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ABSTRACT Established approaches to assuring safety-critical systems and software are difficult to apply to
systems employing ML where there is no clear, pre-defined specification against which to assess validity. This
problem is exacerbated by the “opaque” nature ofMLwhere the learnt model is not amenable to human scrutiny.
Explainable AI (XAI) methods have been proposed to tackle this issue by producing human-interpretable repre-
sentations ofMLmodels which can help users to gain confidence and build trust in theML system. However, lit-
tle work explicitly investigates the role of explainability for safety assurance in the context of ML development.
This paper identifies ways in which XAI methods can contribute to safety assurance of ML-based systems. It
then uses a concrete ML-based clinical decision support system, concerning weaning of patients from mechani-
cal ventilation, to demonstrate how XAI methods can be employed to produce evidence to support safety assur-
ance. The results are also represented in a safety argument to show where, and in what way, XAI methods can
contribute to a safety case. Overall, we conclude that XAI methods have a valuable role in safety assurance of
ML-based systems in healthcare but that they are not sufficient in themselves to assure safety.

INDEX TERMS Explainability, machine learning, safety assurance

I. INTRODUCTION

In healthcare, machine learning (ML) is used on various prob-
lems, e.g., learning optimal treatments, or to detect abnormali-
ties in radiology images, where it has achieved outstanding
performance. However, assuring safety for such systems
employing ML remains a challenge. In many domains there
are well-established approaches and standards for assuring
safety-critical systems and software. Assurance means estab-
lishing justified confidence in the system for its intended use.
The assurance principles underlying these standards include
validating that the system works as intended and verifying
that the system meets explicit safety requirements. These
assurance principles remain essential for systems employing
ML. However, the details of these approaches and standards
can be difficult to apply where systems useML.
First, the established approaches are based, implicitly or

explicitly, on the V life-cycle model moving from require-
ments, through design onto implementation then testing. In
contrast, the development of ML-based systems follows a
very different, much more iterative, life-cycle with four main

phases: data management, ML algorithm selection, model
learning, and model verification & validation, which makes it
hard to apply established methods. Some emerging standards
and guidance better reflect the ML life-cycle, e.g., the US
Federal Drug Administration (FDA) proposed regulatory
framework on AI/ML-based Software as a Medical Device
(SaMD) [1] and Assurance of Machine Learning for Autono-
mous Systems (AMLAS) [2].
Second, because of the “black box“ (opaque) nature of the

ML models [3], it is hard to assess what has been learnt,
which exacerbates the challenging of defining concrete
requirements for the safety of SaMD in its clinical context.
Instead, human performance is often used as a “gold stan-
dard” and the current practice is often to (seek to) achieve
performance that is better than humans. This makes valida-
tion difficult as human performance is variable both from
individual-to-individual and over time for a single individual.
Also, performance will vary from patient-to-patient, e.g., with
comorbidities, and clinicians might not agree on the best treat-
ment strategy.
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To overcome such problems, the ML community is
actively studying “explainablity,” which is intended to “peek
inside the black box” and to illuminate the underlying work-
ings of the ML models. Explainability is often equated with
producing explainable artificial intelligence (XAI) methods,
which seek to provide human interpretable representations of
ML models [4]. Although there is considerable variation in
the definition of terms such as explainability, interpretability
and transparency, in this paper we adopt the view from the
FDA AI/ML-enabled Medical Devices Transparency Work-
shop [5] that explainability is one component of transpar-
ency. Transparency is a much broader concept in their
definition and we see interetability as a necessary facet of
explainability, as suggested by Gilpin et al. [6].
In this paper we consider the role of explainability in

assuring the safety of ML models in healthcare. Our focus is
on development activities and deployment decisions for ML-
based systems, but we briefly consider the potential role of
explainability in operations.
The primary contributions of this paper are as follows.

First, we developed a new conceptual model, a spider dia-
gram, which gives a heuristic view of safety and shows how
safety, as a cross-cutting concern, relates to other aspects of
an ML-based system, including the role of explainability.
Then we show how to assure safety by meeting relevant reg-
ulatory requirements, especially from the FDA. In particular,
we show how XAI methods can be integrated into the differ-
ent phases of model development and what types of XAI
methods best provide safety evidence to meet the regulatory
requirements. Finally, we present a concrete case study to
illustrate the use of XAI methods in supporting a safety case
for ML systems.
The rest of the paper is structured as follows. Section II

identifies relevant related work. Section III outlines the
potential role of XAI methods in the ML life-cycle. These
possibilities are then investigated in Section IV using an
example of weaning patients from mechanical ventilation.
This is followed by a discussion and conclusions in
Sections V and 6, respectively.

II. BACKGROUND & RELATEDWORK

This section discusses established approaches to assurance of
safety-critical systems and identifies their limitations when
dealing with systems employing ML. This is followed by an
introduction to the concepts of explainability and an over-
view of the different types of XAI methods.

A. ESTABLISHED ASSURANCE APPROACHES AND

THE CHALLENGES OF ML

We use the term assurance to mean confidence that the sys-
tem behaviour is as intended in the environment of use,
where as intended includes being safe. In this context, we are
interested in assurance of patient safety when ML-based sys-
tems are used in a healthcare context.
Most approaches to assurance emphasise verification and

validation, although the definitions of the terms can vary. The

International Medical Devices Regulator Forum (IMDRF)
define the terms as follows:

� Verification – confirmation through provision of objec-
tive evidence that specified requirements have been
fulfilled [7];

� Validation – confirmation through provision of objec-
tive evidence that the requirements for a specific
intended use or application have been fulfilled [7].

To interpret these definitions we can say that validation is
concerned with building the right system, including defining
requirements that meet our intent and that verification is con-
cerned with building the system right by demonstrating that
the system meets these requirements. Verification and valida-
tion (V&V) need to encompass identified safety require-
ments, which are often derived to control the risk associated
with hazards, i.e., undesirable situations that pose risk to life.
Typically, risk is a combination of the likelihood and the
severity of the harm arising from the hazard, although the
detailed computations vary from domain to domain. Where
risks are deemed too high, derived safety requirements
(DSRs) are identified to reduce the likelihood of hazard
occurrence, e.g., by controlling hazard causes, or to mitigate
the consequences of the hazard should it arise. In healthcare,
such ideas underpin some of the relevant standards, e.g., [8]
produced by NHS Digital in the U.K.
We have previously investigated how to adapt traditional

safety engineering processes to healthcare systems which
employ ML. We have shown that, in some cases, it is possi-
ble to adapt classical safety methods to identify hazards and
then to establish DSRs on the ML elements of systems [9].
Clinical judgement is also needed to produce such DSRs.
Where requirements are not stated explicitly, XAI methods
can help by providing explanations that enable direct valida-
tion of the ML model as a whole, e.g., showing that predic-
tions are based on valid clinical factors and are consistent
with clinical knowledge.
In many domains, including healthcare, it is accepted good

