
Approximate Recursive Multipliers Using
Low Power Building Blocks

EFSTRATIOS ZACHARELOS , ITALO NUNZIATA , GERARDO SAGGESE ,
ANTONIO G.M. STROLLO , (Senior Member, IEEE), AND ETTORE NAPOLI, (Senior Member, IEEE)

CORRESPONDING AUTHOR: EFSTRATIOS ZACHARELOS (efstratios.zacharelos@unina.it)

ABSTRACT Approximate computing, frequently used in error tolerant applications, aims to achieve higher
circuit performances by allowing the possibility of inaccurate results, rather than guaranteeing a correct out-
come. Many contributions target the binary multiplier aiming to minimize the complexity of this common yet
power-hungry circuit. Approximate recursive multipliers are low-power designs that exploit approximate
building blocks to scale up to their final size. In this paper, we present two novel 4�4 approximate multipliers
obtained by carry manipulation. They are used to compose 8�8 designs with different error-performance
trade-off. The final circuits exhibit a competitive behavior in terms of error while reducing the power dissipa-
tion when compared to state-of-the-art proposals. The proposed multipliers and state-of-the-art designs found
in the literature, have been synthesized targeting a 14nm FinFET technology to determine the electrical char-
acteristics. Compared with an exact 8�8 multiplier, the least dissipative design proposed in this paper reduces
power consumption and silicon area by 46%, and minimum delay by 21%. It also consumes 14% less power
than the least power-hungry recursive circuit found in the literature, while offering 81% higher accuracy.
Image processing applications and a convolutional neural network are shown to demonstrate the effectiveness
of the proposed multipliers.

INDEX TERMS Approximate methods, arithmetic and logic structures, error handling and recovery,
integrated circuits

I. INTRODUCTION

The everlasting demand for power and speed improvement
has driven researchers towards approximate computing.
Approximate computing is a fast-emerging field in digital
design that sacrifices the exactness of computations over sig-
nificant improvement in power dissipation, speed, and circuit
area. Such techniques can be utilized in cloud computing,
embedded and mobile devices, where high speed and power
minimization are important constraints. Approximate comput-
ing finds fertile soil in error resilient applications such as mul-
timedia processing, data mining and recognition, machine
learning [1]–[4].
Concerning approximate computing, a plethora of studies

has focused on arithmetic operations, such as binary addition,
multiplication, and division [5]–[7]. Binary multipliers consti-
tute a fundamental part of digital processing systems, and
unfortunately are characterized by heavy silicon area, power,

and timing requirements [8]. Consequently, nowadays approx-
imate binary multipliers are being studied thoroughly. A com-
prehensive survey of arithmetic circuits, such as approximate
adders, multipliers, and more complex circuits such as the
binary divider is reported in [9].
Several techniques providing efficient approximate multi-

pliers have been studied in the literature. One such example
is the approximate logarithmic multiplier [10]–[12]. In this
case, approximated versions of the logarithms of the input
operands, are added. The result corresponds to the approxi-
mated value of the antilogarithm of the sum. These are low
power and high speed designs, due to the low complexity in
their architecture. However, they tend to be less accurate.
Another approach is the static segmentation. In this tech-
nique, a part of each input operand is given as input to a
small multiplier, whose shifted output is the result of the mul-
tiplication [13]. Static segmentation has been demonstrated

Efstratios Zacharelos, Italo Nunziata, Gerardo Saggese, and Antonio G.M. Strollo are with the Department of Electrical Engineering and Information
Technology, University of Napoli Federico II, 80125 Naples, Italy

Ettore Napoli is with the Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno, 84084 Fisciano, Italy

Received 13 February 2022; revised 4 June 2022; accepted 15 June 2022.
Date of publication 30 June 2022; date of current version 6 September 2022.

Digital Object Identifier 10.1109/TETC.2022.3186240

VOLUME 10, NO. 3, JULY-SEPT. 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see

ht _tps://creativecommons.org/licenses/by/4.0/ 1315

https://orcid.org/0000-0002-7334-2250
https://orcid.org/0000-0002-7334-2250
https://orcid.org/0000-0002-7334-2250
https://orcid.org/0000-0002-7334-2250
https://orcid.org/0000-0002-7334-2250
https://orcid.org/0000-0002-6555-6910
https://orcid.org/0000-0002-6555-6910
https://orcid.org/0000-0002-6555-6910
https://orcid.org/0000-0002-6555-6910
https://orcid.org/0000-0002-6555-6910
https://orcid.org/0000-0001-9901-3757
https://orcid.org/0000-0001-9901-3757
https://orcid.org/0000-0001-9901-3757
https://orcid.org/0000-0001-9901-3757
https://orcid.org/0000-0001-9901-3757
https://orcid.org/0000-0001-5737-1783
https://orcid.org/0000-0001-5737-1783
https://orcid.org/0000-0001-5737-1783
https://orcid.org/0000-0001-5737-1783
https://orcid.org/0000-0001-5737-1783

to be useful when very low power is needed, and accuracy is
not the main issue. In [14] the authors propose an approxi-
mate multiplier that can dynamically control accuracy. The
circuit can select the length of the carry propagation to effec-
tively satisfy the desired accuracy requirements.
Software-based approaches have been proposed, that

merge the approximated multiplier design in the design flow
of the circuit. They automatically generate synthesizable
hardware description code for approximate arithmetic cir-
cuits based on the accuracy requirement of the design [15]–
[18]. Such techniques can prove useful when the targeted
application does not have a uniform input distribution.
The basic binary multiplication process can be divided into

three parts: partial product generation, partial product reduc-
tion and carry-propagate addition. Approximate computing
can be introduced in all these steps. For instance, the first
step can be approximated by truncating some of the least sig-
nificant partial products (PPs) and then employing a compen-
sation strategy [19], [20].
The partial product reduction step is typically the main tar-

get for approximations in a binary multiplier. A common
approach to reduce the partial product matrix (PPM) relies
on the use of approximate compressors. Compressors are
logic circuits that aim to minimize the number of operands in
the final step, which is the addition of the reduced partial
products. They are XOR-rich circuits (thus slow and power-
hungry), that count the number of ones in the input. The
most basic exact compressor is the Full Adder, that reduces
three digits into two, maintaining the original information.
Many research contributions have focused on the approxima-
tion of the PPM compression phase, [21]–[35].
In [21] the authors acquire approximate compressors by

truncating outputs of some exact compressors, while in [22]
and [25], compressors with only 2-bit outputs are proposed.
Lossy compression of the rows in the PPM based on bit signif-
icance, is investigated in [23]; the compression exploits
approximate, OR-based half adders. In [24] simple OR gates
serve as approximate compressors and two designs are pro-
posed. The two designs are obtained using encoded partial
products and approximate compressors, delivering different
accuracy-electrical performance trade-off. Several solutions
employing 3:2 and 4:2 compressors to generate approximated
multipliers are presented in [26], [29], [31], [32]. A set of Sin-
gle-Weight Approximate Compressors (SWACs) is employed
in [27], to construct approximate multipliers. Unlike the Full-
Adder that produces a sum and a carry, these designs com-
press input bits derived from a PPM column, into fewer output
bits, maintaining the same initial weight. This allows a signifi-
cant reduction of circuit complexity since less carry bits are
generated and propagated. Maddisetty et al. [28] present the
training of a neural network to devise an efficient approximate
4:2 compressor. In [30] two 4:2 compressors are presented; a
novel 4:2 architecture, and a modified design by substituting
the AND / OR gates with NAND / NOR gates respectively.
Although the boolean expression is changed, when the modi-
fied version targets multipliers, employing reduction steps in

multiples of 2, the difference is nullified. Approximate 4:2
designs implemented in FinFET technology are presented in
[33], [35]. In [34] the number of outputs of the approximate
4:2 compressor is innovatively reduced to one; 3 such com-
pressors are proposed, as well as an error-correcting module.
Recursive multipliers are an interesting research area of the

