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ABSTRACT The posit representation for real numbers is an alternative to the ubiquitous IEEE 754 floating-
point standard. In this work, we present PERCIVAL, an application-level posit RISC-V core based on CVA6
that can execute all posit instructions, including the quire fused operations. This solves the obstacle encoun-
tered by previous works, which only included partial posit support or which had to emulate posits in software.
In addition, Xposit, a RISC-V extension for posit instructions is incorporated into LLVM. Therefore, PER-
CIVAL is the first work that integrates the complete posit instruction set in hardware. These elements allow
for the native execution of posit instructions as well as the standard floating-point ones, further permitting the
comparison of these representations. FPGA and ASIC synthesis show the hardware cost of implementing 32-
bit posits and highlight the significant overhead of including a quire accumulator. However, results show that
the quire enables a more accurate execution of dot products. In general matrix multiplications, the accuracy
error is reduced up to 4 orders of magnitude. Furthermore, performance comparisons show that these accu-
racy improvements do not hinder their execution, as posits run as fast as single-precision floats and exhibit
better timing than double-precision floats, thus potentially providing an alternative representation.

INDEX TERMS Arithmetic, posit, IEEE-754, floating point, RISC-V, CPU, CVA6, LLVM, matrix multi-
plication

I. INTRODUCTION

Representing real numbers and executing arithmetic opera-
tions on them in a microprocessor presents unique chal-
lenges. When comparing with the simpler set of integers,
working with reals introduces notions such as their precision.
The representation of real numbers in virtually all computers
for decades has followed the IEEE 754 standard for floating-
point arithmetic [1]. However, this standard has some flaws
such as rounding and reproducibility issues, signed zero, or
excess of Not a Number (NaN) representations.
To face these challenges, alternative real number representa-

tions are proposed in the literature. Posits [2] are a promising
substitute proposed in 2017 that provide compelling benefits.
They deliver a good trade-off between dynamic range and accu-
racy, encounter fewer exceptions when operating, and have
tapered precision. This means that numbers near �1 have more

precision, while very big and very small numbers have less. The
posit standard includes fused operations, which can be used to
compute a series of multiplications and accumulations without
intermediate rounding. Furthermore, posits are consistent
between implementations, as they use a single rounding scheme
and include only two special cases: single 0 and�1. Therefore,
they potentially simplify the hardware implementation [3].
Nonetheless, posits are still under development, and it is still not
clear whether they could completely replace IEEE floats [4].
Including Posit Arithmetic Units (PAUs) into cores in hard-

ware is a crucial step to study the efficiency of this representation
further. When designing such a core and its arithmetic opera-
tions, an important decision is which Instruction Set Architecture
(ISA) to implement. RISC-V [5] is a promising open-source ISA
that is getting significant attraction both in academia and in
industry. Thanks to its openness and flexibility, multiple RISC-V
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cores have been developed targeting diverse purposes in recent
years. In the case of studying the performance of posits, a core
that can run application-level software is needed.
Some works have studied the use of posits by emulating

their execution in software [6]–[8]. However, this approach
has the significant drawback of requiring excessive execution
times, thus limiting the scalability of the applications.
To overcome these limitations, we propose to include

native posit and quire support in hardware by leveraging a
high-performance RISC-V core. A comparison of four of the
leading open-source application-class RISC-V cores is stud-
ied in [9], CVA6 among them. In this work, we have
extended the datapath of the CVA6 [10] RISC-V core with a
32-bit PAU with quire and a posit register file. Together with
the Xposit compiler extension, this core allows the native
hardware execution of high-level applications that leverage
the posit number system.
Therefore, the main contributions of this paper are the

following:
� We present PERCIVAL, an oPEn-souRCe1 posIt risc-V

core with quire cApabiLity based on the CVA6 that can
execute all 32-bit posit instructions, including the quire
fused operations.

� Compiler support for the Xposit RISC-V extension in
LLVM. This allows to easily embed posit instructions
into a C program that can be run natively on PERCIVAL
or any other core that implements these opcodes.

� To the best of our knowledge, the PERCIVAL core
together with the Xposit extension is the first work that
integrates in hardware standard posit addition, subtrac-
tion, and multiplication together with quire fused opera-
tions. It also includes posit logarithmic-approximate
hardware for division and square root operations. Fur-
thermore, all comparison operations and conversions to
and from integer numbers are also included in
PERCIVAL.

� Field-Programmable Gate Array (FPGA) and Applica-
tion-Specific Integrated Circuit (ASIC) synthesis results
showcasing the resource-usage of posit arithmetic and
quire capabilities on a RISC-V CPU. These results are
compared with the native IEEE 754 Floating-Point
Unit FPU available in the CVA6 and with previous
works.

� Accuracy and timing performance of posit numbers and
IEEE 754 floats are compared on PERCIVAL using
General Matrix Multiplication (GEMM) and max-pool-
ing benchmarks. Results show that 32-bit posits can be

up to 4 orders of magnitude more accurate than 32-bit
floats thanks to the quire register. Furthermore, this
improvement does not imply a trade-off in execution
time, as they can perform as fast as 32-bit floats, and
thus execute faster than 64-bit floats.

The rest of the paper is organized as follows: Section II
introduces the necessary background about the posit format,
the RISC-V ISA and the CVA6 RISC-V core. Related works
from the literature are surveyed in Section III, both as stand-
alone PAUs and at the core level. In Section IV the PER-
CIVAL posit core is described and in Section V the necessary
compiler support for the Xposit RISC-V extension is intro-
duced. The FPGA and ASIC synthesis results of the core are
presented, as well as compared with other implementations, in
Section VI. Subsequently, in Section VII posits and IEEE 754
floats are compared regarding accuracy and timing perfor-
mance. Finally, Section VIII concludes this work.

