vast quantities of rice from contract farmers, 
spanning broad geographic regions, so it is critical to 
obtain reliable estimates of production totals. By devel-
oping specific protocols for each contracted farmer and 
uploading them to a digital app, exporters can ensure 
that the farmers receive this information via their mo-
bile phones on a regular basis. To enhance adherence 
to established protocols and demonstrate the applica-
tion of recommended products, farmers can be asked 
to provide geolocated pictures or take photos of quick 
response (QR) codes connected to a database and an ob-
ject, such as a telephone pole or tree, that  identify the 
location of the photographer.

BANKS THAT ADMINISTER AGRICULTURAL LOANS
The ability to observe farm fields and monitor farming prac-
tices through satellite data has the potential to greatly influ-
ence commercial lending. The increased transparency and 
accountability provided by remote sensing information can 
reduce uncertainty and benefit both lending institutions 
and farmers seeking loans. Banks can offer better terms for 
loans if they have a clearer picture of the risk. Two relevant 
categories of risk are weather and farmer negligence. Look-
ing at historical NDVI information alongside weather data 
for the plots of land under consideration, lenders can deter-
mine whether a lack of productivity was caused by extreme 
weather conditions, including natural disasters, or by farm-
er negligence. This simple form of analysis has long been 
available to lenders and is gradually being incorporated 
into some institutions’ decision-making processes.

Providing banks with crop growth-stage maps pres-
ents another promising use of Earth observation data. Al-
though this basic monitoring capacity has been available 
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for years [14], the key is linking plant health compared to 
its predicted growth stage to lending decisions. For instance, 
loan disbursements can be tied to appropriate crop growth 
throughout the growing season. Similarly, loan collection 
can be timed more precisely to the harvest date based on 
monitoring data. Bank representatives could check on field 
conditions by driving out to the fields to assess the situa-
tion in person. However, the time and expense required are 
cost-prohibitive. If the use of satellite data reduces the cost of 
 administering loans, financial services are poised to become 
a huge new market for digital agriculture companies [15].

In Africa, loan repayments are particularly low com-
pared to other regions [16]. Crop failures and other causes 
of underproduction lead to loan defaults in many instanc-
es. However, overproduction poses major problems as well. 
A bumper crop creates a glut and drops the price. If banks 
can predict this outcome with a small investment in remote 
sensing and prediction modeling, they are much better po-
sitioned to address the issue.

IMPROVING THE UTILITY OF SATELLITE  
REMOTE SENSING
It would be advantageous for governments to invest in 
launching more satellites that can provide higher-resolu-
tion imagery on more frequent bases. By reducing the cost 
of each sensor, the European Space Agency (ESA) and NASA 
could launch many more satellites, increasing the frequency 

of images available. By focusing on critical applications, 
such as agriculture, more appropriate data could be devel-
oped that meet the needs of this essential industry [17].

Information collected by unmanned aerial vehicles (also 
known as drones) flying at much lower altitudes can com-
plement satellite data gathered from space. For instance, 
drones can fly below the clouds and thus capture images 
under weather conditions that hinder data collection by 
satellite. However, the use of drones for data gathering is 
too costly to implement at large scales given the number of 
drones required to collect substantial volumes of data [18].

Enhancing the use of satellite data in emerging agricul-
tural economies will also require outreach activities that in-
troduce farmers to the benefits of decision support and ad-
dress data privacy and use concerns (Table 1). In addition, 
simplifying satellite-based mobile applications and deliver-
ing them in local languages would enable many more farm-
ers to access Earth observation information and apply it to 
field-level decision-making processes [19].

IMPLICATIONS FOR EMERGING  
AGRICULTURAL ECONOMIES
Satellite remote sensing data have been available to the 
agricultural community for nearly four decades. Although 
much has changed in agriculture during that time frame, the 
need for high-quality, specific guidance on how to monitor 
fields, understand regional changes in agricultural activity, 

TABLE 1. CHALLENGES AND OPPORTUNITIES FOR ENHANCING THE USE OF SATELLITE DATA IN AGRICULTURE  

CONTEXT TYPES OF DATA AVAILABLE LIMITATIONS OF USE OPPORTUNITIES

Government-provided  
free satellite data

They provide free coarse- or  
moderate-resolution optical, radar,  
precipitation, and temperature data. 

Free data do not provide sufficient spatial 
information necessary for field-level decision 
making. 

The low price point enables the 
development of sustainable  
business models.

Commercial satellite  
data

Very-high resolution (VHR) optical  
commercial imagery is available, but 
not for all agroecological regions.

The cost of commercial data is prohibitive 
for most farmer decision support using  
existing business models.

VHR data enable identification  
of small fields and buildings.

Atmospheric  
contamination

One form of data is radar data that can 
see through clouds, dust, and smoke.  
Another is atmospheric correction of  
optical vegetation data.

Limitations include challenges in interpreting 
radar data for the typical user and the  
inability to retrieve agricultural signals when 
there are many clouds during rainy season.

The growing availability of radar 
data sets will foster new  
applications for agriculture.

Frequency of  
observations

Most free satellite data provide images  
of a farm every three to 16 days. 

Limitations include daily observations 
preferred for growth stage and crop health, 
particularly in cloudy regions.

Data fusion using artificial  
intelligence will enhance the  
utility of data sets.