approximate computing field that aims to use small elemen-
tary approximate multiplier blocks, suitably assembled, to
design larger multipliers, [26], [36]–[42]. The advantage of
the recursive building of larger multipliers is that it avoids a
dedicated design for every bit-width and gains in terms of
generality of the proposed approaches. As explained in [26],
four n�n building blocks can be utilized to scale up to a
2n�2n multiplier. Several authors have used 4�4 approxi-
mate multipliers to recursively generate several 8�8 multi-
plier alternatives. The authors of [26] propose three 4:2
compressors, used to generate two 4�4 multipliers.
Guo et al. [38] propose a 4�4 approximate multiplier mod-

ule. The corresponding 8�8 multiplier is made up from one
4�4 multiplier featuring OR-based compressors with no carry
propagation in the lower part, two of the proposed 4�4 mod-
ules in the middle part, and an exact 4�4 multiplier for the
most significant part. Differently from the other designs, the
four products are summed using an approximate adder.
In [40] the authors consider the probability distribution of the

input operands to propose 4�4 multipliers, consisting of
approximate NOR-based half adder and full adder designs.
These elementary blocks are exploited to build approximate
recursive multipliers. In [41] a 4�4 approximate multiplier fea-
turing an error detection and correction system, is presented.
Similarly, in [36], [37], [39] and [42] the authors pro-

pose 2�2 approximate sub-multipliers, suitably arranged,
to form larger size multipliers. Sixteen 2�2 modules are
needed to create an 8�8 multiplier. Kulkarni et al. [36]
present a 2�2 inexact multiplier with tunable error charac-
teristics. In [37] the authors provide an exploration of the
architectural space and propose their 2�2 module. The
2�2 approximate multiplier presented in [39] has an inter-
nal self-healing strategy that does not require coupled mod-
ules, while the proposed larger multipliers derived from the
2�2 blocks produce near zero mean error. In [42] two ele-
mentary multipliers are proposed that exhibit double-sided
error distribution while the resulting 8�8 design has the
advantage of error compensation.
In this paper, two novel 4�4 approximate designs with

minimal power requirements and competitive error perfor-
mance, are presented. The output is calculated by exploiting
carry truncation and compensation techniques. These designs,
along with an OR-based and an exact 4�4 multiplier, are used
to generate 8�8, 16�16, and 32�32, approximate multi-
pliers, following the strategies presented in [26] and [38].
The circuits proposed in this paper as well as various previ-

ously proposed contributions, have been synthesized using a
commercial 14nm FinFET standard cell library. Syntheses
show that our circuits, compared to previously proposed
designs, provide good error-electrical performance trade-off.

1316 VOLUME 10, NO. 3, JULY-SEPT. 2022

Zacharelos et al.: Approximate Recursive Multipliers Using Low Power Building Blocks

We have also investigated the performance of 8�8 approxi-
mate multipliers in image filtering applications and in the infer-
ence step of a pre-trained convolutional neural network.
Obtained results confirm that the proposed circuits are good
competitors in error-resilient applications.
The paper is organized as follows. In Section II the

approximate OR-based and proposed 4�4 multipliers are
presented. The architectures of the recursive 8�8 multipliers
are in Section III. Section IV reports the performances of
4�4, 8�8, 16�16, and 32�32 multipliers. Section V shows
a comparison with formerly proposed approximate multi-
pliers for image processing applications and for the inference
stage of a pre-trained convolutional neural network. The con-
clusions are drawn in Section VI.

II. 4�4 APPROXIMATE BINARY MULTIPLIERS

Let us consider two 4-bit unsigned numbers a ¼ P3
i¼0 ai2

i

and b ¼ P3
j¼0 bj2

j. The computation of their product, y ¼P7
k¼0 yk2

k, consists of three steps. Firstly, the partial product
matrix (PPM) is generated using AND gates between all the
input bits. There are various techniques to carry out the sec-
ond and third steps that reduce and sum the entire PPM to
obtain the final product, e.g., employing full adders, half add-
ers or 4:2 compressors in Wallace or Dadda configurations.
Figure 1 shows the Wallace reduction tree for an exact 4�4
multiplier. Three half adders (dashed rectangles) and five full
adders (rectangles) are employed to reduce the PPM. The
sum and carry outputs produced by half and full adders are
indicated in the figure as SN_x, CNM_x, where N andM indi-
cate the origin and destination column, while x indicates the
reduction stage. After two stages of reduction we obtain the
three least-significant bits of the output Y[2]. . .Y[0] and two
4 bit values that are summed to obtain the most significant
bits of the output, Y[7]. . .Y[3].

A simple and fast way to approximate the product of two
binary numbers is to use an approximate multiplier with OR
compressors. In this case all the partial products in each column
of the PPM are fed to OR gates as shown in Figure 2. As it can
be observed the most significant bit is always zero. This
approximated design is a kind of lower bound for circuit com-
plexity but, as shown in Table 3, it exhibits the worst error
performance.

A. 4�4 APPROXIMATE MULTIPLIER N1

In the circuit shown in Figure 2, the sums of the partial
products are approximated using OR gates. As a more
accurate base point, we can assume an approximate multi-
plier that uses OR gates to sum the lower half of the matrix
of partial products, and full or half adders for the higher
part, as shown in Figure 3. Note that the approximated
multiplier in Figure 3 requires three compression stages,
while the OR based in Figure 2 obtains the result with a
fast single stage.
The design in Figure 3 contains three XOR gates that are

known to be bulky and slow. An attempt has been made to
simplify it. The first step is to substitute the XOR gate in col-
umn 4 with a simpler OR gate:

Y 4½ � ¼ a3b1 þ a2b2 þ a1b3 (1)

The next step is the manipulation of the carry of the same
full adder:

C45 1 ¼ a3b1 � a2b2 þ a1b3 � a2b2 þ a3b1 � a1b3 (2)

Let us simplify the expression by neglecting the last term:

C�
45 1 ¼ a2b2 � a1b3 þ a3b1ð Þ (3)

A customized Full Adder is employed in column 5 to add
the three terms. The sum is exact and uses a XOR gate:

Y 5½ � ¼ a3b2 � a2b3 � C�
45 1 (4)

FIGURE 1. Wallace 4�4 exact multiplier.

FIGURE 3. Half OR-based 4�4 approximate multiplier. The start-

ing architecture for the proposed N1 design.

FIGURE 2. OR-based 4�4 approximate multiplier.

VOLUME 10, NO. 3, JULY-SEPT. 2022 1317

Zacharelos et al.: Approximate Recursive Multipliers Using Low Power Building Blocks

The carry can be significantly simplified:

C56 2 ¼ a3b2 � a2b3 þ a3b2 � C�
45 1 þ a2b3 � C�

45 1

¼ a2b2 � a3b3 þ a3b3a1 þ a3b3b1 þ a3b1 þ a1b3ð Þ (5)

By neglecting the terms that are a product of three literals
(they have a lower probability of being ‘1’) we get:

C�
56 2 ¼ a2b2 � a3b3 þ a3b1 þ a1b3ð Þ (6)

The two terms in column 6 are fed into a customized half
adder. The sum is the XOR of the two inputs:

Y 6½ � ¼ a3b3 � C�
56 2 ¼ a3b3 � C�

56 2 þ a3b3 � C�
56 2)

Y 6½ � ffi a3b3 � a2b2 þ a3b3 � a2b2 � a3b1 þ a1b3ð Þ (7)

Finally, the carry of the Half Adder is approximated as:

Y 7½ � ¼ C�
56 2 � a3b3 ffi a2b2 � a3b3 (8)

The resulting design is named N1 and is shown in Figure 4.
N1 uses three stages to reach the result and uses six OR gates,
four AND gates, and one XOR gate. Compared to the exact
Wallace 4�4 multiplier, it shows a vast improvement in terms
of both power and speed. In fact, in the exact design the third
stage consists of cascaded half and full adders, resulting in
three sub-stages, all of them containing at least one XOR gate.
Namely, 28 AND gates, 8 OR gates and 12 XOR gates are
used in the exact design. Obviously, the proposed design

provides an inexact result. The error characteristics of the pro-
posed blocks are discussed in Section IV.

