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ABSTRACT We present algorithms for performing the five elementary arithmetic operations (þ, �, �, �,
and

ffiffiffip
) in floating point arithmetic with stochastic rounding, and demonstrate the value of these algorithms

by discussing various applications where stochastic rounding is beneficial. The algorithms require that the
hardware be compliant with the IEEE 754 floating-point standard and that a floating-point pseudorandom
number generator be available. The goal of these techniques is to emulate stochastic rounding when the
underlying hardware does not support this rounding mode, as is the case for most existing CPUs and GPUs.
By simulating stochastic rounding in software, one has the possibility to explore the behavior of this rounding
mode and develop new algorithms even without having access to hardware implementing stochastic round-
ing—once such hardware becomes available, it suffices to replace the proposed algorithms by calls to the cor-
responding hardware routines. When stochastically rounding double precision operations, the algorithms we
propose are between 7.3 and 19 times faster than the implementations that use the GNU MPFR library to sim-
ulate extended precision. We test our algorithms on various tasks, including summation algorithms and solv-
ers for ordinary differential equations, where stochastic rounding is expected to bring advantages.

INDEX TERMS Floating-point arithmetic, error-free transformation, stochastic rounding, numerical analy-
sis, numerical algorithm, IEEE 754

I. INTRODUCTION

The IEEE 754-1985 standard for floating-point arithmetic
specifies four rounding modes: the default round-to-nearest,
which we denote by RN, and three directed rounding
modes, round-toward-þ1, round-toward-�1, and round-
toward-zero, which we denote by RU, RD, and RZ, respec-
tively. The 2008 revision of the standard handles rounding
by means of the attribute rounding-direction, which can
take any of five possible values: roundTiesToEven and
roundTiesToAway for round-to-nearest with two different
tie-breaking rules, and roundTowardPositive, roundTo-
wardNegative, and RoundTowardZero for directed round-
ing. The standard states, however, that it is not necessary
for a binary format to implement roundTiesToAway, thus
confirming that only four rounding modes are necessary for
a floating-point hardware implementation to be IEEE com-
pliant. The 2019 revision of the standard [1] does not intro-
duce any major changes to this section, but recommends

the use of roundTiesTowardZero for augmented opera-
tions [1, Sec. 9.5].
These rounding modes are deterministic, in that the

rounded value of a number is determined solely by the exact
value of that number, and an arbitrary sequence of rounded
elementary arithmetic operations will always produce the
same result. Here we focus on stochastic rounding, a non-
deterministic rounding mode that randomly chooses in which
direction to round a number that cannot be represented
exactly in the working precision. To the best of our knowl-
edge, this rounding mode was first mentioned by For-
sythe [2]. Informally speaking, the goal of stochastic
rounding is to round a real number x to one of the two nearest
floating-point numbers, y say, with a probability that depends
on the proximity of x to y, that is, on the quantity jx� yj. We
formalize this concept in Section IV.
Despite the similar name, stochastic rounding should not

be confused with stochastic arithmetic [3], a custom
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rounding mode in which each number that is not exactly
representable in the current precision is rounded to either
of the closest floating-point numbers with equal probabil-
ity. Stochastic arithmetic is used by the CADNA library [4]
to estimate the propagation of rounding errors in floating-
point programs. A similar device for the experimental anal-
ysis of rounding errors is Monte Carlo arithmetic [5], a
technique that comprises both stochastic arithmetic, as
used by the CADNA library, and stochastic rounding,
which we consider here. Monte Carlo arithmetic is used by
tools such as Verificarlo [6] and Verrou [7] in order to esti-
mate the impact of round-off errors in floating-point com-
putation, but we are not aware of any examples of use in
numerical software. All these tools propose to run an a pro-
gram multiple times using stochastic or Monte Carlo arith-
metic and then use the set of sampled results to draw
conclusions on the propagation of rounding errors and the
numerical stability of the same code when run with deter-
ministic rounding. None of these tools, however, considers
the use of stochastic rounding for alleviating rounding
errors on a normal run of a program.
Stochastic rounding is inherently more expensive than the