II. BACKGROUND

A. POSIT FORMAT

Posit numbers [2] were introduced in 2017 as an alternative
to the predominant IEEE 754 floating-point standard to rep-
resent and operate with real numbers. Posits provide repro-
ducible results across platforms and few special cases.
Furthermore, they do not support overflow or underflow,
which reduces the complexity of exception handling.
A posit number configuration is defined using two parame-

ters as Posithn; esi, where n is the total bit-width, and es is the
maximum bit-width of the exponent. Although in litera-
ture [4], [6], [11] the most widespread posit formats have
been Posith8; 0i, Posith16; 1i and Posith32; 2i, in the latest
Posit Standard 4.12 Draft [12], the value of es is fixed to 2.
This has the advantage of simplifying the hardware design
and facilitates the conversion between different posit sizes.
Posits only distinguish two special cases: zero and Not-a-

Real (NaR), which are represented as 0 � � � 0 and 10 � � � 0
respectively. The rest of the representations are composed of
four fields as shown in Figure 1:

� The sign bit S;
� The variable-length regime field R, consisting of k bits

equal to R0 followed by R0 or the end of the posit. This
field encodes a scaling factor r given by Equation (1);

� The exponent E, consisting of at most es bits, which
encodes an integer unbiased value e. If any of its bits
are located after the least significant bit of the posit,
that bit will have value 0;

� The variable-length fraction field F, formed by the
remaining m bits. Its value 0 � f < 1 is given by
dividing the unsigned integer F by 2m.

r ¼ �k if R0 ¼ 0

k � 1 if R0 ¼ 1

�
(1)

The real value p of a generic posit is given by Equation (2).
The main differences with the IEEE 754 floating-point for-
mat are the existence of the regime field, the use of an

FIGURE 1. Posit format with sign, regime, exponent and fraction

fields.

1https://github.com/artecs-group/PERCIVAL
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unbiased exponent, and the value of the fraction hidden bit.
Usually, in floating-point arithmetic, the hidden bit is consid-
ered to be 1. However, in the latest representation of posits, it
is considered to be 1 if the number is positive, or �2 if the
number is negative. This simplifies the decoding stage of the
posit representation [3], [13].

p ¼ ðð1� 3 sÞ þ f Þ � 2ð1�2 sÞ�ð4rþeþsÞ (2)

In posit arithmetic, NaR has a unique representation that
maps to the most negative 2’s complement signed integer.
Consequently, if used in comparison operations, it results in
less than all other posits and equal to itself. Moreover, the
rest of the posit values follow the same ordering as their cor-
responding bit representations. These characteristics allow
posit numbers to be compared as if they were 2’s comple-
ment signed integers, eliminating additional hardware for
posit comparison operations.
The variable-length regime field acts as a long-range

dynamic exponent, as can be seen in Equation (2), where it is
multiplied by 4 or, equivalently, shifted left by the two expo-
nent bits. Since it is a dynamic field, it can occupy more bits
to represent larger numbers or leave more bits to the fraction
field when looking for accuracy in the neighborhoods of �1.
However, detecting these variable-sized fields adds some
hardware overhead.
As an example, let 11101010 be the binary encoding of

a Posit8, i.e. a Posith8; 2i according to the latest Posit Stan-
dard 4.12 Draft [12]. The first bit s ¼ 1 indicates a negative
number. The regime field 110 gives k ¼ 2 and therefore r ¼
1. The next two bits 10 represent the exponent e ¼ 2.
Finally, the remaining m ¼ 2 bits, 10, encode a fraction
value of f ¼ 2=22 ¼ 0:5. Hence, from (2) we conclude that
11101010 � ð�2þ 0:5Þ � 2�ð4þ2þ1Þ ¼ �0:01171875:
In addition to the standard representation, posits include

fused operations using the quire, a 16n-bit fixed-point 2’s
complement register, where n is the posit bit-width. This
allows to execute up to 231 � 1 Multiply-Accumulate (MAC)
operations without intermediate rounding or accuracy loss.
The quire can represent either NaR, similarly to regular posits,
or the value given by 216�8n times the 2’s complement signed
integer represented by the 16n concatenated bits.

B. RISC-V ISA

The open-source RISC-V ISA [5] emanates from the ideas of
RISC. It is structured as a base integer ISA plus a set of
optional standard and non-standard extensions to customize
and specialize the final set of instructions. There are two
main base integer ISA, RV32I and RV64I, that establish the
user address spaces as 32-bit or 64-bit respectively.
The RISC-V general standard extensions include, among

others, functionality for integer multiply/divide (M), atomic
memory operations (A) and single- (F) and double-precision
(D) floating-point arithmetic following the IEEE 754 stan-
dard. This set of general-purpose standard extensions
IMAFD, together with the instruction-fetch fence (Zifencei),

and the control and status register (Zicsr), form the general-
purpose G abbreviation. In general, following the Reduced
Instruction Set Computer (RISC) principles, all extensions
have fixed-length 32-bit instructions. However, there is also
a compressed instruction extension (C) that provides 16-bit
instructions.
Expanding the RISC-V ISA with specialized extensions is

supported by the standard to allow for customized accelera-
tors. Non-standard extensions can be added to the encoding
space leveraging the four major opcodes reserved for custom
extensions. A proposal of the changes that should be made to
the F standard extension in order to have a 32-bit posit
RISC-V extension is described in [14].

C. CVA6

The CVA6 [10] (formerly known as Ariane) is a 6-stage, in-
order, single-issue CPU which implements the RV64GC
RISC-V standard. The core implements three privilege levels
and can run a Linux operating system. The primary goal of
its micro-architecture is to reduce the critical path length. It
was developed initially as part of the PULP ecosystem, but it
is currently maintained by the OpenHW Group, which is
developing a complete, industrial-grade pre-silicon verifica-
tion. CVA6 is written in SystemVerilog and is licensed under
an open-source Solderpad Hardware License.
As execution units in the datapath it includes an integer

ALU, a multiply/divide unit and an IEEE 754 FPU [15].
This FPU claims to be IEEE 754-2008 compliant, except for
some issues in the division and square root operations. For
the sake of comparison, it is important that the FPU is IEEE
754 compliant instead of being limited to normal floats only,
since in theory, posit hardware is slightly more expensive
than floating-point hardware that does not take into account
subnormal numbers [3].