B. 4�4 APPROXIMATE MULTIPLIER N2

Let us now start from a less accurate circuit than the one in
Figure 3. In this circuit, shown in Figure 5, all the terms from
Y[0] to Y[4] are computed as the output of OR gates, while
the remaining bits are computed without approximations. As
shown in Figure 5, two half adders are needed together with
the OR gates to complete the design of the multiplier. The
proposed architecture takes the circuit in Figure 5 as a start-
ing point for further simplification.
The first step is to substitute the XOR gate of the half

adder in column 5, with an OR gate:

Y 5½ � ¼ a3b2 þ a2b3 (9)

The carry of the same half adder is:

C56 1 ¼ a3b2 � a2b3 (10)

The sum of the last half adder is:

S6 ¼ a3b3 � C56 1 ¼ a3b3 � C56 1 þ a3b3 � C56 1

¼ a3b3 � a3b2 � a2b3 þ a3b3 � a3b2 � a2b3 (11)

By neglecting the second term:

S�6 ¼ a3b3 � a3b3a2b2 ¼ a3b3 � a3b3 þ a2b2
� �

(12)

With a final approximation:

Y 6½ � ¼ a3b3 � a2b2 (13)

The carry of the last Half Adder is:

Y 7½ � ¼ C56 1 � a3b3 ¼ a3b2 � a2b3 � a3b3
¼ a3b3 � a2b2 (14)

The resulting design is named N2 and shown in Figure 6.
This rather simple design has only two additional AND gates
with respect to the OR-based design shown in Figure 2.
However, the performances of the proposed design are con-
siderably better as will be discussed in Section IV and shown
in Table 3, making this design useful for higher order
multipliers.

FIGURE 4. Proposed 4�4 approximate multiplier, N1.

FIGURE 5. 4�4 approximate multiplier. The five least significant

outputs are approximated with OR gates while the most signifi-

cant three outputs are computed with two HAs. The starting

architecture for the proposed N2 design.

FIGURE 6. Proposed 4�4 approximate multiplier, N2.

1318 VOLUME 10, NO. 3, JULY-SEPT. 2022

Zacharelos et al.: Approximate Recursive Multipliers Using Low Power Building Blocks

III. 8�8 APPROXIMATE MULTIPLIER ARCHITECTURES

We compare our work to state-of-the-art designs in the litera-
ture [13], [14], [20], [26], [36]–[40], and [42]. These are
mostly approximate recursive proposals, but contributions
from other fields are also considered. In [13], [14], [20], and
[39] no explicit 4�4 designs are proposed.
As mentioned in the introduction, scaling up to a 2n�2n

multiplier can be achieved by exploiting four n�n multi-
pliers. The same technique can be used recursively to design
even larger multipliers. For instance, four suitably placed
2�2 multipliers form a 4�4 multiplier, while sixteen 2�2
multipliers can be used to generate an 8�8 design. Note that
the building blocks do not need to be the same and different
ones can be used, to obtain different electrical performance-
accuracy trade-offs. As a rule of thumb, if uniform distribu-
tion is expected for the input operands, exact or high preci-
sion modules should occupy the most significant portion of
the design. Moving towards the least significant part, mod-
ules that are less accurate, but also less demanding in terms
of resources, might be used.
Consider two 8-bit unsigned numbers a ¼ P7

i¼0 ai2
i

and b ¼ P7
j¼0 bj2

j. In order to exploit recursive 4�4 mul-
tipliers to calculate the product y ¼ P15

k¼0 yk2
k, each num-

ber is divided into two 4-bit parts: aL ¼ P3
i¼0 ai2

i,

aH ¼ P7
i¼4 ai2

i, bL ¼ P3
i¼0 bi2

i and bH ¼ P7
i¼4 bi2

i and the
multiplications aLbL, aHbL, aLbH , and aHbH are performed
exploiting the corresponding blocks. Finally the four sub-
products need to be added. As shown in Figure 7, the four
sub-products are added employing an exact adder.
Table 1 shows the circuits considered for comparison that

apply this design methodology ([26], [36], [37], [40] and
[42]), the corresponding 4�4 building blocks, and how they
are used to build larger multipliers. The multiplier names
reported in the Table are directly taken from the reference
papers. Note that the 4�4 approximate modules used in [42],
namely mul2a4 and mul2b4, are also recursive multipliers
made up by 2�2 blocks.
Table 1 also shows the composition of two of the four 8�8

multipliers proposed in this paper, namely N8-5 and N8-6.
They use the proposed N1 and N2 blocks solely in the least
significant part of the multiplier and produce fairly accurate
results. As it will be shown in the following, they overcome
the state-of-the-art when compared with other proposals in
the same error range.
The circuit proposed in [39], that is used as a comparison

in this paper, is not shown in Table 1, since it exploits 2�2
approximate multipliers to scale directly up to 8�8, without
proposing specific 4�4 building blocks.
An alternative way to add the sub-products is proposed in

[38] and used also in this paper. The utilized building
blocks and their positions are shown in Table 2. Differently
from Figure 7, the final product is not the exact addition of
the four sub-products, but an approximated version of it.
As it can be seen in Figure 8, the seven least significant col-
umns of the sub-products are marked with red color, indi-
cating that they are summed using an approximate adder
that uses one OR gate in every column. However, the nine
most significant columns are added with an exact adder.
Note that the first sub-product has only seven output bits as
shown in Figure 2.

FIGURE 7. Recursive Multiplier using four building blocks.

TABLE 1. 8�8 Approximate multiplier compositions exact sub-

products addition.

TABLE 2. 8�8 Approximate multiplier compositions approximate

sub-products addition.

FIGURE 8. Proposed 8�8 approximate multiplier architecture.

Red bits are added with OR gates, black bits with exact adders.

VOLUME 10, NO. 3, JULY-SEPT. 2022 1319

Zacharelos et al.: Approximate Recursive Multipliers Using Low Power Building Blocks

IV. PERFORMANCES

The proposed and reference circuits are all synthesized in a
14nm FinFET technology, using Cadence Genus and impos-
ing proper timing constraints. Power dissipation is computed
by simulating the final netlist with random inputs, to obtain
the switching activity of each node. The input vector array is
identical for all designs with the same input bit width. In the
following tables “Min delay” refers to the strictest timing
constraint, at which each circuit can be synthesized with
non-negative slack and provides information regarding the
maximum working speed of each design.
Area, power, and delay are compared against the results of

the corresponding (4�4, 8�8, 16�16, or 32�32) exact mul-
tiplier. The exact design is obtained by describing the circuit
in HDL with the multiplication operator and letting the syn-
thesizer choose the near-optimal topology for the given con-
straint. Therefore, the electrical performances are sometimes
slightly worse than those presented in the literature that com-
pare with a fixed exact design.
Error performance is obtained by an exhaustive simula-

tion, for both 4�4 and 8�8 multiplier designs. For 16�16
and 32�32 designs the error performances are computed
using a random set of uniformly distributed test vectors. The
numbers of test vectors are 105 and 106 for the 16 and 32 bit
multipliers, respectively.
The error metrics that are used in this paper are listed in the

following. Let YE_i be the exact result of the multiplication
between the two n-bits operands Ai and Bi such that YE_i ¼
AiBi and let YA_i be the approximated output returned by the
investigated inexact multiplier. The error Ei, of each multipli-
cation is given by:

Ei ¼ YE i � YA i (15)

While the error distance EDi is defined as:

EDi ¼ YE i � YA ij j (16)

And the relative error distance REDi, as:

REDi ¼ EDi=Yi;EXACT8Yi;EXACT 6¼ 0 (17)

1. The Normalized Mean Error Distance, NMED, is
defined as the average value of ED divided by the maxi-
mum possible value returned by the multiplier, which
is: (2n-1)2.