practice for the safety work to culminate in the production of
a safety or assurance case, see [8]. In general, a safety case is
“an argument, supported by evidence, that a systems is safe
to be deployed in its context of use”. It is common to express
the argument graphically, e.g., using the Goal Structuring
Notation (GSN) [10], as a means of making the argument
clear and open to review. The evidence underpinning the
safety case includes the results of hazard and risk analysis, as
well as the outputs from V&V activities and in this paper we
will show that XAI methods can also provide such evidence.
There are a number of initiatives concerned with the assur-

ance of ML in safety-critical systems both in healthcare and
more generally. For example, AMLAS defines a process for
assurance of the safety of ML-based systems to reflect the
ML development life-cycle, which identifies both evidence
artefacts and argument patterns (standard forms of argument
that can be instantiated for a particular system) in GSN.
AMLAS also considers issues of the robustness of ML-based
systems, e.g., response to unexpected inputs. The FDA also
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proposed a total life-cycle regulatory approach for ML-based
SaMD [1]. However, these approaches are evolving in that
they provide good high-level guidance and objectives, but
how to meet such objectives is not sufficiently detailed. The
work we present here is intended to be complementary to,
and build on, these approaches and shows how XAI methods
can provide evidence to meet these objectives, and thus con-
tributes to improving their maturity.
In addition, it is always desirable to consider assurance

“through life,” as proposed by the FDA [1], not just as an
activity undertaken prior to deployment. This includes get-
ting feedback from operations to check whether or not the
assumptions made in pre-deployment assurance activities are
sound. This is even more important for ML-based systems
than it is for “conventional” systems because of the opacity
of ML models.

B. EXPLAINABLE AI METHODS

ML includes a range of different methods such as decision
trees, support vector machines and neural networks (NNs).
The study of XAI methods seeks to provide insight into how
and whyMLmodels make such predictions.Work on explain-
able AI includes formalising definitions of explainability,
development of XAI methods themselves and establishing
evaluation methods. In this section we provide a brief over-
view of XAI methods. For a more complete view of XAI,
please refer to some well-cited surveys, e.g., [6], [11]. There
are many different ways to categorise XAI methods, e.g., local
or global based on the scope of the explanation or model
agnostic or specific based on whether the XAI methods can
work for any class of ML models or only work for a specific
class of models. Here we adopt the taxonomy of XAI in [11]
and present XAI methods in two different classes based on the
explanation generating mechanism, as shown in Table 1.
Some ML models are perceived as intrinsically interpret-

able to the user, so we refer to these as interpretable models.
This includes linear/logistic regression, decision trees, K-
nearest neighbours, decision rules, Bayesian models, general

additive models (GAMs), etc. Note that, although often these
models are viewed as intrinsically interpretable, when the
number of input features are beyond human ability to grasp
or when the input features are heterogeneous which is not
uncommon in healthcare, it can be difficult for humans to
interpret the model and care needs to be taken [12].
When it comes to explaining more complex or opaque ML

models, e.g., support vector machines, tree ensembles, and
NNs, which are not intrinsically interpretable, a post-hoc
explanation can be used to provide insights without knowing
the mechanisms by which the model works. We present four
main post-hoc explanation classes as follows along with
some popular techniques as illustrations.

� Explanation by approximation aims to use surrogate
models, e.g., linear models, decision trees or decision
rules to approximate the underlying complex or opaque
model. These can include local or global surrogates
depending on whether they are approximating a single
prediction or the whole model. For example, LIME
(Local Interpretable Model-Agnostic Explanations) [13]
focuses on training a local surrogate to provide explan-
ations for an individual prediction, which is based on
the assumption that it is possible to fit a surrogate
model around a single input sample that mimics the
local behaviour of the complex ML model. Like LIME,
Anchors [14] deploy a perturbation based strategy to
generate local explanations for predictions in a local
region resulting in if-then rules. In contrast, model
extraction proposed in [15] trains a global surrogate to
approximate a complex model. The three methods men-
tioned above are model-agnostic so they would also
work for NNs.

� Explanation by example explains the ML model by
selecting particular instances from the dataset or by cre-
ating new instances. It comprises counterfactual exam-
ples, adversarial examples, influential instances and
prototypical examples. Counterfactual examples can be
thought of as “what is not, but could have been” and
are intended to produce a sparse human-interpretable
example by changing some input features to achieve a
different output, i.e., the user’s desired output (what
could have been). Adversarial examples are typically
generated by adding small, intentional perturbations to
the input features to cause an ML model to make an
incorrect prediction. Adversarial examples are intended
to deceive the ML model instead of interpreting the
model. Therefore, the changes in the inputs are often
imperceptible for a human observer. Influential instan-
ces are intended to identify which input instances have
a strong effect on the trained model. They can be identi-
fied by measuring the impact of a training point on a
particular prediction or on the model overall. Prototypi-
cal examples can summarise and represent a complex
underlying data distribution, which then can be used to
provide a global understanding of the model by exam-
ining prototypes along with their model predictions or a

TABLE 1. Categorisation of XAI methods with examples
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local explanation for a specific instance by identifying
the most similar training instance according to the
trained model. This is different to influential instances
because the training example might be influential but
not representative.

� Feature relevance explanation techniques rank or score
the input features based on their influence, relevance or
importance on the model prediction where higher
scores mean that the corresponding features are more
important for the model. Such scores are often obtained
by perturbation or gradient-based methods. For exam-
ple, SHAP (SHapley Additive exPlanations) [16] is one
of the perturbation methods based on Shapley values,
which are used to explain a model prediction by treat-
ing input features as the players in a cooperative game
and the model prediction as the gain resulting from
the game. It includes KernelSHAP, a model agnostic
weighted linear regression approximation of the exact
Shapley value inspired by LIME, and TreeSHAP, a
model-specific efficient estimation approach for tree-
based models. The work on SHAP has wider signifi-
cance as it has defined a new class of additive feature
importance measures, unifying several existing XAI
methods [16].

� Visual explanation techniques aim to facilitate model
understanding by using visualisation, e.g., showing
how features interact with the predicted output or other
features. Such methods can involve using sensitivity
analysis (SA) or partial dependence to inspect the rela-
tionship between the uncertainty in the predicted output
and its input features, e.g., [17] presented several visu-
alisations for the SA results and [18] introduced Indi-
vidual Conditional Expectation (ICE) to show how the
prediction of a particular instance changes along with
the input features.

