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Guest Editorial
Special Issue on Emerging Converter Topology,

Operation, and Design Technologies

POWER electronics play a key role in the transition to
carbon neutrality. To enhance the performances of power

electronics systems, new theories and methods are entering the
field of power converter research, leading to increasing diver-
sity of the knowledge database regarding converter design and
operation methods. In addition to the conventional case-by-
case design methodology, new automated and generalized con-
verter design philosophies integrating topology derivation and
synthesis methods, optimal pulse-width modulation (PWM),
and advanced control strategies are gaining attention in both
academia and industry. By implementing these methods, the
converter design process can be greatly improved while the
potentials of various power converters can be fully explored,
leading to elevated converter performances.

With the increasing research volume in power electronics, it
is important to establish a comprehensive knowledge database
in order to expand the frontiers of power electronics research.
This special section serves this purpose with the objective to
collect the latest innovations in converter topology, operation,
and design methodologies.

In response to the call for articles, there is a total of
159 manuscripts submissions, including 97 original submis-
sion and 62 revisions. 41 articles were accepted for publica-
tion. The accepted articles can be generally classified into nine
groups, where short summaries of the accepted articles in each
group are included in the following sections.

A. Systematic Power Converter Topology Synthesis and
Derivation

In [A1], Gonzatti et al. propose a singular basic switching
cell complementary to the traditional canonical switching cell,
which can constitute SEPIC, Zeta converters, and Z-source
converters, and improve the understanding of the existing
converter relationships and inspire insights for new topological
developments and applications.

In [A2], Panigrahi et al. first quantify the number of
converter choices available for a given input and output
specification using the flux balance equation (FBE), and then
illustrate that it is possible to find out the total number of
possible FBEs. Once the FBEs are known, synthesizing a
converter can be carried out as an inverse problem, and three
different strategies to solve this inverse problem are presented
with critical synthesis results summarized.
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In [A3], Zhu et al. propose a non-isolated dc–dc high step-
up converter with passive switched-inductor-capacitor network
for the applications, such as battery-powered LED lighting sys-
tems and high-intensity mobile discharge lamps. The proposed
circuit can produce higher gain voltage with small duty cycle,
which decreases the voltage stress and conduction power loss
on the active switches.

In [A4], Ambagahawaththa et al. show a simple yet power-
ful topology synthesis method based on the low-entropy equa-
tions that reveal the connection between the energy-storing
elements and switches. The synthesis of multi-topology con-
verters using low-entropy equations has been demonstrated.

In [A5], Zhang et al. analyze the topology construc-
tion principles and propose a systematic approach to derive
multiple-input converters (MICs) and multiple-output convert-
ers (MOCs). A family of viable and optimized MICs and
MOCs with various characteristics derived from the typical
Buck converter is presented as an example.

B. Topology Study and Modeling of dc–dc, dc–ac, and ac–dc
Power Converters

In [A6], Martin et al. develop a dynamic model for a
low-inertia dc solid-state transformer formed by inductor-
less modular multilevel converters (MMCs) based on phase-
shifted square-wave modulation. The developed model explic-
itly defines the circulating energy and retains its accuracy
with an arm inductor-less operation. The predictive control
is designed to achieve fast dynamic control with reduced
computational burden.

In [A7], Deng et al. propose the generic analysis and design
of zero-voltage-switching (ZVS) multi-phase ac-dc converters.
Based on the proposed theory, a ZVS two-stage three-phase
photovoltaic (PV) inverter is investigated, which is regarded as
a five-phase converter. In addition, the extension of the ZVS
multi-phase converter in different applications is introduced.

In [A8], Saha et al. give an analytical expression-based mod-
ulation scheme for half-bridge matrix-based dual-active-bridge
(MB-DAB) converters, which is directly implementable on
a microprocessor and is capable of achieving near full-cycle
ZVS turn-on of all MOSFETs and unity power-factor (UPF)
operation.

In [A9], Strajnikov et al. establish analytical guidelines for
designing coefficients of PI controller, typically employed as
voltage loop compensator of power factor correction rectifiers
(PFCR). The proposed methodology allows concretizing the
commonly used “5–10 Hz crossover frequency, 45◦–70◦ phase
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margin” rule-of-thumb, typically utilized in application notes
of commercial PFCR controllers.

In [A10], Strajnikov et al. build the analytical expressions
linking the coefficients of the PI + Notch (PI + N) controller
with the improved dynamic performance merits for a given
value of dc-link capacitance. Corresponding dc-link voltage
loop gain phase margin and crossover frequency expressions
are derived, and the feasibility region of proposed design
guidelines is clearly indicated.

In [A11], Gensior considers the parallel-connected two-
level voltage source converters that share the same ac and
dc terminals. The converter currents are controlled using
hysteresis controllers such that a desired current distribution
among the parallel converters may be ensured. The proposed
approach shows lower semiconductor losses and grid current
harmonic distortion.