2. The Mean Relative Error Distance, MRED, is given by
the average value of RED.

3. The number of effective bits, NoEB, is defined as:

NoEB ¼ 2n� log 2ð1þ
ffiffiffiffiffiffiffi
Ems

p Þ (18)

where Ems is the means square error, given by the aver-
age value of E2.

4. The error rate, ER, is defined as the number of errone-
ous multiplications (with Ei 6¼ 0) over the total amount
of possible inputs 22n.

A. 4�4 APPROXIMATE MULTIPLIERS

The electrical and error performances of the considered 4�4
approximate multipliers are summarized in Table 3. To
ensure a fair comparison between the circuits, avoid biased
optimizations by the synthesizing tool, and emphasize the
low power performance of the structures, the circuits have
been synthesized with the timing constraint of 250ps to
obtain the area and power values. The circuits are simulated
applying a uniformly distributed random set of 2�104 test
vectors to gather the switching activity. The total power

TABLE 3. Performances of 4�4 approximate multipliers.

�Area and power are reported for the circuits synthesized with a timing constraint of 250ps. min delay is the minimum timing at which the circuit can be synthe-
sized with a non-negative slack.

1320 VOLUME 10, NO. 3, JULY-SEPT. 2022

Zacharelos et al.: Approximate Recursive Multipliers Using Low Power Building Blocks

reported in the table is computed for a clock frequency of
1GHz. It is worth noting that the circuits proposed in this
paper are for general purpose applications thus a uniform dis-
tribution of the input is considered. However, automated
designs [15]–[18] or dedicated circuits previously presented
in the literature, could provide better performances for a spe-
cific distribution of the input vectors.
As it can be observed in Table 3, the proposed circuits are

very small and come second only to the OR-based design.
The same can be stated also for power dissipation, with N2
having an unquestionable advantage. When it comes to
speed, N2 is the fastest design while N1 is among the fastest.
The proposed multipliers exhibit competitive NMED,
MRED and NoEB with respect to the state-of-the-art. The
relative reduction in power dissipation with respect to the
exact design vs NoEB is shown in Figure 9. The proposed
design N2 dissipates 18% less power than the least energy-
hungry architectures up to date, M2 and MxA proposed in
[26] and [40] respectively, while still providing a smaller
approximation error.

B. 8�8 APPROXIMATE MULTIPLIERS

The results of the 8�8 approximate multipliers are shown in
Table 4. Recursive designs are reported at the top part of the
table, while selected approximate designs following different
methodologies, are shown at the bottom part. Power reduc-
tion against number of effective bits for all designs is dis-
played in Figure 10. Non-filled shapes in the figure
correspond to non-recursive designs.
All circuits are synthesized for a 1000ps timing constraint

and simulated with the same set of 2�104 uniformly distrib-
uted random vectors. The total power reported in the table is
computed for a clock frequency equal to 1GHz.
The designs presented in [13] employ a smaller, seg-

mented multiplier. Specifically, instead of an 8-bit multiplier,
a 4-bit multiplier with or without error correction respec-
tively, is used. The product is then shifted accordingly. In

this simple circuit, hardware resources and power consump-
tion are kept to significantly low levels, while the error met-
rics are still competitive.
Note that the entries of [14] and [20] exhibit identical elec-

trical performances respectively, since they refer to the same
circuits with different settings (both designs allow for config-
urable accuracy). While the range of chosen accuracy in [14]
is limited and the innate flexibility results in increased area
requirements, the circuit is very fast, overcoming all the
investigated contributions, including the proposed designs.
As it can be observed in Table 4, the minimum accuracy of
this design, is still greater than that of the design M8-2 pro-
posed in [26], while power reductions are similar.
The circuit presented in [20] offers dynamic truncation at

runtime, by enabling or disabling AND gates that form spe-
cific partial products. “DT0” refers to the case where all the
AND gates are enabled, resulting in an exact multiplier.
However, the additional hardware resources result in a
greater power consumption with respect to the exact design
(hence the negative power reduction). “DT8” refers to the
maximum possible truncation where a 43.62% power reduc-
tion is achieved. The numbers in the names indicate the level
of truncation.
The authors in [26], offer a number of circuits covering a

wide range of accuracy. Designs M8-5 and M8-6 are the
most precise ones, using one approximate and three exact 4-
bit multipliers. While the synthesized circuits are slightly
slower than the exact multiplier, they offer some power
reduction at a relatively small expense in accuracy.
Designs Ax8_1 and AxRM1 presented in [40] and [42]

respectively, employ three exact and one approximate
modules. While these are the most accurate designs presented
in the respective papers, they are still less accurate than
M8-6 and M8-5 of [26], and even less accurate than the pro-
posed N8-5 and N8-6. At the same time, the circuits are quite
large, and slower than the exact multiplier. This behavior fol-
lows the pattern presented in Figure 9, for the 4�4 building

FIGURE 9. Power reduction of the considered 4�4 Approximate

Multipliers with respect to the exact one vs Number of Effective

Bits. The proposed circuits have lower power for the same NoEB.

The exact designwould haveNoEB¼ 8 and zero power reduction.

FIGURE 10. Power reduction of the considered 8�8 Approximate

Multipliers with respect to the exact one vs Number of Effective

Bits. The proposed circuits have lower power for the same NoEB.

The exact designwould haveNoEB¼ 16 and zero power reduction.

VOLUME 10, NO. 3, JULY-SEPT. 2022 1321

Zacharelos et al.: Approximate Recursive Multipliers Using Low Power Building Blocks

blocks. For the less accurate designs, Ax8_3 with one accu-
rate module, manages to surpass M8-1 that uses no accurate
modules, both in accuracy and in power reduction. However,
it is slightly larger and slower.
An interesting architecture, is proposed in [38]. It uses one

exact multiplier, two custom modules, and an OR-based 4�4
approximate multiplier for the least significant part. This rela-
tively small design, in terms of accuracy performs similarly
to the proposed design N8-L1, as well as to M8-3 and M8-4.
It achieves a significant power reduction with respect to M8-
3 and M8-4 but N8-L1 leads. Among circuits with a similar
power reduction percentage, M8-2 and Yang_7’b1, it exhib-
its a far more accurate behavior.
As it can be seen in Table 4, among the recursive topolo-

gies, the proposed circuits N8-L1 and N8-L2 occupy the
smallest area and achieve the biggest reduction in power con-
sumption. Moreover, they are very fast circuits, bested only

by multipliers proposed in [13] and [14], that are not recur-
sive, but optimized for a given bit width. At the same time,
they exhibit competitive behavior in terms of accuracy. As it
can be observed in Figure 10, even though there are more
precise circuits in the literature, N8-L1 and N8-L2 provide a
certain level of accuracy at a very low cost.
On the other hand, proposals N8-5 and N8-6, are very

accurate circuits, exploiting three exact, and one proposed
4�4 multipliers. They offer a very high number of effective
bits, matched only by the designs, M8-5 and M8-6, [26].
However, exploiting the proposed designs of N1 and N2,
N8-5 and N8-6, achieve a greater power reduction, as it can
be observed in Figure 10 and Table 4.
As demonstrated, we have designed four 8�8 multipliers,

two with a NoEB around 8, and two with a NoEB around 12,
that to the best of our knowledge exhibit a significant
advancement with respect to the state-of-the-art.

TABLE 4. Performances of 8�8 approximate multipliers.

�Area and power are reported for the circuits synthesized with a timing constraint of 1000ps. min delay is the minimum timing at which the circuit can be syn-
thesized with a non-negative slack.