Due to the popularity of deep learning (DL), a different
classification scheme for XAI in DL is proposed by Gilpin
et al. [6], and it is often treated as a subfield of XAI per se.

� Explanations of deep network processing. This can be
achieved by producing a “saliency map” which is a ren-
dering of weights for the input features that highlight
the salient features for the prediction. A “saliency map”
can be produced by perturbation-based methods, e.g.,
LIME, or by calculating the gradient of the output with
respect to the input, identifying which parts of the input
have a significant influence on the classification [19].
Due to some limitations of directly using gradients,
e.g., saturation, there are also a number of other meth-
ods proposed, for example, Integrated Gradients [20],
LRP [21], and DeepLIFT [22].

� Explanations of deep network representations. This
type of explanation aims to inspect what the model
learnt. Feature visualisation [23] is helpful to under-
stand how an NN builds up its understanding of input
images throughout the network by maximising activa-
tion for the unit of interest, e.g., a specific neuron, or a

specific layer, or a convolution channel. Further, there
are concept-based methods, e.g., TCAV [24], attempt-
ing to detect concepts that are human-interpretable but
embedded within the latent space learnt by the network.

� Explanation-producing systems. For example, attention-
based networks learn a function by providing weights of
the input or internal features of a NN in order to force
the model to attend to the important regions with respect
to the target task. Although the attention-mechanism
could render an attention map to provide some insights
or intuitive feeling of the model, it is important to note
that the interpretation of attention as explanation is cur-
rently the subject of debate [25], [26].

Some further details on XAI methods we have used in our
case study are included in Section IV.

III. THE ROLE OF EXPLAINABILITY IN SAFETY

ASSURANCE

Assurance of safety is a multi-faceted, multi-dimensional con-
cern. We start by presenting our new conceptual model as a
spider diagram to show the role of explainability in safety
assurance generally, and how this relates to regulatory
requirements. Then, we exemplify how explainability can
contribute to safety assurance in the context of the ML life-
cycle.

A. EXPLAINABILITY AND SAFETY

Figure 1, which we refer to as the spider diagram, shows the
different aspects of a ML-based system, e.g., performance
and explainability, that relate to safety in its context of use.
This illustrates that safety is a cross-cutting concern, rather
than being a separate dimension. Figure 1 gives an impres-
sion of safety, where safety is related to six dimensions of
ML-based systems and the area within the hexagon can be
viewed as a heuristic evaluation of safety. Note that the
dimensions in Figure 1 are not exhaustive; we have chosen
them as they provide a good engineering perspective.

FIGURE 1. Spider diagram illustrating the role of explainability

and safey.
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Performance of the ML can be assessed using accuracy or
other metrics, which are well known. Data management for
ML is crucial as the quality of data has a significant impact
on the model learnt, e.g., if the data is biased, then the model
might also learn discriminatory behaviour or even amplify it.
Human-machine interface is also very important for safety as
certain types of interface can be prone to human operator
errors. Here we think of Robustness as the model prediction
being stable, particularly in the presence of small variations
in the input features. Explainability can be achieved using
intrinsically interpretable models or post-hoc XAI methods.
However, explanations of intrinsically interpretable models
are more accurate than post-hoc XAI methods, in the sense
that they have high fidelity to the task model, and this has
led to some authors suggesting that only such models
should be used for safety-critical tasks [27]. Finally, Other
safety specific controls can be thought of as means to satisfy
DSRs at the system level, which are not covered by the
above dimensions. This is task dependent, e.g., in an online
healthcare triage system, it is important to have a safety net
where specific words should trigger an emergency response
rather than continuing to ask questions. As shown in
Figure 1, performance also matters for safety but if an
intrinsically interpretable model can achieve similar perfor-
mance to a “black box” model, then the interpretable one
should be preferred.
To draw the spider diagram for a particular ML-based sys-

tem requires metrics for the different dimensions. Perfor-
mance is readily quantified, but it is less obvious how to
measure or quantify the other dimensions; we return to this
issue in Section V. In theory, if we could identify all the rele-
vant dimensions and quantify the area in the spider diagram
this would give a good basis for safety assurance. In practice,
regulators are defining regulatory requirements with the
intent that if these requirements are satisfied, the system can
be approved as safe enough to be marketed.
In the next subsection, we focus on explanability and fur-

ther investigate how it can contribute to safety in the context
of the ML life-cycle, and show how the evidence generated
by XAI methods can contribute to meeting the relevant FDA
regulatory requirements.

B. EXPLAINABILITY IN THE ML LIFE-CYCLE

The development process for ML typically includes data
management, ML algorithm selection, model learning and
model V&V [2], as shown in Figure 2. Figure 2 makes
explicit the need for a deployment decision prior to operation
(which may be supported by a safety case). It also shows the
stakeholders who might be interested in the explanations in
the different phases. Our focus here is on the development
activities, but we briefly consider the potential role of
explainability in operation, see Section III; for a discussion
of the wider role of explainability including incident and
accident investigation see [28].
The rest of this section discusses the role of explainability

for each stage of the process shown in Figure 2.

1) DATA MANAGEMENT

The first phase of theML development process is data manage-
ment, and this aligns directly with the spider diagram. Most
XAI methods are not applicable to this stage but prototypes are
relevant; they can help to understand the datasets especially
when the datasets are large and complex, although prototypes
can also be used to approximate the learnt model [29].
The Royal Society’s Policy Briefing on XAI emphasises

that data quality and provenance is part of the explainability
pipeline, specifically saying that “Understanding the quality
and provenance of the data used in AI systems is therefore
an important part of ensuring that a system is explain-
able” [30]. This includes showing that the data comes from
appropriate sources for the problem addressed. A widely
accepted, harmonised framework for assessment of Elec-
tronic Health Record (EHR) data quality highlights confor-
mance, completeness and accuracy [31]; we prefer accuracy
to the original term plausibility because plausibility means
that the values are in the possible range but accurate means
that the data is not only possible but correct. These criteria
would be applicable to any ML systems developed using
EHR data. Further, we also identify data relevance and bal-
ance as being particularly important to ML model develop-
ment [2]. As real world data may contain biases, errors, or be
incomplete, explaining how these five criteria are met can be
at least as important as explaining the ML model itself.
The evidence to ensure data quality is essentially technical,

for example data conformance would include showing that
data observes defined formats, e.g., correct units for
weight [31]. However, demonstrating data relevance and
data balance would include a judgement that the training data
contained clinically relevant factors and are balanced for the
problem being addressed. We acknowledge that often it is not
possible to choose data that gives both feature balance and
class balance. Instead, it might be useful to explain that some
important features are reasonably balanced, e.g., gender, if the
model is intended to be used for both male and female
patients. Class balance has long been an active research area
in the ML community. In the case of skewed dataset, proto-
types can be generated to understand the data distribution and
can be used to train a model. There is evidence showing that

FIGURE 2. Process for development and use of an ML System.
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using prototypes can help with class balance. For example,
Gurumoorthy et al. [32] have demonstrated that using good
prototypes to train a model can give better performance than
using the whole dataset or randomly sampled subsets to bal-
ance the classes.
It should be noted that data management is both crucial

and labour intensive. Indeed, it may consume more effort
than the rest of the ML life-cycle. Judgement of the extent to
which the data meets these five criteria would be used to
assess an AI/ML system in the data management dimension
in the spider diagram.