standard IEEE rounding modes, as it requires the generation
of a floating-point pseudorandom number, and its advantages
might not be entirely obvious, at first. Round-to-nearest
maps an exact number to the closest floating-point number in
the floating-point number system in use, and always produ-
ces the smallest possible roundoff error. In doing so, how-
ever, it discards most of the data encapsulated in the bits that
are rounded off. Stochastic rounding aims to capture more of
the information stored in the least significant of the bits that
are lost when rounding. This benefit should be understood in
a statistical sense: stochastic rounding may produce an error
larger than that of round-to-nearest on a single rounding
operation, but over a large number of roundings it may help
to obtain a more accurate result, as errors of opposite signs
cancel out. This rounding strategy is particularly effective at
alleviating stagnation [8], a phenomenon that often occurs
when computing the sum of a large number of terms that are
small in magnitude. A sum stagnates when the summands
become so small, compared with the partial sum, that their
values are “swamped” [9], causing a dramatic increase in for-
ward error. We examine stagnation experimentally in
Section VIII.

II. MOTIVATION

Stochastic rounding is widely used in fixed- and floating-
point arithmetic, both in software and hardware. The need
for efficient software implementations of this rounding mode
arises in several contexts.
First of all, floating-point operations with stochastic round-

ing are useful in the aforementioned numerical validation
tools Verificarlo [6] and VERROU [7], which are used in
industrial Verification & Validation processes. F�evotte and
Lathuili�ere [7], for example, discuss plans for using VER-
ROU in numerical simulations of electricity production units,

in order to analyze the propagation or rounding errors in
floating-point arithmetic, detect their origin in the source
code, and verify that they are kept within some acceptable
limits throughout the simulation.
Second, stochastic rounding has been shown to reduce the

worst-case bounds on the backward error of various numeri-
cal linear algebra algorithms [10]. Connolly, Higham, and
Mary [10] show that if stochastic rounding is used
then 1) rounding errors are mean-independent random varia-
bles with zero mean, and 2) the worst-case bound on the
backward error of inner products can be lowered from nu,
which holds when round-to-nearest is used, to

ffiffiffi
n
p

u, where n
is the problem size and u the unit roundoff of the floating-
point arithmetic in use. Advantages of stochastic rounding
were also shown in other types of numerical algorithms such
as, for example, those used for solving the ordinary differen-
tial equations arising in the Izhikevich neuron model [11].
The need to better understand the behavior of this rounding
mode has fueled the development of general-purpose float-
ing-point simulators such as the MATLAB function
chop [12] and the C library CPFloat [13], which include sto-
chastic rounding.
Furthermore, stochastic rounding is being increasingly

used in machine learning [14]–[19]. When training neural
networks, in particular, it can help compensate for the loss of
accuracy caused by reducing the precision at which deep
neural networks are trained in fixed-point [15] as well as
floating-point [18] arithmetic. Graphcore Intelligence Proc-
essing Units (IPUs) include stochastic rounding in their
mixed-precision matrix multiplication hardware [20].
Lastly, stochastic rounding plays an important role in neu-

romorphic computing. Intel uses it to improve the accuracy
of biological neuron and synapse models in the neuromor-
phic chip Loihi [21]. The SpiNNaker2 neuromorphic
chip [22] will be equipped with a hardware rounding acceler-
ator designed to support, among others, fast stochastic round-
ing. In general, various patents from AMD, NVIDIA, and
other companies propose hardware implementations of sto-
chastic rounding [23]–[25]. Of particular interest is a patent
from IBM [26], in which the entropy from the registers is
proposed as a source of randomness.

III. CONTRIBUTIONS

Our contribution is twofold: on the one hand, we present
algorithms for emulating stochastic rounding of addition and
subtraction, multiplication, division, and square root; on the
other, we discuss some examples in which using stochastic
rounding can yield more accurate solutions, and even achieve
convergence in cases where round-to-nearest would lead
numerical methods to diverge.
In order to round the result of an arithmetic operation sto-

chastically, it is necessary to know the error between the
exact result of the computation and its truncation to working
precision. Today’s CPUs and GPUs typically do not return
this value to the software layer, and the most common tech-
nique to emulate stochastic rounding via software relies on
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the use of two levels of precision. The operation is performed
at higher precision and the direction of the rounding is cho-
sen with probability proportional to the distance between this
reference and its truncation to the reduced working precision.
The Monte Carlo arithmetic implemented in the Verificarlo
tool [6] and the rounding algorithm used by the MATLAB
chop function [12], for example, follow this approach.
In general, this strategy cannot guarantee an accurate

implementation of stochastic rounding unless an extremely
high precision is used to perform the computation. The sum
of the two binary32 numbers 2127 and 2�126, for instance,
would require a floating point system with at least 253 bits of
precision in order to be represented exactly, and up to 2045
bits may be necessary for binary64. The requirements would
be even higher if subnormal numbers were allowed. This is
hardly an issue in practice, and it is easy to check, theoreti-
cally as well as experimentally, that as long as enough extra
digits of precision are used the results obtained with chop