1322 VOLUME 10, NO. 3, JULY-SEPT. 2022

Zacharelos et al.: Approximate Recursive Multipliers Using Low Power Building Blocks

C. 16�16 APPROXIMATE MULTIPLIERS

The 8�8 designs and the methodologies described above, can
be used to scale up to 16�16 multipliers. As already shown in

section III, two different approaches are used to generate 16�16
designs. Table 5 summarizes the architectures of the considered
designs. The circuits following the most straightforward
approach (exact sub-product addition) are presented at the top
part of table 5, while the ones using the technique presented in
[38] (approximate sub-product addition), are at the bottom part.
The performances of 16�16 approximate recursive multi-

pliers are shown in Table 6. All 16�16 designs have been
synthesized under the same timing constraint: 1000ps. Fur-
thermore, they have been simulated with the same set of 105

uniformly distributed random vectors, with an input switch-
ing frequency equal to 1GHz.
The architecture proposed in [38], results in designs that sig-

nificantly outperform other contributions. It should be noted that
the most straightforward approach from an algorithmic point of
view, followed by the circuits at the top part of Table 5, does not
result in optimal configurations. In fact, each 16�16 multiplier
is composed by four identical approximate 8�8 multipliers, that
in turn may be composed by some exact 4�4multipliers. On the
other hand, [38] employs a single exact 8�8 multiplier placed in
the most significant part, thus making an important impact on
accuracy, despite the final approximate addition.
Moreover, the non-recursive exact and OR-based 8�8 multi-

pliers in the most and least significant parts respectively, as well
as the approximation in the final addition, allow this architecture
to exploit minimal hardware resources. Therefore, the three

TABLE 5. 16�16 Approximate multiplier compositions.

TABLE 6. Performances of 16�16 approximate multipliers.

�Area and power are reported for the circuits synthesized with a timing constraint of 1000ps. min delay is the minimum timing at which the circuit can be syn-
thesized with a non-negative slack.

VOLUME 10, NO. 3, JULY-SEPT. 2022 1323

Zacharelos et al.: Approximate Recursive Multipliers Using Low Power Building Blocks

designs that follow this approach are the smallest, fastest, and
least-power hungry. The circuit proposed in [38], manages to
outperform N16-L1 and N16-L2 in accuracy, while N16-L2
slightly overcomes LOAM in terms of power reduction. N16-L2
also occupies the smallest area. Among the strictly recursive
designs, N16-5 and N16-6 achieve a higher power reduction
than circuits with similar or even lower accuracy.

D. PROPOSED 32�32 APPROXIMATE MULTIPLIERS

The performances of the proposed 32�32 approximate mul-
tipliers are shown in Table 7. The circuits have been synthe-
sized under a timing constraint of 1000ps and simulated with
106 uniformly distributed random vectors, and an input
switching frequency equal to 1GHz.

V. APPLICATIONS

Image processing is one of the most commonly considered
error resilient applications and many papers test the proposed
circuits in this scenario. In this paper, two image processing
applications are considered: image blurring and image sharp-
ening. The applications provide a more in depth understand-
ing of the applicability range of the proposed designs.

A. IMAGE SMOOTHING

In image processing, low pass filtering results in image smooth-
ing which effectively removes the high spatial frequency noise
from the image. The low-pass filter exploits a moving kernel that
processes one pixel at a time and modifies it considering the pix-
els in proximity. The processing of each pixel requires a number

of multiplications that depends on the size of the kernel. In fact,
the value of the modified pixel is the weighted average of the
neighboring pixels. Moreover, image blurring is an error tolerant
application, as the human eye is not able to detect trivial details.
The kernel considered for smoothing is a two dimensional,

rotationally symmetric, 3�3 Gaussian low-pass filter, with a
standard deviation equal to 1.5, as in [27]. The floating-point
numbers of the kernel are multiplied by 210 and then
rounded. In this way, the kernel’s values are appropriate for
the considered 8-bit input multipliers. The original and modi-
fied kernels are shown in Table 8.
Image processing, exploiting the investigated multipliers, has

been performed aiming to blur a test image. The obtained images
are shown in Figure 11. The same processing has been also per-
formedwith exact multipliers to provide an effective comparison
for all designs. The structural similarity index (SSIM) and the
peak signal to noise ratio (PSNR) provide a numerical indication
of eachmultiplier’s performance in image smoothing.
The results are shown in Table 9. The recursive designs are

in the top part of the table, while the non-recursive ones occupy
the bottom part. The proposed circuits N8-5 and N8-6 share the
best results with the designs M8-5 and M8-6 proposed in [26]
and Ax8_1 proposed in [40]. N8-L1 and N8-L2 follow close
behind but still show a competitive behavior while achieving
the greatest power reduction, as shown in Figure 10.

B. IMAGE SHARPENING

Sharpening or high pass filtering aims to make fine details more
distinct and remove the blurring of a digital image, by enhancing
transitions in the spatial intensity of the image. High frequencies
are boostedwhile low frequencies are reduced. It should be noted
that over-sharpeningmight result in unwanted halo artifacts.
The image sharpening process is similar to the smoothing

process, but it uses a different kernel for the convolution.
The authors in [14], [19], [25], [35] presented an image
sharpening application exploiting the following 5�5 kernel:

Mask ¼

1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1

2
66664

3
77775

(19)

TABLE 7. Performances of the proposed 32�32 approximate multipliers.

�Area and power are reported for the circuits synthesized with a timing constraint of 1000ps. min delay is the minimum timing at which the circuit can be syn-
thesized with a non-negative slack.

TABLE 8. Gaussian kernels.

1324 VOLUME 10, NO. 3, JULY-SEPT. 2022

Zacharelos et al.: Approximate Recursive Multipliers Using Low Power Building Blocks

The output pixels of the sharpened image are given by:

Y i; jð Þ ¼ 2 � X i; jð Þ � 1
273

X2
m¼�2

X2
n¼�2

X iþ m; jþ nð Þ �Mask mþ 3; nþ 3ð Þ½ � (20)

In (20), X(i, j) denotes a pixel from the input image, while
Y(i, j) from the sharpened output.
We have used the considered approximate multipliers, as

well as an exact multiplier to sharpen an RGB test image.
The results are demonstrated in Figure 12. SSIM and PSNR
with respect to the sharpened image by exact multipliers
are reported in Table 10. All proposed circuits have a high

similarity ratio with the reference image. Even though there
are better performing multipliers for this application, the pro-
posed circuits exhibit reasonable behavior for such low-
power designs.

C. IMAGE CLASSIFICATION WITH CONVOLUTIONAL

NEURAL NETWORKS

Convolutional Neural Networks (CNNs) play an increasingly
important role in machine learning, particularly for image
recognition, object identification and speech recognition
tasks. CNNs are error-tolerant and require a huge number of
multiplications, therefore they are ideal candidates for using
approximate multipliers [4].

FIGURE 11. Gaussian smoothing of imagesobtainedwith differentmultipliers. The circuits proposed in this paper are highlighted in bold.