2) ML ALGORITHM SELECTION

The second phase in the development process is ML algo-
rithm selection (also referred to as model selection, here we
use the term ML algorithm selection to avoid the confusion
with model selection in the training phase where the ML
algorithm is the same but hyperparameters of the model are
tuned to be different). It is important to understand what kind
of problem is being addressed and what kind of ML methods
are suitable for the problem at hand, e.g., classification,
regression, or finding an optimal policy. Another important
aspect to consider at this stage is the explainability and per-
formance dimensions of the ML model as shown in the spi-
der diagram. In Section II we identified that some ML
models are intrinsically interpretable whereas others need to
be supplemented with post-hoc XAI methods. Guidelines on
ML algorithm selection, balancing model performance
against explainability, have been proposed [33].
When it comes to ML algorithm selection, safety require-

ments are often implicitly transformed into explainability and
performance requirements. Note that sometimes people make
statements such as “use of deep NNs is not safe”. When they
make this kind of statement, they are implicitly making the
judgement that deep NNs are opaque, i.e., not interpretable.
The spider diagram helps to show that this is over-simplistic.
There is no binary choice “opaque/interpretable,” rather
explainability and performance are two of the dimensions;
both matter for safety in an AI/ML application. This is why
we argue that safety requirements are partially, but not wholly,
transformed into explainability requirements. It would be
ideal to have an interpretable model which can achieve perfor-
mance as high as black box models. When this is not the case,
a trade-off between explainability and performance would be
necessary [33] and post-hoc explanations should be consid-
ered either in later phases of development or in operation to
produce effective explanation. The rationale for the ML algo-
rithm choice, including the performance-explainability trade-
offs, needs to be documented in the safety case.

3) MODEL LEARNING

The third phase in the development process is model learn-
ing. The essential aim of this stage is to train a “good”model,
and performance and robustness are especially important at
this stage. For model learning, hyperparameter selection, loss
function definition and class balance need to be considered

in order to meet safety requirements. In addition, XAI meth-
ods can have a role in improving both performance and
robustness, e.g., through model debugging and adversarial
training.
Automated robustness improvement – adversarial exam-

ples are often added to training data to improve model
robustness in object classification tasks. This is referred to as
adversarial training or robustness training [34]. There are
many techniques for generating adversarial examples, e.g.,
by minimising the distance between the adversarial example
and the input instance, which is similar to counterfactual
examples (see Section III for more discussion). Popular dis-
tance metrics include: L0, L1, L2 and L1, all of which are Lp
norms [35]. L0 counts the number of features that have
changed between the two instances, L1 measures the sum of
the magnitudes of the change, L2 measures the euclidean dis-
tance between the two instances, and L1 measures the maxi-
mum change among all of the features. Use of adversarial
examples to improve model robustness is becoming wide-
spread in domains such as autonomous vehicles, for example
in improving performance at reading road signs under
adverse conditions, but we believe it has wider applicability,
e.g., for image classification in radiology.
“Model debugging” – influential instances are useful as

they can help to understand model behaviour, specifically
they can help to debug domain mismatch or fix problematic
training instances where the label or input features might be
incorrect [36]. We can investigate influential instances for a
specific prediction or for the model overall. For example,
when the test instances are being misclassified by the model,
we can identify the most responsible training instances for
such instances. This enables exploration of the causes of the
problem, e.g., errors in the training instances, or domain mis-
match, i.e., poorly represented subgroups in the dataset, which
can therefore be unduly influential. Domain mismatch is not
uncommon in healthcare as the population from the intended
use hospital can be very different from the population used for
developing the model. Further, we can also investigate the
most influential training instances for the model overall, e.g.,
we can assess the influence of removing a certain training
instance on the model by measuring the change in loss of this
training instance before and after it is removed; the bigger the
change in the loss the more influential the instance. Intuitively
if the model has to “try hard” to accommodate the instance,
then that instance is highly influential. In reality, labels in the
training dataset can be noisy and it is unrealistic to expect
human experts to manually review all of the data. In this case,
it is useful to investigate the most influential instances for the
model overall to direct the human experts’ attention to the
instances that actually matter.
Two approaches for identifying influential instances are

often used – deletion diagnostics and influence functions.
Deletion diagnostics is not practical for big training datasets
as it needs to remove a single training instance every time to
observe the effect of this instance until the effect of all of the
training data has been observed. However, influence functions
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can be used to approximate the effect without deleting the
training instance (see Section IV for details).
In addition to the uses of the two XAI methods described

above, current research is also exploring how to guide the
learning process to enable the models to produce the desired
form of explanations, for example by including explainable
regularisers in the loss function. In [37], the authors penalise
the gradient of a NN to force it to focus on regions which con-
tain important information for the task. Others are exploring
how to penalise the neighbourhood fidelity [38] in order to
improve the quality of the explanation. This is an important
research direction, but it relies on understanding what consti-
tutes a good explanation and what metrics enable the “good-
ness” of the explanation to be evaluated, e.g., neighbourhood
fidelity or stability [38]. We expect such methods to be signifi-
cant for safety assurance, once the understanding of what is a
good explainable regulariser is more mature, which depends
on progress in the domain of explainability itself.

4) MODELVERIFICATION AND VALIDATION

The final phase in the development process is model V&V.
We believe that explainability has a particular role in valida-
tion, but could also have a role in verification if there are spe-
cific explainability requirements to verify. However, such
explainability requirements need to be defined in a specific
situation, therefore our focus here is on validation. We
derived three distinct objectives, reconciling approaches pro-
posed by the FDA [1] and the IMDRF [7], which reflect key
criteria for use of ML models in healthcare, although we note
that explanations cannot guarantee that all these criteria are
met [33].
First is performance, which can be measured using stan-

dard ML practices, e.g., evaluation of the proportion of false
positives and false negatives, or the AUC-ROC. This is nec-
essary but not sufficient to assure safety of ML.
The second objective is analytical or technical validation,

showing that the software for the ML models is correctly
constructed, and that it is accurate and reliable. Further, the
ML model implementations produce repeatable results, giv-
ing the same predictions from the same inputs. This objective
can be met by employing established safety-critical software
development practices including formal specifications, trace-
ability from specification to implementation, use of test cov-
erage criteria and static code analysis methods [39]. We do
not see a role for XAI methods for this aspect of validation.
Third is clinical validation which measures the ability of

the system to generate a clinically meaningful output for its
intended use in its operational environment. Here we define
two specific sub-objectives where we believe XAI methods
have a role in supporting clinical validation:

� Clinical association – demonstrate that the association
between the system output and the targeted clinical
condition in the intended population is supported by
evidence;

� Robustness – demonstrate the ability to distinguish the
different classes of intended condition or recommended

treatment without over-reliance on a specific input
feature.