III. RELATEDWORK

There has been a great deal of interest in hardware implemen-
tations of posit arithmetic since its first appearance. Stand-
alone PAUs with different degrees of capabilities or basic
posit functional units have been described in the litera-
ture [11], [16]–[18]. These units provide the building blocks
to execute posit arithmetic. However, they do not allow
themselves to execute whole posit algorithms.
Recently, some works adding partial posit support to

RISC-V cores have been presented. CLARINET [19] incor-
porates the quire into a RV64GC 5-stage in-order core. How-
ever, not all posit capabilities are included in this work. Most
operations are performed in IEEE floating-point format, and
the values are converted to posit when using the quire. The
only posit functionalities added to the core are fused MAC
with quire, fused divide and accumulate with quire and con-
version instructions.
PERC [20] integrates a PAU into the Rocket Chip genera-

tor, replacing the 32 and 64-bit FPU. However, this work
does not include quire support, as it is constrained by the F
and D RISC-V extensions for IEEE-754 floating-point
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numbers. More recently, PERI [21] added a tightly coupled
PAU into the SHAKTI C-class core, a 5-stage in-order
RV32IMAFC core. This proposal also does not include quire
support as it reuses the F extension instructions. Nonetheless,
it allows dynamic switching between es=2 and es=3 posits.
In [22] authors include a PAU named POSAR into a RISC-V
Rocket Chip core. Again, this proposal does not include
quire support and replaces the FPU present in Rocket Chip to
reuse the floating-point instructions.
A different approach is taken in [23], where authors use

the posit representation as a way to store IEEE floats in mem-
ory with a lower bit-width while performing the computa-
tions using the IEEE FPU. For this purpose they include a
light posit processing unit into the CVA6 core that converts
between 8 or 16-bit posits and 32-bit IEEE floats. They also
develop an extension of the RISC-V ISA to include these
conversion instructions.

IV. PERCIVAL POSIT CORE

In this work, we have integrated full posit capabilities,
including quire and fused operations, into an application-
level RISC-V core. In addition to the design of the functional
units that execute the posit and quire operations, the novelty
of our design is that it is fully compatible both at the software
and hardware level with the F and D RISC-V extensions.
Therefore, both posit and IEEE floating-point numbers can
be used simultaneously on the same core. This is the first
work that integrates practically all of the posit and quire oper-
ations specified in the posit standard into a core, to the best of
our knowledge.

A. PAU DESIGN

The Posit Arithmetic Unit (PAU) is in charge of executing
most posit operations and also contains the quire register, as
shown in Figure 2. Posit comparisons are executed in the
integer Arithmetic Logic Unit (ALU). As mentioned above,
this is one of the benefits of the posit representation.

When designing the micro-architecture of the PAU, our
objective was to achieve a similar latency and throughput as
the FPU operations, to obtain fair comparisons. The through-
put is limited, as there is no pipeline in the FPU nor the
PAU. Nevertheless, all of the operations are multi-cycle. The
latency of the PAU units is the following:

� PADD, PSUB, QMADD, and QMSUB: 2 cycles.
� PMUL, PDIV, PSQRT, and QROUND: 1 cycle.
All other operations have no latency, i.e. they output their

result at the next clock cycle after receiving the inputs.
As a comparison, the 32-bit FADD, FSUB, FMADD,

FMSUB, and FMUL instructions in the FPU have a latency of
2 clock cycles, but the 64-bit analogous instructions have a
latency of 3 cycles. It is noteworthy that the comparisons in the
FPU have a latency of 1, while the posit comparisons that reuse
the integer hardware have no latency. Conversions to and from
integer values also take an extra clock cycle in the FPU.
Depending on the operation, the input operands are directed

to the corresponding posit unit and the result is forwarded as
an output of the PAU. There are three main blocks: computa-
tional operations (COMP), conversion operations (CONV),
and operations that make use of the quire register (FUSED)
(Figure 2).
Regarding COMP, the ADD unit is used both for addition

and subtraction, calculating the two’s complement of the sec-
ond operand when subtracting. In this group, all the modules
use both operands except the square root, which uses only
operand A. In addition, the operands and the result corre-
spond to the posit register file.
It must be noted that the posit division and square root

units are approximate, as this type of arithmetic simplifies
the designs and thus reduces the hardware cost of the system.
They are logarithm-approximate units based on Mitchell’s
Approximate Log Multipliers and our previous work [11].
These units have been demonstrated to have a maximum rel-
ative error of 11.11%, and have less impact on area/perfor-
mance than the exact hardware operators. On the other hand,

FIGURE 2. Internal structure of the proposed Posit Arithmetic Unit (PAU).
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exact division and square root algorithms could be imple-
mented in software leveraging the MAC unit, thus eliminat-
ing the need for dedicated hardware. However, this is out of
the scope of this work.
In the CONV group, only operand A is used for conver-

sions. Depending on the operation, the input data and the
result belong to the posit or the integer register file.
The quire register is the most singular addition to this

number format. According to the posit standard, it must be
an architectural register accessible by the programmer that is
also allowed to be dumped into memory. However, being so
wide, the cost of including this functionality into the core’s
datapath could be too high for the benefits it would add. In
the vast majority of cases, the quire is used as an accumulator
to avoid overflows in the MAC operations, and this does not
require quire load and store operations. Instead, we can ini-
tialize the quire to zero (QCLR.S), negate it if needed
(QNEG.S), accumulate the partial products in it without
rounding or storing in memory (QMADD.S and QMSUB.S),
and, when the whole operation is finished, round and output
the result (QROUND.S). The necessary support for all of
these operations related to the quire is included in our pro-
posal (see Table II below). The hardware cost of including
the quire as an internal register in the PAU is studied in
Section VI.

B. CORE INTEGRATION

The proposed PAU has been integrated into the CVA6
RV64GC core while maintaining the compatibility with
all existing extensions, including single- and double-preci-
sion floating point. Moreover, since we work with Posit32
numbers, i.e. Posith32; 2i, the core adds a 32-bit posit
register file in addition to the integer and floating-point
registers.
The instruction decoder has been extended to support posit

instructions. The inner workings of the decoder are described
in Figure 3. As part of the decoding process, each posit
instruction selects from which register file it must obtain its
operands and to which register file it must forward its result.
The CVA6 core uses scoreboarding for dynamically

scheduled instructions and allows out-of-order write-back of
each functional unit. The scoreboard tracks which instruc-
tions are issued, their functional unit and in which register
they will write back to. Our design has enlarged the score-
board to include posit registers and instructions. In this man-
ner, we can discern whether the input data of posit operations
are retrieved from a register or forwarded directly as a result
of a previous operation.
As mentioned in Section II-A, posit numbers have the

benefit of being able to reuse the comparison hardware of
2’s complement signed integers. Therefore, the integer ALU
has also been extended to accept posit operands and to be
able to forward the result of these instructions with minimal
hardware overhead. Furthermore, the PAU has been inte-
grated into the execution phase of the processor in parallel
to the ALU and the FPU, connecting the issue module with
the aforementioned scoreboard. Finally, the complete data-
path has been adapted to include the posit signals and all
necessary additional interconnections.