Ground information  
on agricultural  
productivity

Information includes a lack of  
geospatially referenced, field-specific,  
high-quality ground observations  
of crop type and yield.

Ground data are required for using satellite 
remote sensing directly in yield- and crop-
type classification models. 

The increasing penetration of 
mobile phones in rural areas  
will provide opportunities for 
data gathering. 

Expertise in  
remote sensing

Satellite data calibration, version,  
availability, and overpass time change  
as the sensor ages.

Limitations include the substantial expertise 
and experience necessary for downloading, 
processing, and subsetting.

New open source geospatial data 
platforms will allow affordable 
access to satellite data.

Accessing  
satellite-based  
AgTech tools

Data available include the requirement  
of Wi-Fi or cellular services and a  
smartphone or computer.

The digital literacy of marginal groups  
presents a substantial barrier to access.

The increased use of smartphones 
will greatly expand information 
on farm management.

Data privacy  
and use concerns

Data available include satellite data  
acquisitions and transformations to  
produce high-quality crop area  
and yield information by third parties.

Limitations include the fear of  
information being used for regulatory or 
economic purposes without permission.

Data provision and collection 
could become a new income 
source in regions with very poor 
data availability. 

AgTech: agricultural technology. 
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and improve yields continues to be critical. Particularly in 
regions that are data poor, satellite data are essential for en-
hancing the understanding of evolving production trends 
and climate-related disasters [20], [21].

Low-income countries that lack high-quality, high-reso-
lution agricultural statistics [22] depend on satellite remote 
sensing to better characterize their agricultural system. 
However, individuals who need field-level management 
advice and decision support encounter challenges find-
ing and accessing relevant data. Recent growth in satellite 
data availability, reductions in the cost and time required 
to transform large volumes of data, and the enormous ex-
pansion of mobile technologies in rural areas increase the 
likelihood that farmers will actually use satellite data for 
decision making.

Widespread need exists for high-quality, calibrated, and 
free satellite remote sensing to inform the development 
of high-quality statistics for use in agricultural decision 
making, particularly in the context of the United Nations’ 
Sustainable Development Goals (SDGs) and other interna-
tional targets. Earth observation data provide important 
information for national adaptation plans (NAPs), related 
to climate change that connect national commitments to 
achieving SDGs. The agricultural sector is particularly vul-
nerable to climate change, and it is thus critical that reli-
able information infrastructure, operating on national and 
regional levels, is available to support the effective imple-
mentation of NAPs.

Improving tools that can be used to access calibrated, 
cloud-free data comparable over multiple years is a pressing 
policy need. Given the urgent and ongoing requirement to 
improve agricultural productivity and efficiency across the 
world, agricultural applications, such as those discussed 
here, deserve priority as NASA and the ESA consider new 
sensors and investments [23].

A significant constraint to improving the utility of satel-
lite data is having access to ground-truth data to which the 
satellite imagery can be connected. Analytics, such as image 
segmentation, classification, feature extraction, and pho-
togrammetry, all need training data [24]. Fundamentally, 
crops look different in each country and region because of 
differences in soil color, row spacing, and field size. Without 
specific, comprehensive, multiyear training data from the 
ground, satellite data will remain a “nice to have” informa-
tion source but will not become central to decision-making 
processes at multiple scales for the private sector.

The cost of gathering, cleaning, and evaluating ground 
data and the issues of data ownership and privacy mean that 
no private and very few public organizations have shared the 
data they have despite widespread acknowledgment that this 
is important to advance the science [25]. There are a number 
of ongoing efforts to increase comprehensive ground data 
available in the public domain for use by scientists, notably 
by the Bill and Melinda Gates Foundation, but it will take 
a concerted effort to gather, analyze, distribute, and utilize 
the data in ways that are already widespread in regions with 

high-quality agriculture information, such as the United 
States and Europe. This is a critical need for improving the 
utility of satellite data for commercial agricultural systems. 
That said, publicly available satellite data will continue to fuel 
innovative businesses that le-
verage expertise in translating 
the raw data into public and 
private goods, improving pro-
ductivity across the agricul-
ture sector [26].

A great potential exists 
for remote sensing to be used 
within the financial services 
industry. Currently, there is a 
substantial gap between the 
need for financial services, 
including loans and commercial banking services, and the 
availability of those services to the millions of smallholder 
farmers [15]. Credit provided by informal and formal fi-
nancial institutions, as well as other value chain actors, 
currently meets only a quarter of the need for smallhold-
er finance in the regions of sub-Saharan Africa, Latin 
America, and South and Southeast Asia [27]. Agricultural 
insurance, which can be triggered directly with remote 
sensing observations, reaches just 10% of smallholders 
[28], [29]. Satellite remote sensing observations can be 
transformative in insurance companies’ ability to assess 
risk, trends, climate impacts, and yields across large areas 
for low cost. Future changes in the use of Earth obser-
vation data can significantly affect business outcomes in 
the financial sector.

As remote sensing data and technology continue to 
evolve, the awareness of user needs becomes increasingly 
important to inform the development of tools and prod-
ucts that will impact global agricultural value chains. The 
awareness of user needs has become indispensable in the 
data-rich environments of the United States and Europe, 
and this pattern is likely to hold true for emerging agri-
cultural economies. Realizing the potential societal value 
and impact of remote sensing data depends not only on 
the technology, delivery, and awareness of the satellite data 
themselves but also on relationships and trust with users in 
the agricultural community. 
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