These explicitly relate to the explainability and robustness
dimensions in the spider diagram.
Feature relevance explanations can help to demonstrate

clinical association by showing that the output predictions
are based on clinically meaningful and relevant factors of the
input. This involves ranking input features based on their
importance score or contribution score and making the rank-
ings visible to clinicians so that they can exercise clinical
judgement. One might argue that rule-based explanation can
also help in this case, for example, using Anchors to generate
relevant rules for clinicians to judge whether a valid clinical
association has been learnt. However, for the following rea-
sons, we believe that feature relevance explanations should
be preferred in this context. First, clinicians consistently
stated that knowing the feature importance driving the model
outcome is crucial. This allows them to compare model deci-
sions to their clinical judgement, especially in case of a dis-
crepancy [40]. Second, ML is most valuable when it is used
in complex clinical tasks where there are no agreed set of
rules. In this case, it is easier to agree on the important and
unimportant factors than on rules. For example, there is evi-
dence [41] showing that even if an extracted rule provides
100% accuracy in the test dataset, an individual clinician still
might not have confidence in it, let alone achieving consen-
sus amongst the clinicians. Third, using feature importance
can facilitate the regulatory approval process, and this avoids
hampering the adoption of ML until universal rules are found
and agreed by experts. However, we acknowledge that rule
based methods are useful for knowledge discovery. Feature
relevance explanation also has its limitations in explaining
image-based datasets where the highlighted regions in a
saliency map might not correspond well to high level con-
cepts that are meaningful to humans. In this case, concept-
based approaches, e.g., TCAV [24], that can quantify the
degree to which a user-defined concept is important to a pre-
diction, would be more appealing. In healthcare, such con-
cepts would be pre-defined by clinicians.
Example-based explanation, especially counterfactual

examples, can help to assess model robustness. Counterfac-
tuals are generated by minimising the distance from the origi-
nal input whilst producing a different prediction. As we
mentioned in Section III, the distance metrics for adversarial
examples are still valid for counterfactuals, although among
them L1 is the most widely explored in the literature and L1
is rarely used, which is unsurprising as L1 can enforce spar-
sity in the generated example. As pointed out in [42], sparsity
is one of the desirable properties of a good counterfactual.
Intuitively, a counterfactual will be more implementable, and
easier to understand, if fewer features have to be changed.
Additional desirable properties for good counterfactuals are
proximity (as close as possible to the original instance), plau-
sibility (it is possible for the features to take that value) and
diversity (multiple ways of achieving the desired prediction).
On-going research seeks novel loss functions to incorporate
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these properties to generate the counterfactuals. When using
counterfactuals to assess model robustness, proximity is the
most important property, in other words if the counterfactual
methods don’t satisfy this property, they should not be used
to assess robustness. Intuitively, the greater the distance from
an initial input to a counterfactual, the more robust the ML
model is, i.e., the model is “harder to fool”. Therefore, dis-
tance metrics can be used to define a robustness score for the
ML model, which links to the robustness dimension of the
spider diagram. For example, [43] used the L1 distance met-
ric to define the score. However, we suggest that the L2 dis-
tance metric might be most appropriate to use based on the
findings in [35] which indicates that achieving robustness
against L2 also achieves robustness against other distance
metrics.
The use of XAI methods in support of MLmodel V&Vwill

contribute evidence to the safety case, complementing other
activities including performance assessment and safety-criti-
cal software engineering. It should be noted that explanations
should be re-generated when the ML models are updated so
that they reflect the state of the models.

5) OPERATION

As discussed in Section II, assurance should be considered to
be a “through life” activity. This would include, for example,
a clinician seeking assurance about a particular prediction,
especially if acting on it can have a profound impact on
patient safety. XAI methods can play a role here. Local fea-
ture relevance explanation may be helpful but counterfac-
tuals also have a role, e.g., helping a clinician to decide
whether or not a proposed change in treatment is likely to
bring about the desired effect for a particular patient. Further,
prototypes might also be able to help clinicians to make
informed decisions for specific patients. However, current
research, e.g., [29], often presents prototypes to laymen
rather than domain experts to assess whether this will help
them to make decisions, so more work needs to be done to
see whether clinicians can benefit from prototype explana-
tions. The role and significance of explainability in operation
is examined in more detail in [28].

IV. CASE STUDY

This section presents a concrete healthcare case study to
illustrate the role of XAI methods, introduced in Section III.
The case study doesn’t cover data management, but see our
previous work for an illustration of the rationale for data
inclusion for this case study [44]. The case study focuses on
use of mechanical ventilation in Intensive Care Units (ICUs).
Provision of mechanical ventilation is complex and con-
sumes a significant proportion of ICU resources [45]. Inva-
sive mechanical ventilation is used when patients cannot
breathe unaided, and requires the insertion of a tube into the
trachea of the patient. The term intubation is used for inser-
tion of tube and extubation for removal of the tube. It is of
critical importance to determine the right time to wean the
patient from mechanical ventilation. Both early and late

weaning are problematic. Early extubation can lead to the
need for re-intubation, which may become urgent. Late extu-
bation exposes a patient to discomfort and continued risk of
complications such as pneumonia from prolonged intubation.
The case study is particularly concerned with predicting

patient readiness for extubation so as to avoid the negative
side effects of mis-timed extubation using the features shown
in Figure 5. Put simply, the safety requirement is “prediction
of readiness for extubation is timely”. The case study is based
on the MIMIC-III dataset [46] and used a convolutional NN
(CNN) to predict readiness for extubation in the next hour.