V. COMPILER SUPPORT: XPOSIT EXTENSION

The assembly output of a RISC-V compiler when processing
programs that use floating-point arithmetic includes instruc-
tions from the corresponding F and D extensions. To produce
a similar output but targeting posit numbers, a new extension
must be introduced that translates posit instructions and posit
operators to binary code. Therefore, in this section, the Xpo-
sit RISC-V extension targeting posit arithmetic is presented.
As part of this work, Xposit has been integrated into LLVM
12 backend [24] to allow the compilation of high-level
applications.
This modified version of LLVM can compile C code.

However, posit instructions must be written from the assem-
bly level, as there is currently no support for writing posit or
quire operations directly in C. Therefore, previous codes can
be reused in PERCIVAL, and only the computational kernels
have to be manually written in assembly. An example of this
is shown in Section VII.
The posit instruction set follows the structure of the F RISC-V

standard extension for single-precision floating point [25]. This
Xposit extension mostly follows the adaptation to the posit

FIGURE 3. Pseudocode describing the decoding of posit

instructions.
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format proposed in [14]. The differences with this proposal are
the following:

� We include 32 posit registers p0-31 as in the F stan-
dard extension.

� Similarly to the integer operations in CVA6, there is no
flag signaling division by zero.

� We do not include the possibility of loading and storing
the quire in memory.

The Xposit extension uses the 0001011 opcode (custom-0),
occupying the space indicated in Table I as POSIT. If more
operations were needed in the future, especially posit load and
store instructions of other word lengths, the 0101011, 1011011,
and 1111011 opcodes (custom-1,2,3) could be leveraged. In
this way, a similar approach as the F and D RISC-V extensions
could be followed, which utilize the OP-FP, LOAD-FP and
STORE-FP opcodes.
The format and fields of the Xposit instructions are described

in Figure 4. Posit load and store use the same base+offset
addressing as the corresponding floating-point instructions,
with the base address in register rs1 and a signed 12-bit byte
offset. Thus, the PLW instruction loads a posit value from
memory to the rd posit register and the PSW instruction stores
a posit value from the rs2 posit register to memory. The rest of
the Xposit operations keep the POSIT opcode and differ from
the previous instructions by the funct3 field. Finally, it must be
noted that the fmt field is fixed to 01 indicating that the instruc-
tions are for single-precision (32-bit) posits. The complete
instruction set of the proposed Xposit RISC-V extension is
detailed in Table II.
An important addition of the Xposit extension are the quire

instructions. Since the quire is a single internal register of the
PAU, the instructions that operate with it do not have to spec-
ify a quire register number. For example, the quire clear
instruction does not have any parameters. It is decoded and
then executed internally by the PAU, which simply sets the
quire register to 0. The quire fused operations only have to
specify the posit registers of the two values that will be

multiplied. Then, the accumulation is performed implicitly
on the quire.

VI. SYNTHESIS RESULTS

In this section, we present the FPGA and ASIC synthesis
results of PERCIVAL. The details of its PAU and the IEEE
754 FPU using 32 and 64-bit formats are also included. In
this manner, the hardware cost of posit numbers and the quire
are highlighted and compared with other implementations.

A. FPGA SYNTHESIS

The FPGA synthesis was performed using Vivado v.2020.2 tar-
geting a Genesys II (Xilinx Kintex-7 XC7K325T-2FFG900C)
FPGA. Different configurations of FPU and PAU were tested,
the results of which are shown in Table III. Since the critical
path does not traverse the arithmetic units of the core, in all of
the cases the timing constraint of 20 ns was met and the timing
slack was +0.177 ns.
The bare CVA6 without a FPU or PAU requires 28950

Lookup Tables (LUTs) and 19579 Flip-flops (FFs). Including
support for 32-bit floating-point numbers increases the num-
ber of LUTs and FFs by 6452 and 2039 respectively. This
difference grows to 12310 LUTs and 4366 FFs when using
also the double-precision D extension. Note that these values
are larger than simply the FPU area, since they also include
other elements such as the floating-point register file, instruc-
tion decoding and interconnections. These other non-FPU
elements require 2406 LUTs and 1066 FFs in the 32-bit case
and 4147 LUTs and 2122 FFs in the 64-bit case.
Comparing the overall cost of including posit support with

the cost of including IEEE floating-point support, a signifi-
cant difference can be seen. Adding 32-bit posit operations
and quire support to the CVA6 requires 15743 LUTs and
4057 FFs, which is comparable to the FD floating-point con-
figuration. Out of this area, 3864 LUTs and 1072 FFs are
occupied by the non-PAU elements mentioned in the previ-
ous floating-point analysis.

TABLE I. RISC-V Base Opcode Map + POSIT Extension; inst[1:0]=11.

FIGURE 4. Internal structure and fields of Xposit instructions.
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The synthesis results reveal that the PAU requires signifi-
cantly more resources than the FPU available in the CVA6.
In particular, the 32-bit PAU with quire occupies 2.94 times
as many LUTs and 3.07 times as many FFs as the 32-bit
FPU. To better understand these results, in Table IV the area
requirements of the different modules inside the PAU are
presented. The most interesting value shown in this table is
the area occupied by the posit MAC unit, which corresponds
to almost half of the total area of the PAU.
When compared with the floating-point units, which do

not include an accumulation register, the area requirements
of the quire could be separated. Thus, the posit MAC and the
quire rounding to posit can be subtracted from the total PAU
area to obtain a value of 5326 LUTs and 1312 FFs. This out-
come is now much closer to the synthesis results of the FPU,
as the PAU without quire occupies 1.32 times as many LUTs
and 1.35 times as many FFs. These results match previous
works [22], where authors also report an increase of around

30% in FPGA resources when comparing their 32-bit PAU
without quire with a 32-bit FPU.
In our case, the actual value of not including a quire would

be even smaller, as the cost of allocating the 512-bit quire in
the PAU and computing its 2’s complement, which are
included in the PAU top, should also be subtracted. How-
ever, the synthesis tool does not include these details.

B. ASIC SYNTHESIS

The 32-bit PAU with quire and the 32-bit FPU configura-
tion present in PERCIVAL were synthesized targeting
TSMC’s 45 nm standard-cell library to further study their
hardware cost in ASIC. The synthesis was performed
using Synopsys Design Compiler with a timing constraint
of 5 ns, which was met in both cases, and a toggle rate
of 0.1.
The 32-bit FPUwithin CVA6 requires an area of 30691mm 2

and consumes 27.26 mW of power. On the other hand, the
32-bit PAU with quire requires an area of 76970 mm2 and

TABLE II. Instruction Set of the Proposed XPosit RISC-V Extension.