VOLUME 10, NO. 3, JULY-SEPT. 2022 1325

Zacharelos et al.: Approximate Recursive Multipliers Using Low Power Building Blocks

We performed some experiments of image recognition
with the investigated approximate multipliers, by using a
simple CNN composed by 9 layers, not counting the input
one. The CNN includes two convolutional layers, each one
followed by batch normalization and Rectified Linear Unit
(ReLU) layers, a max pooling layer, a fully connected layer a
final softmax layer. Two datasets have been considered:
MNIST and SVHN. The former is a dataset of handwritten
digits containing 70000 28�28-pixel, greyscale images split
into 60000 training images and 10000 testing images [44].
The Street View House Number (SVHN) dataset contains
100000 32�32 RGB images of house numbers obtained
from Google Street View, divided in 73257 training and
26032 test images [45]. In our tests, SVHN images have
been converted into greyscale as the color has no significance
in the classification [4].
The training of the CNNs has been performed in Matlab,

by using floating-point arithmetic. After training, quantiza-
tion of the convolutional and fully connected layers, requir-
ing the vast majority of calculations, has been performed, to
allow the testing of the approximate multipliers. We use test
images to exercise the network and collect the dynamic
ranges of the inputs of convolutional and fully connected

layers. These inputs are positive values, due to the ReLU
layers, and are easily quantized as 8-bit unsigned numbers
that can directly feed the multipliers. The weights in the con-
volutional and fully connected layers of the network, on the
other hand, are learnt during training and are signed numbers.
Therefore, following [43], after quantization we converted
the weights in sign-magnitude representation to perform mul-
tiplications using the investigated unsigned approximate
multipliers.
Classification results are reported in Table 11. Column

“Acc. loss” refers to the reduction in classification accuracy
(in percentage) compared to the floating-point multiplier.
For the MNIST dataset, the considered CNN in floating-

point implementation shows a remarkable accuracy of more
than 99%. The accuracy remains almost unchanged when
using exact 8-bit multiplier after network quantization.
The majority of the investigated approximate multipliers
perform well with this simple dataset, with some exceptions
(Yang_7’b0, Ax8_2, Ax8_3, SSM_m4, Kul8, Reh8,
AxRM3, ISH1). The proposed N8_L1 gives very good
results, showing a mere 0.64% reduction in accuracy, with
more than 44% power saving.
For the SVHN dataset the CNN accuracy is about 87%.

In this case, network quantization yields a slight accuracy
improvement, a phenomenon already observed in litera-
ture [4].
Several approximate multipliers yield a large accuracy

reduction in this more demanding application. The multi-
pliers giving an accuracy drop lower than 0.5% are: pro-
posed N8_5 and N8_6, DT2 of [20], M8_5 and M8_6 of
[26], Ax8_1 of [40] and AxRM1 [42]. Among these, the
proposed N8_6 gives the best power reduction of more
than 14%. Design Yang_7’b1 of [14] also performs well,
with a reduction in accuracy of 3.3% and a power saving of
more than 24%.

VI. CONCLUSION

In this paper we introduced two low-energy 4�4 approxi-
mate multipliers, obtained by simplifying the sum and
carry expressions of the partial product matrix adders.
These designs were recursively used to generate 8�8,
16�16 and 32�32 approximate multipliers, following two
different architectures. Two 8�8 designs have been pro-
posed with a NoEB around 8, and two with a NoEB
around 12. Each 8�8 approximate multiplier consists of
exact, proposed and OR-based, 4�4 designs. By exploit-
ing the low power proposed circuits, N1 and N2, our
approximate multipliers achieve great power reduction
while still exhibiting competitive error performance. The
error vs. power trade-off is compared with state-of-the-art
approximated multipliers showing an improvement for
both architectures. The proposed 8�8 circuits are tested
in image processing and image classification using convo-
lutional neural network demonstrating that these can be
used to save power without sacrificing the result in typical
error resilient applications.

TABLE 9. Performances of 8�8 approximate multipliers in image

smoothing.

1326 VOLUME 10, NO. 3, JULY-SEPT. 2022

Zacharelos et al.: Approximate Recursive Multipliers Using Low Power Building Blocks

FIGURE 12. Image sharpening obtained with different multipliers. The circuits proposed in this paper are highlighted in bold.

TABLE 10. Performances of 8�8 approximate multipliers in image sharpening.

VOLUME 10, NO. 3, JULY-SEPT. 2022 1327

Zacharelos et al.: Approximate Recursive Multipliers Using Low Power Building Blocks

REFERENCES

[1] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A sur-
vey,” IEEE Des. Test, vol. 33, no. 1, pp. 8–22, Feb. 2016, doi: 10.1109/
MDAT.2015.2505723.

[2] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis
and characterization of inherent application resilience for approximate
computing,” in Proc. 50th ACM/EDAC/IEEE Des. Automat. Conf., 2013,
pp. 1–9, doi: 10.1145/2463209.2488873.

[3] K. Chen, P. Yin, W. Liu, and F. Lombardi, “A survey of approximate
arithmetic circuits and blocks,” Inf. Technol., vol. 64, no. 3, pp. 79–87,
2022, doi: 10.1515/itit-2021-0055.

[4] M. S. Ansari, V. Mrazek, B. F. Cockburn, L. Sekanina, Z. Vasicek, and J. Han,
“Improving the accuracy and hardware efficiency of neural networks using
approximate multipliers,” IEEE Trans. Very Large Scale Integration (VLSI)
Syst., vol. 28, no. 2, pp. 317–328, Feb. 2020, doi: 10.1109/TVLSI.2019.2940943.

[5] L. B. Soares, M. M. A. da Rosa, C. M. Diniz, E. A. C. da Costa, and S.
Bampi, “Design methodology to explore hybrid approximate adders for
energy-efficient image and video processing accelerators,” IEEE Trans.

Circuits Syst. I: Reg. Papers, vol. 66, no. 6, pp. 2137–2150, Jun. 2019,
doi: 10.1109/TCSI.2019.2892588.

[6] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power digi-
tal signal processing using approximate adders,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 32, no. 1, pp. 124–137, Jan. 2013,
doi: 10.1109/TCAD.2012.2217962.

[7] L. Chen, J. Han, W. Liu, P. Montuschi, and F. Lombardi, “Design, evalua-
tion and application of approximate high-radix dividers,” IEEE Trans.
Multi-Scale Comput. Syst., vol. 4, no. 3, pp. 299–312, Jul.–Sep. 2018,
doi: 10.1109/TMSCS.2018.2817608.

[8] M. Horowitz, “Computing’s energy problem (and what we can do about
it),” in Proc. IEEE Int. Solid-State Circuits Conf., 2014, pp. 10–14.

TABLE 11. Image classification results using 8�8 approximate multipliers.

1328 VOLUME 10, NO. 3, JULY-SEPT. 2022

Zacharelos et al.: Approximate Recursive Multipliers Using Low Power Building Blocks

http://dx.doi.org/10.1109/MDAT.2015.2505723
http://dx.doi.org/10.1109/MDAT.2015.2505723
http://dx.doi.org/10.1145/2463209.2488873
http://dx.doi.org/10.1515/itit-2021-0055.
http://dx.doi.org/10.1109/TVLSI.2019.2940943
http://dx.doi.org/10.1109/TCSI.2019.2892588
http://dx.doi.org/10.1109/TCAD.2012.2217962
http://dx.doi.org/10.1109/TMSCS.2018.2817608

[9] H. Jiang, F. J. H. Santiago, H. Mo, L. Liu, and J. Han, “Approximate arith-
metic circuits: A survey, characterization, and recent applications,” Proc.
IEEE, vol. 108, no. 12, pp. 2108–2135, Dec. 2020, doi: 10.1109/
JPROC.2020.3006451.

[10] W. Liu, J. Xu, D. Wang, C. Wang, P. Montuschi, and F. Lombardi, “Design
and evaluation of approximate logarithmic multipliers for low power error-
tolerant applications,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 65,
no. 9, pp. 2856–2868, Sep. 2018, doi: 10.1109/TCSI.2018.2792902.

[11] M. S. Kim, A. A. D. Barrio, L. T. Oliveira, R. Hermida, and N. Bagherza-
deh, “Efficient Mitchell’s approximate log multipliers for convolutional
neural networks,” IEEE Trans. Comput., vol. 68, no. 5, pp. 660–675,
May 2019, doi: 10.1109/TC.2018.2880742.

[12] U. Lotri�c, R. Pilipovi�c, and P. Buli�c, “A hybrid radix-4 and approxi-
mate logarithmic multiplier for energy efficient image processing,”
Electron. Low-Size Low-Power Sensors Syst.: From Custom Des.
Embedded Solutions, vol. 10, no. 10, May 2021, Art. no. 1175, doi: 10.3390/
electronics10101175.