A. ML ALGORITHM SELECTION

MLAlgorithm selection is strongly influenced by performance,
as previously indicated. There are a range of performance met-
rics, e.g., false positives, which in this case study would mean
indicating that a patient is ready for extubation when it was
actually premature. Here we use the AUC-ROC performance
measure. The ROC curve plots the true positives against the
false positives at various threshold settings. AUC-ROC repre-
sents the degree to which the model is capable of distinguishing
between classes. For a “random” model the AUC-ROC would
be 0.5 and for a “perfect”model it would be 1.
For the case study, the performance of a number of ML

models, including CNNs, were evaluated on the same dataset
to support this phase, see Table 2. CNNs have the best per-
formance and more importantly, achieve better performance
than decision trees and logistic regression which, as noted
above, are often viewed as intrinsically interpretable. As
mentioned in Section III there is a trade-off between perfor-
mance and explainability. If performance over-rides the need
for explainablility, then CNN should be chosen. Whilst if
intrinsic interpretability is more important, then logistic
regression should be chosen. In this case study, CNNs have
been chosen, and post-hoc XAI methods are used to explain
the model, see the rest of the section for details.

B. MODEL LEARNING

Aswe indicated in Section III, two XAImethods can be helpful
at this stage: adversarial examples and influential instances.
Because adversarial examples are difficult to generate for tabu-
lar data, here we focus on the use of influential instances for
“model debugging”. This shows how they provide assurance
about the appropriateness of the MLmodel learning process, in
the context of the safety requirement.

TABLE 2. Performance of ML models

Model AUC-ROC (95%CI)

Convolutional Neural Network 0.923 � 0.010
Artificial Neural Network 0.784 � 0.031
Logistic Regression 0.827 � 0.000
Random Forest 0.748 � 0.040
Decision Tree 0.808 � 0.008
Support Vector Machine 0.826 � 0.000
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When preparing the dataset for the case study, one issue that
came up was whether or not to include the extubation failure
patients. Here extubation failure is defined as the need for re-
intubation within 48 hours. The causes of extubation failure
are complex and unclear, but some of the literature suggests
that premature extubation could cause extubation failure [45].
Therefore, including extubation failure patients in the training
dataset might not be optimal, as it might negatively influence
the prediction. To explore this issue further, we trained two
CNN models to predict the readiness for extubation in the
next hour in order to observe the effect of extubation failure
patients. In the first model, we excluded all of the extubation
failure patients in the training dataset. In the second model,
we included all of the extubation failure patents in the training
dataset. The accuracy of the second model is slightly changed
by comparison with the first model. We randomly picked one
of the test instances that was “interesting” in that the two mod-
els produced different predictions. For this instance, the first
model predicted the patient should continue to be intubated,
which is also the true label. However, the second model pre-
dicted that the patient was ready for extubation in the next
hour. We used influence functions to identify the influential
training instances for this test instance.
The key idea behind influence functions is to up-weight

the loss of a training instance by an infinitestimally small
step �, which results in new model parameters, û�;z =
argminð1� �Þ 1n

Pn
i¼1 Lðzi; uÞ þ �Lðz; uÞ, where u is the

model parameter vector and û�;z is the model parameter after
upweighting z by �. L is the loss function used for training
the model. The influence of upweighting z on the parameters
û given by Cook and Weisberg [47] is as follows:

Iup;paramsðzÞ ¼ dû�;z
d�

j�¼0 ¼ �H�1
û
ruLðz; ûÞ: (1)

WhereHû is the Hessian matrix andruLðz; ûÞ is the loss gra-
dient with respect to the parameters û for the training instance z.
Next, we can apply the chain rule to calculate the influence of
upweighting instance z on the loss of a test instance ztest

Iup;lossðz; ztestÞ ¼ dLðztest; û�;zÞ
d�

j�¼0

¼ ruLðztest; ûÞT dû�;zd�
j�¼0

¼ �ruLðztest; ûÞTH�1
û
ruLðz; ûÞ: (2)

In this work, we use the influence functions algorithm devel-
oped by Koh and Liang [36] to calculate �Iup;lossðzi; ztestÞ for
each training instance zi for this test instance. Figure 3
shows the top 15 helpful training instances (most positive
�Iup;lossðzi; ztestÞ) and the top 15 harmful training instances
(most negative�Iup;lossðzi; ztestÞ) for this test instance. From the
figure, it shows there are three instances of patients who had
extubation failure among the harmful training instances, which
indicates that including the extubation failure patients made the
predictions for the test instance worse. Figure 4 shows some of
the most influential data points (magnitude of �Iup;lossðzi; ztestÞ
is large) from the extubation failure patients and that more of
them have a negative influence than a positive influence. This
suggests that the inclusion of extubation failure could make the
prediction ready to extubate when it is not the case. Thus, we
decided to exclude the extubation failure patients from the
training dataset and the first CNN model was taken forward to
the V&V stage. In a more general situation when prior knowl-
edge is not available, i.e., we don’t know what subset of the
data could be problematic, we can still choose a test instance
where the prediction is wrong and identify the influence of the
training instances on this prediction. Then, further investigation
could be done to understand what input features strongly
impact the influence score, e.g., by perturbation [36] or by
using decision trees.

C. MODEL VERIFICATION AND VALIDATION

In this section, we focus on clinical validation, as set out in
Section III, and illustrate the use of XAI methods for demon-
strating clinical association and robustness. We do not con-
sider analytical validation here.

1) FEATURE RELEVANCE EXPLANATIONS

Here we illustrate the role of feature relevance in satisfying the
clinical association safety assurance objective. This is done
using DeepLIFT [22] which is a model-specific XAI method
for deep NNs. It compares the activation of each neuron to its
“reference activation” and attributes to each input feature an
importance score based on the difference. The “reference acti-
vation” is obtained through some user-defined reference input
and in this case, the reference sample is the minimum values
of all of the input features obtained from the data set. We
chose this method for two main reasons. First, it deals effec-
tively with discontinuities in the gradient of the CNN model
as it uses a difference from reference approach. Second, it
avoids the problem of model saturation where using gradients
would just assign zero to the features [22].

FIGURE 3. Top 30 most influential training instances. FIGURE 4. Distribution of influential instances.
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An overview of the results of using DeepLIFT is shown
in Figure 5; these values are averaged over the whole data-
set, so this can be viewed as global feature importance. The
feature ranking correlates well with clinical expectations,
helping to give confidence in the model. Those features that
score near zero in Figure 5, e.g., ethnicity, gender and age,
have little influence on the weaning decision, which is as
expected. The top five features also align with clinical evi-
dence. Patients who are undergoing invasive mechanical
ventilation are often sedated to maintain physiological sta-
bility and to control pain levels. Sedation is reflected in the
Richardson Agitation Scale (RAS) with negative values
representing sedation and 0 meaning that they are alert and
calm, thus more likely to be suitable for extubation. This is
consistent with the first entry in the weaning checklist used
in [48] that patients are “cooperative and pain free”. The
second most important feature is “Inspired O2 fraction”
which is the third checklist entry in [48]. The third most
important feature is “ventilator category,” which is the
mode used for ventilation and is under direct clinician con-
trol; some modes are unsuitable for spontaneous breathing
so cannot easily support weaning. The fourth and fifth most
important features, peak inspiratory pressure and positive
end-expiratory pressure (PEEP) set are airway pressures
representing how hard the ventilator is having to work;
PEEP is also the third entry in the weaning checklist
in [48].
Here we have demonstrated valid clinical association

through clinical evidence (relevant literature support) and
expert opinion (consultation with clinicians). Overall, the

benefit of the feature importance results is that they enable
clinical judgement to be applied despite the opacity of the
CNN model which contributes to safety assurance.