TABLE III. Comparison of FPGA Synthesis Results With Different Configurations of FPU, Marked as F and D for 32 and 64-Bit Numbers

Respectively, and 32-Bit PAUWith Quire.

PAU No PAU

F D FD - F D FD -

Total core (LUT, FF) (50318, 25727) (55900, 27652) (57129, 27996) (44693, 23636) (35402, 21618) (40740, 23599) (41260, 23945) (28950, 19579)
FPU area (LUT, FF) (3726, 1008) (6352, 1905) (7612, 2245) - (4046, 973) (6626, 1905) (8163, 2244) -
PAU area (LUT, FF) (11796, 2979) (11810, 2979) (11803, 2979) (11879, 2985) - - - -
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consumes 67.73 mW of power. This follows the same trend
shown in the FPGA synthesis, as the PAU with quire is sig-
nificantly larger, 2.51x, and consumes more power, 2.48x, than
the FPU.
In addition, to better assess these values in comparison

with other proposals, the PAU available in CLARINET [19]
was also synthesized with the same parameters. We have
chosen to evaluate this work because it integrates, to the best
of our knowledge, the only other PAU that contains a quire.
In this case, the 32-bit PAU with quire requires an area of
69920 mm2 and consumes 68.31 mW of power. This is a
decrease of around 10% in area and a slight increase in power
compared to our proposal, although ours implements a much
larger set of posit functionality.
Similarly as in Section VI-A, the area and power results of

the different elements inside the PAU are presented in
Table V. As can be seen, when subtracting the cost of the
quire in the PAU, the outcome is still higher than the 32-bit
FPU, but it becomes much closer. The 32-bit PAU occupies
1.32 times as much area and consumes 1.38 times as much
power as the 32-bit IEEE FPU FPNew [15]. However, it is
noteworthy that some aspects of posit arithmetic are not yet
fully studied. For example, most of the works presenting
posit units have tackled the decoding and encoding phases
using sign-magnitude. Nonetheless, more recent studies
show that a 2’s complement approach is more efficient [13].

VII. POSIT VS IEEE-754 BENCHMARKS

One of the benefits of PERCIVAL is that an accurate and fair
comparison can be made between posit and IEEE floating
point. The main advantage of having support for native posit
and IEEE floating point simultaneously on the same core is
that identical benchmarks can be run on both number repre-
sentations to compare them. In this work, we have chosen to
benchmark the GEMM and the max-pooling layer, used to
down-sample the representation of neural networks. These

examples showcase the use of the quire and posits both in
the PAU and in the ALU, loading and storing from memory
and leveraging the posit register file.
The GEMM and max-pooling codes for posits and IEEE

floats have been written in C, including inline assembly for
the required posit and float instructions. The floating-point
code has also been written in inline assembly to provide
exactly the same sequence of instructions to the core. The
GEMM code for floats is shown in Figure 5 and the analo-
gous version for posits using the quire is shown in Figure 6.
These codes have been compiled using the modified version
of LLVM with the Xposit RISC-V extension as specified in
Section V, and serve as an example of how this extension
can be leveraged. Therefore, the final target architecture is
RV64GCXposit. The -O2 optimization flag has been used to
obtain an optimized code in every case.

A. ACCURACY

The accuracy differences between posits and floats are stud-
ied for the GEMM benchmark. Furthermore, each arithmetic
is executed with and without using fused MAC operations,
which in posit arithmetic include the quire. In the cases with-
out quire or FMADD, each fused operation is substituted by a
multiplication and an addition. The results obtained using the
64-bit IEEE 754 format are considered the golden solution
and used to compute the Mean Squared Error (MSE) of the
32-bit posit and the 32-bit IEEE 754 floating point. In all
cases, the inputs are square matrices with the same random
values. These input values are generated from a uniform dis-
tribution in intervals of the form ½�10i; 10i	; i 2 f�1; 0; 1;
2; 3g. This results in 5 different sets of inputs. These intervals
allow for a study of the impact of the input data range on the
GEMM. These random values are generated as 64-bit IEEE
754 numbers and then converted to the two other formats
with the aid of the SoftPosit [26] library.

TABLE IV. FPGA Synthesis Area Results of the PAU Desegre-

gated Into Its Individual Components.

Name LUTs FFs

PAU top 593 1063
Posit Add 784 106
Posit Mult 736 73
Posit ADiv 413 43
Posit ASqrt 426 33
Posit MAC 5644 1541
Quire to Posit 889 126
Int to Posit 176 0
Long to Posit 331 0
ULong to Posit 425 0
Posit to Int 499 0
Posit to Long 379 0
Posit to UInt 228 0
Posit to ULong 358 0

PAU total 11879 2985
PAU w/o quire 5346 1318

TABLE V. ASIC Synthesis Area and Power Results of the 32-Bit

PAUWith Quire Desegregated Into Its Individual Components.

Name Area (mm2) Power (mW)

PAU top 13462.15 12.69
Posit Add 4075.31 3.59
Posit Mult 8635.37 9.98
Posit ADiv 2540.87 2.41
Posit ASqrt 1722.84 1.61
Posit MAC 30419.12 26.07
Quire to Posit 6026.76 4.04
Int to Posit 905.99 0.68
Long to Posit 1423.43 0.96
UInt to Posit 869.77 0.66
ULong to Posit 1353.11 0.94
Posit to Int 966.67 0.71
Posit to Long 1810.33 1.38
Posit to UInt 958.44 0.68
Posit to ULong 1800.22 1.33

PAU total 76970.38 67.73
PAU w/o quire 40524.62 37.62

CLARINET PAU 69920.02 68.31
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The MSE results are shown in Table VI for different
matrix sizes and input ranges. Additionally, Figure 7 shows
the MSE in the ½�1; 1	 case. We decided to give slightly
more attention to this case since many applications normalize
their values. As can be seen, for 256� 256 matrices, the dif-
ference between MSE is around four orders of magnitude
when using fused operations. This is reduced to two orders
of magnitude if the quire is not used. Note that when using
floats, the accuracy difference between employing fused
FMADD operations or not is minimal.