C. New Theories for Power Converter Topology Analysis,
Evaluation, and Operation

In [A12], Li et al. summarize the milestones and general
applications of the powerful mathematical tool, i.e., graph
theoretical approaches, and illustrate its unique benefits in
some emerging/challenging power electronics research topics,
e.g., systematic converter derivation and modeling, advanced
control, etc.

In [A13], Chen et al. propose a topology deduction method
based on reinforcement learning to gain the benefits of both
forward and inverse design. The proposed method uses a
neural network for forward design and takes a set of simple
rules to give rewards for reverse design. Thus, many existing
topologies are deduced, and some new topologies can be
found.

In [A14], Li et al. provide a systematic method to construct
types of quadratic converters. Almost all of the known non-
isolated quadratic converters with two inductors, two capaci-
tors, two power switches, and two diodes can be re-developed
by this method, but also many new topologies can be proposed.
Further, the proposed method can be extended to generate
cubic or nth-power converters.

In [A15], Bai et al. analyze the inherent limitation of
the four-switch buck-boost converter through inconsistent
frequency response and noncontinuous duty cycle operation
region aspects. Then, a model predictive control (MPC)
method characterized by tuning-free cost function is pre-
sented to achieve multi-mode control and smooth transition
simultaneously.

D. New Multilevel Converter Topologies for Various
Applications

In [A16], Paul et al. propose a reduced component staircase
(STC) type nine-level inverter designed with only two dc
sources, as well as it detailed performance analysis. The
proposed topology has a much lesser number of conducting
switches and higher efficiency, which can be extended to a
generalized multi-module staircase (MM-STC) inverter with
fewer dc sources.

In [A17], Zhu et al. present a new resonant modular
multilevel dc–dc converter based on the conventional boost

converter. The proposed converter has the inherent-balancing
capability of SM capacitor voltages without additional com-
plex balancing control.

In [A18], Wang et al. propose a dual-T-type modular
multilevel converter (TMMC) composed of stackable ad-dc-ac
power cells, where each cell consists of two high-frequency
T-type legs and one low-frequency switched common leg. A
coordinated modulation method is also proposed to address
the capacitor voltage balancing issue.

In [A19], Barzegarkhoo et al. propose a five-level grid-
connected transformerless inverter composed of an integrated
switched-boost module (SBM) as well as a switched-flying
capacitor (SFC) cell. The SBM is used to generate the five-
level output voltage with self-balanced capacitors, while the
SFC cell can achieve a quadratic voltage conversion gain of
the proposed converter.

E. Resilient Control and Fault-Tolerant Operation of
Multilevel Converters

In [A20], Fan et al. propose an enhanced three-arm alternate
arm multilevel converter (AAMC) for achieving dc fault ride-
through capability with reduced semiconductor power devices
compared to the hybrid MMC. The closed-loop control system
is designed to dynamically regulate the energy sharing between
dc and ac stacks.

In [A21], Wang et al. present a coupled-dc power module-
based cascaded multilevel converter integrating utility-scale
photovoltaic generations (CDPM-PV), and the proposed mod-
ulation strategy can not only ride through a larger range of
module mismatches but also improve solar power utilization
and system efficiency.

In [A22], Liu et al. present a new concept to evaluate the
over-modulation risk for the MMCs, namely, dynamic modu-
lation ratio (DMR), which can dynamically change according
to the variation of operating conditions and can reflect the
modulation characteristics more accurately.

In [A23], Wang et al. investigate the behavior of the modular
multilevel matrix converter (M3C) under open-circuit faults,
and propose a suitable fault detection criterion for the M3C
by transferring the observation errors of circulating currents
into specific values.

F. Multi-Physics Converter Analysis, Modeling, and Design

In [A24], Ranjram et al. propose a modeling approach that
enables the circuit representation of a “coupled electronic
and magnetic system” (CEMS) to be directly extracted. The
proposed approach is suitable both for assessing the finer
details of the variable inverter/rectifier transformer and other
fractional-turn transformers, and as a framework for deriving
and understanding new CEMS implementations.

In [A25], Loureiro et al. present a design methodology for
creating a set of high-voltage gain dc–dc converters, which
is based on ladder switched capacitor with coupled inductor.
Detailed evaluations about the derivation of each topology and
comparative analysis among the main features of eight high-
voltage converters are included.

In [A26], Boles et al. systematically enumerate isolated
and non-isolated dc–dc converter topologies and switching
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sequences capable of efficiently utilizing piezoelectric trans-
formers as their only energy storage components. The pro-
posed switching sequences maintain high-efficiency behaviors
across wide voltage gain and load ranges.

G. Optimized PWM Strategies for Various Converter
Topologies and Applications

In [A27], Won et al. study the multi-cell series-parallel
converter and propose an optimized multi-carrier PWM strat-
egy to avoid unwanted modes. By modifying the multi-carrier
waveforms, the proposed PWM can ensure frequent parallel
connectivity to improve balancing effect while preserving
simple current control implementation.

In [A28], Li et al. propose a phase-disposition PWM
(PDPWM)-enabled model predictive control (MPC) for a nine-
level inner-interleaved hybrid multilevel converter (9L-IHMC),
which can achieve optimal current tracking, capacitor volt-
age balance, and the mitigation of circuiting currents
simultaneously.