2) COUNTERFACTUAL EXPLANATIONS

One of the concerns in model V&V is robustness and here
we show how to use counterfactuals to demonstrate robust-
ness. Diverse Counterfactual Examples (DiCE) [42] is used
to generate the counterfactual examples. The reason we use
DiCE is that it is one of the few methods to satisfy all of the
four properties of a good counterfactual, i.e., sparsity, prox-
imity, plausibility and diversity, introduced in Section III.
Table 3 shows a set of counterfactual examples for a particu-
lar patient identifying which features need to change in order
to “flip” the prediction from continued intubation to extuba-
tion using DiCE. The left hand column shows the 25 features
used by the model and the prediction of the ML model is
included in the bottom row. The original instance is shown
first, with the three rightmost columns showing counterfac-
tual examples. Certain features cannot be varied, e.g., age
and gender, in order to satisfy the plausibility criterion; the
dashes in the rightmost three columns indicate no change
from the original input. The change in prediction is shown in
the bottom row where a value > 0.5 indicates that mechani-
cal ventilation should continue.
In this case, as shown in Table 3, the minimum number of

features that have to change to “flip” the prediction is five,
showing robustness for this instance. However, one instance
is not sufficient to show ML model robustness. More of the
input instances in the dataset need to be investigated in order
to generate a robustness score as defined in [43].

D. OPERATIONAL USE OF THE ML MODEL

The operation of ML models is often uncertain. Thus there is
merit in extending the notion of assurance to operation, pro-
viding support to a clinician to give confidence to act on the

FIGURE 5. Feature importance for the CNNmodel.

TABLE 3. Counterfactual examples for a given instance
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particular model prediction. One way of approaching this is to
use local explanations. For example, we can generate the fea-
ture importance for a specific patient, similarly to Figure 5.
However, clinicians might want to find out when the

patient would be ready to extubate. This brings us back to
counterfactuals. The counterfactual examples shown in
Table 3 could potentially help the clinician to identify actions
to take so that the patient becomes ready to extubate. The
model does not directly recommend a course of action; the
counterfactual examples act to draw clinicians’ attention to
pertinent information so that they can formulate a plan from
their own knowledge and experience. Note our model has
not been used in operation yet, so we have just illustrated the
possibilities.

E. SAFETY ARGUMENTS

As explained in Section II, it is common practice to present
the arguments and evidence that provide assurance that a sys-
tem is acceptably safe to deploy in a safety case. In this case
study, the safety argument is presented using GSN. Before
we describe the safety argument we have developed, we
briefly introduce the notation.
A legend showing the key elements of GSN is presented in

Figure 6; a detailed description of the notation can be found
in [10]. The goals – claims that we wish to make and support
– are shown as rectangles and they can be decomposed into
sub-goals, thus forming a tree. Goals are understood in a
context, e.g., the operating environment for the system or the
safety requirements. Where the decomposition of goals is not
obvious this is explained through a strategy, represented as a
rhombus. The leaf-level goals are supported by solutions,
represented as circles; the solutions provide references to evi-
dence that supports the argument. Incomplete parts of the
argument are shown with a diamond, meaning that part of
the argument is to be developed.
Figure 7 presents a partial safety argument for the wean-

ing case study, highlighting the role of explainability, e.g.,

FIGURE 6. Goal structuring notation.

FIGURE 7. Partial safety argument for weaning ML model emphasising explainability.
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solutions Sn2, Sn4 and Sn6 reflect XAI methods. The top goal
(G0), which states that the ML model meets its safety require-
ment, is set out in the context of the definition of the ML
model and the associated safety requirement – that “prediction
of readiness for extubation is timely”.
The top-level argument strategy is decomposition across

the stages of the ML development process. As the paper does
not consider data management and analytical/technical vali-
dation in detail, the corresponding goal (G1) and goal (G5)
are left undeveloped.
G2: ML algorithm selection considers trade-off between

performance and explainability – this is supported by the
analysis in Section IV (Sn1) which shows that the CNN out-
performs other available ML methods, and suitable post-hoc
XAI methods are available.
G3: Model learning reflects safety requirement – this is

partially supported by G15 which in turn is supported by the
use of influential instances (Sn2) which show the rationale
for excluding extubation failure patients in the trained model.
Note that other evidence is needed (so G3 is shown as need-
ing development), e.g., to show appropriateness of parameter
selection for model training.
G4: Model V&V shows safety requirements met – this is

broken down into G5: analytical/technical validation, G6:
performance demonstrated and G7: clinical validation which
is decomposed into two sub-goals covering the V&V criteria
introduced in Section III.
G6: Performance demonstrated – this is directly supported

by the AUC-ROC in Table 2 which shows the superiority of
the CNN performance to others.
G9: Robustness demonstrated, which is decomposed into

two subgoals, G11 concerning the reason for the choice of
the specific XAI method and G12 concerning the results of
using the method. It is important to document the rationale
for choosing the method, which will benefit from a more
systematic evaluation metric for XAI methods, see
Section V for details. G9 needs further development as
G12 only shows robustness for a single instance. More
input instances need to be investigated to understand the
model robustness.
G10: Valid clinical association demonstrated, which is

decomposed into two subgoals, G13 concerning the reason
for the choice of the specific XAI method and G14 con-
cerning the results of using the method. G14 is further sup-
ported by clinical evidence in the literature and expert
review by clinicians. Meeting G10, demonstrating valid
clinical association, does not entail trust. Trust is a more
complicated topic [33] and is outside the scope of this
paper.
The evidence presented above should not be taken as suffi-

cient to justify deployment of the CNN model described here
in a clinical context. For example, clinical trials will often be
needed to obtain further clinical safety evidence and the nec-
essary regulatory approval. However, the explainability argu-
ment and the supporting evidence presented in this section is
a valuable part of the overall safety case.