If we compare how the MSE scales when increasing the
matrix size, it can be seen that posit numbers present a better
behavior thanks to the quire register. This is true in all ranges
of input values. Overall, the impact of the quire is significant
among all test cases, and its extra cost is justified by the results.
These results go in line with our previous work [27],

where a similar benchmark was performed using hardware
simulations with an input interval of ½�2; 2	. The MSE
results on 32-bit floats and posits follow the same trends
given in Table VI.

FIGURE 5. 32-bit floating-point GEMM using the F RISC-V

extension. FIGURE 6. Posit GEMM using the Xposit RISC-V extension with

the quire accumulator.

TABLE VI. GEMMMSE Comparison Between IEEE 754 Floating-Point and Posit Numbers.
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When removing the quire, posits still have a lower MSE
than floats except in the ½�1000; 1000	 case. This can be
explained by posit’s tapered precision. When the numbers’
exponents are closer to 0, they end up in the so-called “golden
zone” of posits [4]. This is the area where posits have more
accuracy bits than floats thanks to their variable-length fields.
However, when the accumulated values are large or very
small, IEEE floats gain an advantage over posits without quire.
Particularly, this “golden zone” comprises values roughly in

the interval ½10�6; 106	. In the test with input values in
½�1000; 1000	, the absolute value of the final outputs averages
1:2� 106 in the 16� 16 matrix and 4:3� 106 in the 256�
256 case. As a comparison, even in the 256� 256 multiplica-
tion, the ½�100; 100	 input range only averages 4:3� 104.

B. PERFORMANCE

Besides the synthesis data presented in Section VI, the exe-
cution time is a critical metric to study the hardware perfor-
mance of posits and floats. The test has been performed
executing the same GEMM and max-pooling described pre-
viously on PERCIVAL, avoiding cold misses and averaging
over 10 executions to obtain more accurate measurements.

The range of the input values does not affect performance.
Thus, the values shown in Table VII for GEMM are an aver-
age of the timings obtained in the 5 cases described previ-
ously. This gives a total of 50 executions in the GEMM
operation. In this case, when using fused MAC operations
and the quire, the execution time of 32-bit posits is practi-
cally the same as that of single-precision floats for the larger
matrix sizes, where the overhead execution of the extra
qround.s instruction becomes negligible (see Figure 6). This
instruction is executed in the order of Oðn2Þ times, compared
with the Oðn3Þ running time of the algorithm. This cost is
noticeable for smaller values of n, when 32-bit posits are
slightly slower than 32-bit and 64-bit floats. However, for
larger matrix sizes, which are common in scientific applica-
tions and Deep Neural Networks (DNNs), 32-bit posits per-
form equally as 32-bit floats and outperform 64-bit floats,
since these instructions require more clock cycles to com-
pute. Furthermore, as seen in the previous accuracy bench-
mark, 32-bit posits are orders of magnitude more accurate
than 32-bit floats when performing this calculation. There-
fore, they provide an alternative solution for the execution of
kernels that make use of the dot product.

FIGURE 7. MSE results of posits and floats with respect to doubles in the GEMM test with input values in ½�1; 1	. Note the logarithmic

Y-axis. Blue (green) bars show the results with (without) fused MAC and quire operations.

TABLE VII. GEMM Timing Comparison Between IEEE 754 Floating-Point and Posit Numbers.

Matrix size 16� 16 32� 32 64� 64 128� 128 256� 256

32-bit float 0.978 ms 6.58 ms 52.1 ms 1.48 s 13.9 s
64-bit float 0.920 ms 6.64 ms 69.4 ms 1.74 s 15.0 s
Posit32 0.949 ms 7.30 ms 57.7 ms 1.48 s 13.9 s
32-bit float no FMADD 1.16 ms 8.69 ms 68.6 ms 1.61 s 15.0 s
64-bit float no FMADD 1.26 ms 9.36 ms 92.6 ms 1.92 s 16.7 s
Posit32 no quire 1.27 ms 9.63 ms 69.1 ms 1.61 s 15.0 s
VividSparks Posit32 no quire 7.95 ms 48.9 ms 345 ms 2.63 s 21.1 s
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The quire and fused MAC operations have a positive
impact on timing performance. This is true in all test cases.
Again, this performance increase stems from the extra clock
cycles needed for a multiplication + an addition in compari-
son to only one fused operation.
Additionally, for the sake of completeness, we have per-

formed the same GEMM timing test on a commercial core
with support for posit arithmetic. RacEr is a GPGPU FPGA
provided by VividSparks that supports computation with
Posit32 but does not include quire support, so its accuracy
results are the same as the Posit32 no quire case. It has 512
CPUs running at 300 MHz with 32 GB of DDR4 RAM.
Table VII also includes the results of the GEMM benchmark
on this platform. As can be seen, our proposal provides sig-
nificantly faster results than this commercial accelerator.
Regarding the max-pooling layers, three different configura-

tions have been tested following common DNNs. In LeNet-5,
the input of this layer is 28x28x6, the pooling kernel is 2x2
and is applied with a stride of 2, creating a 14x14x6 output
representation. In AlexNet, the input size is 54x54x96, the ker-
nel size is 3x3 and is applied with a stride of 2, generating an
output of size 26x26x96. Finally, ResNet-50 is the largest con-
figuration we have tested, as its input is 112x112x64, the pool-
ing kernel is 3x3 and again is applied with a stride of 2,
creating a 55x55x64 output representation.
The results of executing these layers on PERCIVAL using the

32 and 64-bit IEEE floating-point and Posit32 representations
are shown in Table VIII. Results show that 32-bit posits perform
as fast as 32-bit floats but without the need for extra hardware, as
the posit maximum operation is carried out reusing the integer
ALU. Double-precision floats are slower than 32-bit posits and
floats by a factor of 1.4-1.7� due to the latency difference in the
units as seen in the GEMMbenchmark.

VIII. CONCLUSION

This paper has presented PERCIVAL, an extension of the
application-level CVA6 RISC-V core, including all 32-bit
posit instructions as well as the quire fused operations. These
capabilities, integrated into a Posit Arithmetic Unit together
with a posit register file, are natively incorporated while pre-
serving IEEE 754 single- and double-precision floats.
Furthermore, the RISC-V ISA has been extended with

Xposit, which includes support for all posit and quire instruc-
tions. This allows the compilation and execution on PER-
CIVAL of application-level programs that make use of posits
and floats simultaneously. To the best of our knowledge, this
is the first work that enables complete posit and quire capa-
bilities in hardware.