[13] A. G. M. Strollo, E. Napoli, D. De Caro, N. Petra, G. Saggese, and G. Di
Meo, “Approximate multipliers using static segmentation: Error analysis
and improvements,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 69,
no. 6, pp. 2449–2462, Jun. 2022, doi: 10.1109/TCSI.2022.3152921.

[14] T. Yang, T. Ukezono, and T. Sato, “A low-power high-speed accuracy-
controllable approximate multiplier design,” in Proc. 23rd Asia South
Pacific Des. Automat. Conf., 2018, pp. 605–610, doi: 10.1109/
ASPDAC.2018.8297389.

[15] M. �Ce�ska, J. Maty�a�s, V. Mrazek, L. Sekanina, Z. Vasicek, and T. Vojnar,
“ADAC: Automated design of approximate circuits,” in Computer Aided
Verification. Berlin, Germany: Springer, 2018, doi: 10.1007/978-3-319-
96145-3_35.

[16] S. Ullah, S. S. Murthy, and A. Kumar, “SMApproxLib: Library of FPGA-
based approximate multipliers,” in Proc. 55th ACM/ESDA/IEEE Des.
Automat. Conf., 2018, pp. 1–6, doi: 10.1109/DAC.2018.8465845.

[17] V. Mrazek, L. Sekanina, and Z. Vasicek, “Libraries of approximate cir-
cuits: Automated design and application in CNN accelerators,” IEEE J.
Emerg. Sel. Topics Circuits Syst., vol. 10, no. 4, pp. 406–418, Dec. 2020,
doi: 10.1109/JETCAS.2020.3032495.

[18] P. Balasubramanian, R. Nayar, O. Min, and D. L. Maskell, “Approximator:
A software tool for automatic generation of approximate arithmetic cir-
cuits,” Computers, vol. 11, no. 1, Jan. 2022, Art. no. 11, doi: 10.3390/
computers11010011.

[19] S. Vahdat, M. Kamal, A. Afzali-Kusha, and M. Pedram, “TOSAM: An
energy-efficient truncation- and rounding-based scalable approximate mul-
tiplier,” IEEE Trans. Very Large Scale Integration (VLSI) Syst., vol. 27,
no. 5, pp. 1161–1173, May 2019, doi: 10.1109/TVLSI.2018.2890712.

[20] F. Frustaci, S. Perri, P. Corsonello, and M. Alioto, “Approximate multi-
pliers with dynamic truncation for energy reduction via graceful quality
degradation,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 67, no. 12,
pp. 3427–3431, Dec. 2020, doi: 10.1109/TCSII.2020.2999131.

[21] D. R. Kelly, B. J. Phillips, and S. Al-Sarawi, “Approximate signed binary
integer multipliers for arithmetic data value speculation,” Proc. DASIP
Conf., 2009, pp. 97–104.

[22] A. Cilardo, D. De Caro, N. Petra, F. Caserta, N. Mazzocca, and E. Napoli,
“High speed speculative multipliers based on speculative carry-save tree,”
IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 61, no. 12, pp. 3426–3435,
Dec. 2014, doi: 10.1109/TCSI.2014.2337231.

[23] I. Qiqieh, R. Shafik, G. Tarawneh, D. Sokolov, and A. Yakovlev, “Energy-
efficient approximate multiplier design using bit significance-driven logic
compression,” in Proc. Des. Automat. Test Europe Conf. Exhib., 2017,
pp. 7–12, doi: 10.23919/DATE.2017.7926950.

[24] D. Esposito, A. G. M. Strollo, and M. Alioto, “Low-power approximate
MAC unit,” in Proc. 13th Conf. Ph.D. Res. Microelectronics Electron.,
2017, pp. 81–84, doi: 10.1109/PRIME.2017.7974112.

[25] Y. Guo, H. Sun, L. Guo, and S. Kimura, “Low-cost approximate multiplier
design using probability-driven inexact compressors,” in Proc. IEEE Asia
Pacific Conf. Circuits Syst., 2018, pp. 291–294, doi: 10.1109/
APCCAS.2018.8605570.

[26] M. S. Ansari, H. Jiang, B. F. Cockburn, and J. Han, “Low-power approximate
multipliers using encoded partial products and approximate compressors,”
IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 8, no. 3, pp. 404–416,
Sep. 2018, doi: 10.1109/JETCAS.2018.2832204.

[27] D. Esposito, A. G. M. Strollo, E. Napoli, D. De Caro, and N. Petra,
“Approximate multipliers based on new approximate compressors,” IEEE
Trans. Circuits Syst. I: Reg. Papers, vol. 65, no. 12, pp. 4169–4182, Dec.
2018, doi: 10.1109/TCSI.2018.2839266.

[28] L. Maddisetty, R. K. Senapati, and J. V. R. Ravindra, “Training neural net-
work as approximate 4:2 compressor applying machine learning algo-
rithms for accuracy comparison,” Int. J. Adv. Trends Comput. Sci. Eng.,
vol. 8, no. 2, pp. 211–215, 2019, doi: 10.30534/ijatcse/2019/17822019.

[29] F. Sabetzadeh, M. H. Moaiyeri, and M. Ahmadinejad, “A majority-based
imprecise multiplier for ultra-efficient approximate image multiplication,”
IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 66, no. 11, pp. 4200–4208,
Nov. 2019, doi: 10.1109/TCSI.2019.2918241.

[30] P. J. Edavoor, S. Raveendran, and A. D. Rahulkar, “Approximate multi-
plier design using novel dual-stage 4:2 compressors,” IEEE Access, vol. 8,
pp. 48337–48351, 2020, doi: 10.1109/ACCESS.2020.2978773.

[31] A. G. M. Strollo, E. Napoli, D. De Caro, N. Petra, and G. D. Meo,
“Comparison and extension of approximate 4-2 compressors for low-
power approximate multipliers,” IEEE Trans. Circuits Syst. I: Reg.
Papers, vol. 67, no. 9, pp. 3021–3034, Sep. 2020, doi: 10.1109/
TCSI.2020.2988353.

[32] A. G. M. Strollo, D. De Caro, E. Napoli, N. Petra, and G. Di Meo, “Low-
power approximate multiplier with error recovery using a new approximate
4-2 compressor,” in Proc. IEEE Int. Symp. Circuits Syst., 2020, pp. 1–4,
doi: 10.1109/ISCAS45731.2020.9180767.

[33] P. Zakian and R. N. Asli, “An efficient design of low-power and high-
speed approximate compressor in FinFET technology,” Comput. Elect.
Eng., vol. 86, Sep. 2020, Art. no. 106651, doi: 10.1016/j.
compeleceng.2020.106651.

[34] H. Pei, X. Yi, H. Zhou, and Y. He, “Design of ultra-low power consump-
tion approximate 4–2 compressors based on the compensation characteris-
tic,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 68, no. 1, pp. 461–465,
Jan. 2021, doi: 10.1109/TCSII.2020.3004929.

[35] M. Khaleqi, M. Ahmadinejad, and M. H. Moaiyeri, “Ultraefficient imprecise
multipliers based on innovative 4:2 approximate compressors,” Int. J. Circuit
Theory Appl., vol. 49, no. 1, pp. 169–184, 2021, doi: 10.1002/cta.2876.

[36] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power
with an underdesigned multiplier architecture,” in Proc. 24th Int. Conf.
VLSI Des., 2011, pp. 346–351, doi: 10.1109/VLSID.2011.51.

[37] S. Rehman, W. El-Harouni, M. Shafique, A. Kumar, J. Henkel, and J. Hen-
kel, “Architectural-space exploration of approximate multipliers,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Des., 2016, pp. 1–8, doi: 10.1145/
2966986.2967005.

[38] Y. Guo, H. Sun, and S. Kimura, “Design of power and area efficient lower-
part-OR approximate multiplier,” in Proc. IEEE Region 10 Conf., 2018,
pp. 2110–2115, doi: 10.1109/TENCON.2018.8650108.