V. DISCUSSION

Safety assurance of ML models in healthcare is an active area
of research. Although explainability is often said to help in
safety assurance of ML, few studies so far have explored the
possibilities systematically and identified precisely how
explainability can help safety assurance. This paper seeks to
fill this gap. We first presented the spider diagram in Figure 1
which conceptualises how explainability relates to safety.
Through the analysis in Section III and the case study in
Section IV we illustrated how explainability can help in
safety assurance in the context of the ML life-cycle, as sum-
marised in Table 4 along with the interested stakeholders.
Although using explainability can help safety assurance,
there are also associated challenges.
First is the difficulty of evaluating XAI methods. A consid-

erable number of evaluation metrics have been suggested for
assessing the quality of XAI methods. For explanation by
approximation, fidelity is often proposed as the evaluation
metric. For example, in [13], [38], fidelity is used to measure
how accurately the approximate model matches the task
model locally. For feature relevance explanation, their ideal
properties, e.g., implementation invariance (the feature
importance are always identical for two functionally equiva-
lent networks) and sensitivity (if a feature changes and a pre-
diction changes, then this feature should not have zero
attribution), have been defined using axiomatic evaluation
methods [20]. For explanation by examples, humans are
often involved in assessing whether the explanation is useful
or not. For example, in [29] prototypes were presented to
users and then human accuracy, i.e.the proportion of the
human predictions that correctly match the model’s predic-
tion, was measured. Among these proposed evaluation met-
rics, some are subjective and some are objective. One of the
useful taxonomies was proposed by Doshi-Velez and
Kim [49] for evaluating XAI: application-grounded, human-
grounded, and functionality-grounded. However, there is still
a lack of agreed formal evaluation metrics enabling a more
systematic evaluation of methods. For example, [50] found
Gradients & GradCAM passed their sanity checks based on
their model parameter randomization test and the data ran-
domization test, while in [51] they found GradCAM is one

TABLE 4. Role of XAI methods in different phases
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of the most interpretable and reliable XAI methods but gradi-
ent didn’t stand out based on their evaluation metrics. This
highlights the importance of ongoing research developing
systematic evaluation metrics which will allow a formal and
fair comparison of available XAI methods. This should help
to guide the selection of an appropriate XAI method in a spe-
cific situation as many different XAI methods can provide
similar explanations, e.g., feature relevance.
Second is the limitation of explainability itself. Even if the

evaluation metrics are improved, there are some intrinsic lim-
itations of the current XAI methods. As pointed out by
Rudin [27] post-hoc explanations “must be wrong” as if they
were completely faithful to the task model, then we only
need the explanation model. Further, as illustrated in [52],
current XAI methods only provide descriptive accounts of
the task model rather than normative evaluation to justify the
model behaviour. Whilst this is valid, it is unrealistic to
expect XAI methods to “close the loop” by themselves;
instead this is the role of clinical judgement, as discussed
above. Put more positively, explanation “serves as the unac-
knowledged bridge” between the task model and normative
evaluation [52]. What these examples make clear is that,
although the use of XAI methods can contribute to safety
assurance, it is not enough to assure safety by itself, as recog-
nised by others [33], [52].
Next, we will identify some relevant complementary

methods that also contribute to safety assurance. First, it is
important to adapt established methods from safety-critical
software engineering for AI/ML-based SaMD. One such
method is static analysis, analysing the code without execut-
ing it, to look for “bugs” (see [39] for an illustration). It is also
standard practice to measure test coverage of the software,
e.g., ensuring that all branches in the code have been executed
at least once, when undertaking V&V. The obvious analogy
for NNs is neuron coverage, although there is some debate
about whether or not this is an appropriate criterion [53].
Nonetheless, coverage is significant when considering safety,
as assurance is clearly undermined if there are significant parts
of the ML model for which we have no test evidence. Conse-
quently, it seems likely that understanding of what are appro-
priate coverage criteria will improve as experience of using
AI/ML-based SaMD increases. Second, there are assurance
methods that address the specific challenges of V&V for AI/
ML-based software. It is possible to apply formal methods
(mathematical techniques of verification) to ML models
including for assessing properties such as robustness. A recent
survey of such approaches can be found in [54]; it covers static
analysis as well as methods such as Satisfiability Module The-
ories (SMT) and identifies some tools that are capable of scal-
ing to very large models, e.g., NNs with millions of neurons.
Safety is a cross-cutting concern which interacts with tech-

nology, ethics, trust, etc. Earlier we introduced the spider dia-
gram in Figure 1 as a heuristic representation of the
engineering aspects of safety; we now briefly consider how
to make it more concrete, i.e., how the area inside the hexa-
gon might be estimated. There are candidate quantitative

measures for some of the dimensions, e.g., AUC-ROC (see
Table 2) for performance, and distance metrics to define
robustness scores [43]. There is a conceptual basis for some
of the other dimensions, e.g., fidelity and interpretability for
explainability [33], and conformance with the five criteria for
data management which also links to the safety argument.
However, as we mentioned earlier more work is needed to
develop systematic evaluation metrics for XAI methods. It is
hard to measure the other safety specific controls dimension
but the structured representation of controls in [9] might give
a starting point. There is ongoing work on utility of explana-
tions and what form of explanations are preferred by clini-
cians [55], but more empirical work is needed. At this point,
the spider diagram remains a heuristic model, but we believe
it is possible to make it a more “formal” tool for evaluating
(comparing) alternative ways of developing SaMD, from a
safety assurance perspective.

VI. CONCLUSION

To our knowledge, this is the first systematic attempt to
explore the role of explainability in assuring safety of ML,
with a focus on pre-deployment decision-making. We believe
this will be of interest to regulators, as it illustrates how to use
XAI methods to provide evidence to support relevant safety
objectives, e.g., for clinical association, articulated by the
FDA and IMDRF.
We first presented a spider diagram to the general relation-

ship between explainability and safety. Then we extrapolated
the safety objectives at the different phases of the ML devel-
opment process and illustrated how XAI methods can help at
each phase. Finally, we used a concrete healthcare case study
to demonstrate how XAI methods can help to meet these
safety objectives, particularly in model learning and model
V&V. Specifically, we have shown the value of influential
instances for model debugging during model learning, which
is of particular interest to ML developers. Further, we have
shown the value of feature relevance and counterfactuals in
model V&V, which is of particular interest to ML developer,
regulators and others involved in deployment decisions, see
Table 4. The case study also shows how the use of these XAI
methods feeds into a safety case, e.g., as required by health-
care standards [8].
We suggest future work should place more effort on devel-

oping and applying systematic evaluation metrics for XAI
methods, which in turn will guide others in selecting appro-
priate XAI methods. Further, there is a need for more empiri-
cal studies to evaluate how XAI methods can best assist the
end-users. This might usefully be combined with a deeper
exploration of trust.
The code for applying various XAI methods is available

at: https://github.com/ Yanjiayork/mechanical_ventilator.
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