Synthesis results show that half the area dedicated to the
PAU is occupied by the quire and its operations. When com-
paring with the only previous work which includes quire capa-
bilities [19], our proposal consumes slightly less power and
only 10% more area, while also providing full posit operations
support. When focusing on the 32-bit PAU without the quire,
our proposal requires 32% more area and 38% more power
than the 32-bit FPU. This goes in line with the results of recent
works which reuse the F RISC-V extension [22], where authors
obtain a 30% increase in FPGA resources when comparing
their PAU to the FPU.
The Posit vs IEEE-754 comparison benchmark results

show that 32-bit posits are up to 4 orders of magnitude more
accurate than 32-bit floats when calculating the GEMM due
to the quire. Moreover, they do not show a performance deg-
radation compared with floats, thus providing a potential
alternative when operating with real numbers. In addition,
our proposal performs significantly better than available
commercial solutions, obtaining up to 8� speedup when
multiplying small matrices.
Some known limitations occur in the use of the quire. As it

is a single internal register in the PAU, PERCIVAL cannot
support parallel accumulation into different independent
accumulators. This also prevents safe automatic context
switches, as the value of the quire cannot be loaded or stored
in memory. Therefore, when developing programs for PER-
CIVAL this must be taken into account to not overwrite the
value of the quire.
As future work, we plan to implement and evaluate on

PERCIVAL large-scale scientific applications which make
use of dot products, leveraging the accuracy gains of fused
operations.

REFERENCES

[1] IEEE Computer Society, IEEE Standard for Floating-Point Arithmetic,
IEEE Standard 754–2019 (Revision of IEEE 754-2008), pp. 1–84, Jul. 2019.

[2] J. L. Gustafson and I. T. Yonemoto, “Beating floating point at its own game:
Posit arithmetic,” Supercomput. Front. Innov., vol. 4, no. 2, pp. 71–86,
Apr. 2017.

[3] A. Guntoro et al., “Next generation arithmetic for edge computing,” in
Proc. Des. Automat. Test Eur. Conf. Exhib., 2020, pp. 1357–1365.

[4] F. de Dinechin, L. Forget, J.-M.Muller, and Y. Uguen, “Posits: The good, the
bad and the ugly,” inProc. Conf. Next Gener. Arithmetic, 2019, pp. 1–10.

[5] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovi�c, “The RISC-V
instruction set manual, volume I: User-level ISA, version 2.0,” EECS
Dept., Univ. California, Berkeley, Tech. Rep. UCB/EECS-2014–54,
May 2014.

[6] R. Murillo, A. A. Del Barrio, and G. Botella, “Deep PeNSieve: A deep
learning framework based on the posit number system,” Digit. Signal Pro-
cess., vol. 102, Jul. 2020, Art. no. 102762.

[7] G. Raposo, P. Tom�as, and N. Roma, “PositNN: Training deep neural net-
works with mixed low-precision posit,” in Proc. IEEE Int. Conf. Acoust.
Speech Signal Process., 2021, pp. 7908–7912.

[8] H. F. Langroudi et al., “ALPS: Adaptive quantization of deep neural net-
works with GeneraLized PositS,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. Workshops, 2021, pp. 3094–3103.

[9] A. D€orflinger et al., “A comparative survey of open-source application-
class RISC-V processor implementations,” in Proc. 18th ACM Int. Conf.
Comput. Front., 2021, pp. 12–20.

[10] F. Zaruba and L. Benini, “The cost of application-class processing: Energy
and performance analysis of a linux-ready 1.7-GHz 64-Bit RISC-V core in
22-nm FDSOI technology,” IEEE Trans. Very Large Scale Integration
Syst., vol. 27, no. 11, pp. 2629–2640, Nov. 2019.

TABLE VIII. Max-Pooling Timing Comparison Between IEEE 754

Floating-Point and Posit Numbers.

Max-pooling layer 32-bit float 64-bit float Posit32

LeNet-5 (28x28x6) 0.715 ms 1.211 ms 0.688 ms
AlexNet (54x54x96) 0.115 ms 0.160 ms 0.116 ms
ResNet-50 (112x112x64) 0.337 ms 0.470 ms 0.340 ms

VOLUME 10, NO. 3, JULY-SEPT. 2022 1251

PERCIVAL: Open-Source Posit RISC-VCore With Quire Capability



[11] R. Murillo et al., “PLAM: A. posit logarithm-approximate multiplier,” IEEE
Trans. Emerg. Topics Comput., early access, Sep. 6, 2021, doi: 10.1109/
TETC.2021.3109127.

[12] Posit Working Group, “Posit Standard Documentation Release 4.12-draft,”
Standard Posit Arithmetic, Jul. 2021. [Online]. Available: https://posithub.
org/posit_standard4.12.pdf

[13] R. Murillo, D. Mallas�en, A. A. Del Barrio, and G. Botella, “Comparing
different decodings for posit arithmetic,” in Proc. Conf. Next Gener. Arith-
metic, 2022, pp. 71–86.

[14] J. L. Gustafson, “RISC-V proposed extension for 32-bit posits,” Jun. 2018.
[Online]. Available: https://posithub.org/docs/RISC-V/RISC-V.htm

[15] S. Mach, F. Schuiki, F. Zaruba, and L. Benini, “FPnew: An open-source
multiformat floating-point unit architecture for energy-proportional trans-
precision computing,” IEEE Trans. Very Large Scale Integration Syst.,
vol. 29, no. 4, pp. 774–787, Apr. 2021.

[16] R. Chaurasiya et al., “Parameterized posit arithmetic hardware generator,”
in Proc. IEEE 36th Int. Conf. Comput. Des., 2018, pp. 334–341.

[17] M. K. Jaiswal and H. K.-H. So, “PACoGen: A. hardware posit arithmetic
core generator,” IEEE Access, vol. 7, pp. 74586–74601, 2019.

[18] R. Murillo, A. A. Del Barrio, and G. Botella, “Customized posit adders and
multipliers using the FloPoCo core generator,” in Proc. IEEE Int. Symp.
Circuits Syst., 2020, pp. 1–5.

[19] N. Sharma et al., “CLARINET: A RISC-V Based Framework for Posit
Arithmetic Empiricism,” 2021, arXiv: 2006.00364.