In [A29], Cheng et al. propose a modified carrier redis-
tribution PWM (CRPWM) for a five-level stacked multicell
converter (5L-SMC), based on exchanging the arrangement of
the carriers of PDPWM. The proposed method can achieve
natural balancing of both the dc-link and flying capacitors
(FCs), with the same harmonic performance of the line-to-line
voltage as the conventional PDPWM.

In [A30], Qin et al. propose a hybrid space vector mod-
ulation (SVM) for a three-level quasi-Z-source inverter. By
properly categorizing and selecting the voltage vectors, the
proposed method can reduce both the amplitude and frequency
of the common-mode voltage (CMV), control the neutral-point
voltage, and boost the dc-input voltage simultaneously.

In [A31], Ma et al. propose a dual-mode modulation
scheme by combining the PWM and nearest level control
(NLC) modulation for MMC, to address the dc current
fluctuation issue under NLC modulation with the circuit-
ing current suppression controller. The mechanisms of the
dc current fluctuation of MMC under NLC modulation
is also modeled and analyzed comprehensively in this
article.

In [A32], Wu et al. propose a modified carrier-overlapped
PWM (COPWM) for a four-level nested neutral-point-clamped
converter to address the FC voltage fluctuation issue under low
fundamental frequency. The proposed method can balance the
FC voltages naturally over each switching period. A dead-
time compensation method is also developed to eliminate
the dead-time induced voltage spikes under this proposed
COPWM.

H. Application of Wide Band-Gap Devices With Multilevel
Converters

In [A33], Zhang et al. propose a low-voltage low-loss
active reflected wave canceller (ARWC) for medium-voltage
SiC-based motor drive with a generalized multilevel converter
topology, where the example of a single-phase SiC-based
three-level active neutral-point-clamped (3L-ANPC) inverter
is used to elaborate the proposed ARWC.

In [A34], Guo et al. propose a self-voltage balanced
3L-ANPC inverter with hybrid Si/SiC configurations, where
two switches operate at low switching frequency and four
switches operate at high switching frequency. Besides, the
problem of inrush currents during capacitor voltage balancing
and the false-triggering issue of the high-frequency switches
are discussed and addressed in this article.

In [A35], Han et al. propose a multilevel active power filter
(APF) under a multi-carrier-based PWM to suppress the CMV
in multilevel inverter systems, where a five-level ANPC type II
converter with SiC MOSFETs is used for illustration. The
proposed APF can inject an output voltage that is equal to
the CMV generated in the multilevel inverter system, thus the
overall CMV can be attenuated effectively.

I. Optimal Design and System Level Integration of Power
Converters in Utility Grid, Distributed Energy Resources,
Electric Vehicles, etc

In [A36], Shah et al. propose an integrated power con-
verter (IPC) with driving/charging capabilities for four-phase
switched reluctance motor (SRM) drive-based electric vehicle
(EV) application. With the proposed IPC, only two current
sensors are employed for measuring phase currents under all
operating conditions.

In [A37], Pan et al. develop the power ramp-rate control
(PRRC), power limiting control (PLC), and power reserve con-
trol (PRC) strategies for series-PV-battery systems, where the
power ramp-rate/limiting/reserve constraints are maintained by
the coordinated control of individual converters.

In [A38], Nair et al. propose a novel method for instan-
taneous neutral-point balancing for a six-phase stacked mul-
tilevel inverter-fed induction motor (IM) drive. The results
ensure that the proposed method for zero instantaneous neutral
point current is valid for both steady-state and transient
conditions of a six-phase IM drive using the stacked multilevel
inverter.

In [A39], Pourgharibshahi et al. illustrate the practical
implementation of Y-Matrix Modulation for a medium volt-
age grid-tie switched-capacitor modular multilevel converter
(SC-MMC) with a middle submodule. Y-Matrix generation is
simplified using a less computationally demanding method and
Y-Matrix modulation for a four-submodule SC-MMC with a
middle submodule is demonstrated.

In [A40], Foray et al. investigate the design of a low-
cost 800–12 V, 4-W-isolated dc/dc converter for automotive
applications. In particular, a selected topology based on a
multilevel FC stage is analyzed. The converter operating mode
selection is studied and simulation results reveal the interest
in operating at the limit of the ZVS mode.

In [A41], Badawi et al. investigate the utilization of the four-
switch three-phase inverter (FSTPI) active front end (AFE)
in a medium-voltage regenerative cascaded H-bridge (CHB)
drive. The challenges of this application, e.g., capacitor volt-
age balancing and input current harmonics in grid-connected
scenarios, are analyzed in detail in this article. Solutions are
also proposed to address those challenges.
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The Editorial Team hopes that this Special Issue will
provide readers with new inspirations for research and will
encourage them to make further progress in topics related
to power converter topology, operation, and design method-
ologies. The Editorial Team believes that in the long term,
extensive research in this field will strongly push innova-
tion forward, accelerating the industrial applications of more
advanced power converter topologies and their optimal control
and operation schemes.
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