[39] G. A. Gillani, M. A. Hanif, B. Verstoep, S. H. Gerez, M. Shafique, and A.
B. J. Kokkeler, “MACISH: Designing approximate MAC accelerators
with internal-self-healing,” IEEE Access, vol. 7, pp. 77142–77160, 2019,
doi: 10.1109/ACCESS.2019.2920335.

[40] H. Waris, C. Wang, W. Liu, J. Han, and F. Lombardi, “Hybrid partial
product-based high-performance approximate recursive multipliers,” IEEE
Trans. Emerg. Topics Comput., vol. 10, no. 1, pp. 507–513, Jan.–Mar.
2020, doi: 10.1109/TETC.2020.3013977.

[41] Z. Yang, X. Li, and J. Yang, “Power efficient and high-accuracy approxi-
mate multiplier with error correction,” J. Circuits Syst. Comput., vol. 29,
no. 15, Dec. 2020, Art. no. 2050241, doi: 10.1142/S0218126620502412.

[42] H. Waris, C. Wang, C. Xu, and W. Liu, “AxRMs: Approximate recur-
sive multipliers using high-performance building blocks,” IEEE Trans.
Emerg. Topics Comput., vol. 10, no. 2, pp. 1229–1235, Apr.–Jun. 2022,
doi: 10.1109/TETC.2021.3096515.

[43] M. Ahmadinejad and M. H. Moaiyeri, “Energy-and quality-efficient
approximate multipliers for neural network and image processing applica-
tions,” IEEE Trans. Emerg. Topics Comput., vol. 10, no. 2, pp. 1105–1116,
Apr.–Jun. 2022, doi: 10.1109/TETC.2021.3072666.

[44] Y. LeCun, C. Cortes, and C. Burges, “MNIST handwritten digit database,”
2010. [Online]. Available: http://yann.lecun.com/exdb/mnist

[45] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Read-
ing digits in natural images with unsupervised feature learning,” in Proc.
NIPS Workshop Deep Learn. Unsupervised Feature Learn., 2011,
Art. no. 5. [Online]. Available: http://ufldl.stanford.edu/housenumbers

VOLUME 10, NO. 3, JULY-SEPT. 2022 1329

Zacharelos et al.: Approximate Recursive Multipliers Using Low Power Building Blocks

http://dx.doi.org/10.1109/JPROC.2020.3006451
http://dx.doi.org/10.1109/JPROC.2020.3006451
http://dx.doi.org/10.1109/TCSI.2018.2792902
http://dx.doi.org/10.1109/TC.2018.2880742
http://dx.doi.org/10.3390/electronics10101175
http://dx.doi.org/10.3390/electronics10101175
http://dx.doi.org/10.1109/TCSI.2022.3152921
http://dx.doi.org/10.1109/ASPDAC.2018.8297389
http://dx.doi.org/10.1109/ASPDAC.2018.8297389
http://dx.doi.org/10.1007/978-3-319-96145-3_35
http://dx.doi.org/10.1007/978-3-319-96145-3_35
http://dx.doi.org/10.1109/DAC.2018.8465845
http://dx.doi.org/10.1109/JETCAS.2020.3032495
http://dx.doi.org/10.3390/computers11010011
http://dx.doi.org/10.3390/computers11010011
http://dx.doi.org/10.1109/TVLSI.2018.2890712
http://dx.doi.org/10.1109/TCSII.2020.2999131
http://dx.doi.org/10.1109/TCSI.2014.2337231
http://dx.doi.org/10.23919/DATE.2017.7926950
http://dx.doi.org/10.1109/PRIME.2017.7974112
http://dx.doi.org/10.1109/APCCAS.2018.8605570
http://dx.doi.org/10.1109/APCCAS.2018.8605570
http://dx.doi.org/10.1109/JETCAS.2018.2832204
http://dx.doi.org/10.1109/TCSI.2018.2839266
http://dx.doi.org/10.30534/ijatcse/2019/17822019
http://dx.doi.org/10.1109/TCSI.2019.2918241
http://dx.doi.org/10.1109/ACCESS.2020.2978773
http://dx.doi.org/10.1109/TCSI.2020.2988353
http://dx.doi.org/10.1109/TCSI.2020.2988353
http://dx.doi.org/10.1109/ISCAS45731.2020.9180767
http://dx.doi.org/10.1016/j.compeleceng.2020.106651
http://dx.doi.org/10.1016/j.compeleceng.2020.106651
http://dx.doi.org/10.1109/TCSII.2020.3004929
http://dx.doi.org/10.1002/cta.2876
http://dx.doi.org/10.1109/VLSID.2011.51
http://dx.doi.org/10.1145/2966986.2967005
http://dx.doi.org/10.1145/2966986.2967005
http://dx.doi.org/10.1109/TENCON.2018.8650108
http://dx.doi.org/10.1109/ACCESS.2019.2920335
http://dx.doi.org/10.1109/TETC.2020.3013977
http://dx.doi.org/10.1142/S0218126620502412
http://dx.doi.org/10.1109/TETC.2021.3096515
http://dx.doi.org/10.1109/TETC.2021.3072666
http://yann.lecun.com/exdb/mnist
http://ufldl.stanford.edu/housenumbers

EFSTRATIOS ZACHARELOS received the BS
degree in physics from Aristotle University, The-
ssaloniki, Greece, in 2016, and the MS degree in
electronic physics from Aristotle University, The-
ssaloniki, Greece, in 2019. He is currently working
toward the PhD degree in electronic engineering
with Federico II University, Naples, Italy. He is the
co-author of four papers and his main research
interests include real-time resampling, signal proc-
essing, and approximate computing.

ITALO NUNZIATA received the BS degree in elec-
tronic engineering from the University of Napoli Fed-
erico II, Italy. He is currently working toward theMS
degree in electronic engineeringwith Federico II Uni-
versity, Italy, and the double degree in electronic and
telecommunication with the University of Technol-
ogy of Lodz, Poland. His current research interests
include design and analysis of digital VLSI circuits
and approximate computing.

GERARDO SAGGESE received the MSc degree
(Hons.) in electronic engineering from the Univer-
sity of Napoli Federico II, Italy, and the double
degree in electronic and telecommunication from
the University of Technology of Lodz, Poland, in
2020. He is currently working toward the PhD
degree in information technology and electrical
engineering with the University of Napoli Federico
II. His current research interests include signal
processing, low power integrated circuit, brain
machine interface and power circuits.

ANTONIO G. M. STROLLO (Senior Member,
IEEE) received the MS degree (Hons.) and the PhD
degree in electronic engineering from the Univer-
sity of Napoli Federico II, Italy. From 2002, he is a
full professor with the University of Napoli Feder-
ico II, Italy, where he has been the head of the
Department of Electronic and Telecommunication
Engineering from 2005 to 2008. He has published
more than 140 papers on international journals and
conferences. His current research interests include
design and analysis of digital VLSI circuits. Asso-

ciate editor for IEEE Transactions on Circuits and Systems-I (2009 to 2012);
currently he is associate editor for Integration, the VLSI Journal.

ETTORE NAPOLI (Senior Member, IEEE)
received the PhD degree in electronic engineering
in 1999, the electronic engineering degree (Hons.)
in 1995, and the physics degree (Hons.) in 2009.
He was a research associate with the Engineering
Department, University of Cambridge, U.K., in
2004. Full professor with the University of Napoli
Federico II in 2020. Full professor with the Univer-
sity of Salerno since 2021. He has authored or
coauthored more than hundred articles published in
international journals and conferences. His research

interests include VLSI circuit design and modeling and design of power
semiconductor devices.

1330 VOLUME 10, NO. 3, JULY-SEPT. 2022

Zacharelos et al.: Approximate Recursive Multipliers Using Low Power Building Blocks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