[20] M. V. Arunkumar, S. G. Bhairathi, and H. G. Hayatnagarkar, “PERC:
Posit enhanced rocket chip,” in Proc. 4th Workshop Comput. Archit. Res.
RISC-V, 2020, Art. no. 8.

[21] S. Tiwari, N. Gala, C. Rebeiro, and V. Kamakoti, “PERI: A. configurable
posit enabled RISC-V core,” ACM Trans. Archit. Code Optim., vol. 18,
no. 3, pp. 1–26, Jun. 2021.

[22] S. D. Ciocirlan, D. Loghin, L. Ramapantulu, N. Tapus, and Y. M. Teo, “The
Accuracy and Efficiency of Posit Arithmetic,” 2021, arXiv:2109.08225.

[23] M. Cococcioni, F. Rossi, E. Ruffaldi, and S. Saponara, “A lightweight posit
processing unit for RISC-V processors in deep neural network applica-
tions,” IEEE Trans. Emerg. Topics Comput., early access, Oct. 21, 2021,
doi: 10.1109/TETC.2021.3120538.

[24] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis amp; transformation,” in Proc. Int. Symp. Code Gener.
Optim., 2004, pp. 75–86.

[25] A. Waterman and K. Asanovi�c, “The RISC-V instruction set manual, Vol-
ume I: User-Level ISA, Document Version 20191213,” A. Waterman and
K. Asanovi�c, Eds. RISC-V Found., Dec. 2019. [Online]. Available:
https://riscv.org/technical/specifications/

[26] S. H. Leong, “SoftPosit,” Mar. 2020. [Online]. Available: https://gitlab.
com/cerlane/SoftPosit

[27] R. Murillo, D. Mallas�en, A. A. Del Barrio, and G. Botella, “Energy-effi-
cient MAC units for fused posit arithmetic,” in Proc. IEEE 39th Int. Conf.
Comput. Des., 2021, pp. 138–145.

DAVID MALLAS�EN received the BSc degree in
computer science and the BSc degree in mathemat-
ics from the Complutense University of Madrid
(UCM), in 2020, and the MSc degree in embedded
systems from the KTH Royal Institute of Technol-
ogy, specializing in embedded platforms, from 2020
to 2022. Currently, he is working toward the PhD
degree in computer engineering at UCM. His main
research areas include computer arithmetic, com-
puter architecture, embedded systems, and high-per-
formance computing.

RAUL MURILLO received the BSc degree in com-
puter science and the BSc degree in mathematics from
theComplutenseUniversity ofMadrid (UCM), Spain,
in 2019, where he also received the MSc degree in
computer science in 2021. His main research interests
include approximate computing, new computer arith-
metic, and deep neural networks (DNNs). He is cur-
rently working toward the PhD degree with UCM
related to the previouslymentioned areas.

ALBERTO A. DEL BARRIO (Senior Member,
IEEE) received the PhD degree in computer science
from the Complutense University of Madrid (UCM),
Madrid, Spain, in 2011. He has performed stays with
Northwestern University, University of California at
Irvine and University of California at Los Angeles.
Since 2021, he is anAssociate Professor (tenure-track,
civil-servant) of Computer Science with the Depart-
ment of Computer Architecture and SystemEngineer-
ing, UCM. His main research interests include design
automation, arithmetic and their application to the

field of artificial intelligence. He is leading the PARNASO project, funded by
the Leonardo Grants program by Fundaci�on BBVA. The main objective is to
natively integrate the posit format in a hardware/software platform. Since
December 2020 he is an ACM senior member, too.

GUILLERMO BOTELLA (Senior Member, IEEE)
received the MASc degree in physics (fundamental)
in 1998, the MASc degree in electronic engineering
in 2001, and the PhD degree (computer engineering)
in 2007, all from the University of Granada, Spain.
He was a research fellow funded by EUworking with
the University of Granada, Spain and the Vision
Research Laboratory, University College London,
U.K.. After that, he joined as Assistant Professor with
the Department of Computer Architecture and Auto-
mation of Complutense University of Madrid, Spain,

where he is currently Associate Professor. He has performed research stays act-
ing also as visiting professor from 2008 to 2012 with the Department of Electri-
cal and Computer Engineering, Florida State University, Tallahassee, USA. His
current research interests include image and video processing for VLSI, FPGAs,
GPGPUs, Embedded Systems, and novel computing paradigms such as analog
and quantum computing.

LUISPIeNUEL received theMSc and PhD degrees in
computer science from the Universidad Complutense
de Madrid (UCM) in 1996 and 2003, respectively.
He is an Associate Professor with the Department of
Computer Architecture and Systems Engineering,
Universidad Complutense de Madrid, Spain. His
research interests include computer architecture,
high-performance computing, embedded systems,
and resource management for emerging computing
systems. In these fields, he is coauthor of more than
70 publications in prestigious journals and interna-

tional conferences, several book chapters and he has advised or coadvised five
PhD dissertations. Worried about improving knowledge transfer between
research institutions and industry, he has directed more than 12 research con-
tracts with different companies (Texas Instruments, Imagination Technologies,
Indra,...). He has also served as evaluator for several national agencies and has
also been member of the Board of Directors of the Spanish Computer Architec-
ture Society (SARTECO).

MANUEL PRIETO-MATIAS received the PhD
degree from the Complutense University of Madrid
(UCM) in 2000. Since 2002, he has been a profes-
sor with the Department of Computer Architecture,
UCM, being a full professor since 2019. His
research interests include high-performance com-
puting, non-volatile memory technologies, acceler-
ators, and code generation and optimization. His
current focus is on effectively managing resources
on emerging computing platforms, emphasizing the
interaction between the system software and the

underlying architecture. Manuel has coauthored more than 100 scientific
publications in journals and conferences in parallel computing and computer
architecture. He is a member of the ACM.

1252 VOLUME 10, NO. 3, JULY-SEPT. 2022

PERCIVAL: Open-Source Posit RISC-V Core With Quire Capability

http://dx.doi.org/10.1109/TETC.2021.3109127
http://dx.doi.org/10.1109/TETC.2021.3109127
https://posithub.org/posit_standard4.12.pdf
https://posithub.org/posit_standard4.12.pdf
https://posithub.org/docs/RISC-V/RISC-V.htm
http://dx.doi.org/10.1109/TETC.2021.3120538
https://riscv.org/technical/specifications/
https://gitlab.com/cerlane/SoftPosit
https://gitlab.com/cerlane/SoftPosit


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