1

differ from those obtained using full precision only in a neg-
ligible portion of cases [10].
The main drawback of this technique is that it requires the

availability of an efficient framework for performing high-
precision computation. Verificarlo, for example, relies on the
MPFR library [27], which despite being an efficient imple-
mentation is much slower than a hardware implementation of
the same floating-point arithmetic would be. The chop func-
tion, on the other hand, restricts the precision of the output
formats in order to avoid double rounding when using the
highest precision available in hardware.
In Section VI we show how the five elementary arith-

metic operations can be implemented stochastically with
the same guarantees as chop without resorting to higher
precision. The algorithms we propose can be broadly
divided into two classes. Those in Section VI.A use
error-free transformations to obtain the floating-point
error occurred in the arithmetic operation being rounded,
and then adjust the floating-point result by using a suit-
ably chosen directed rounding mode. Those in
Section VI.B, on the other hand, combine error-free trans-
formations with a strategy that performs the rounding
using only round-to-nearest, and does not require to
change the rounding mode used in hardware.
The idea of building algorithms for stochastically rounded

operations out of error-free transformations is not new. To
the best of our knowledge, algorithms similar to those in
Section VI.B were originally proposed for the Valgrind tool
VERROU [7], [28], but our work differs from that of F�evotte
and Lathuili�ere in several respects.
(1) We prove formally the correctness of our approach,

analyzing idiosyncrasies of floating-point arithmetic
such as subnormals, infinities, underflow and overflow.

(2) F�evotte and Lathuili�ere[7] do not provide a full pseu-
docode of the rounding algorithms they propose, but

describe a technique to estimate in hardware the
rounding probabilities, and provide a full C++ imple-
mentation2 of the rounding routines for binary64
arithmetic. The pseudocode we provide is more gen-
eral, it is not tied to a particular arithmetic and can
readily be adapted to any floating-point format of
interest. Moreover, the algorithms we present do not
rely on the availability of specific functionalities in
the standard library of the language, unlike the afore-
mentioned C++ implementation which relies on the C
++-specific functions nextAfter and nextPrev.
This brings a double benefit: on the one hand, our
algorithms are not bound to a specific language and
can be implemented in any environment that offers
the elementary arithmetic functions and bit manipula-
tion capabilities, on the other, they are potentially
much faster, as library functions are typically
designed to handle a broad spectrum of cases and
may not be optimized for the rather specific needs of
these rounding routines.

(3) For multiplication, division, and extraction of the
square root we favor the use of an augmented multipli-
cation algorithm that requires a single FMA instruction,
whereas the algorithms for stochastically rounded mul-
tiplication and division in [7, Sec. 3.2] and [7, Sec. 3.3]
use Dekker’s multiplication [29], which requires as
many as 17 floating-point operations.

(4) The variants of the algorithms we propose in
Section VI.A trade off the number of branching state-
ments for the use of multiple rounding modes. This
strategy does not bring any performance benefits in our
experimental setting, since changing the rounding
mode on current CPUs based on the x86 architecture
incurs a high performance penalty [30, Sec. 12.3.2], but
could potentially be faster on current and future hard-
ware architectures that do not have this limitation.

(5) We propose an algorithm not only for the four elemen-
tary arithmetic operations, but also for the computation
of the square root.

This approach brings a performance gain, as we show in
Section VII. In Section VIII, we explore three applications
showing that stochastic rounding may be more effective than
the four rounding modes defined by the IEEE 754 standard.
We summarize our contribution and discuss possible direc-
tions for future work in Section IX.

IV. STOCHASTIC ROUNDING

Let F be a normalized binary floating-point number system
with p digits of precision and maximum exponent emax, and
let " :¼ 21�p be the machine epsilon of F . The number x 2
F can be written as x ¼ ð�1Þs � 2ex � m, where s 2 f0; 1g is
the sign bit of x, the exponent ex is an integer between emin :
¼ 1� emax and emax inclusive, and the significand m 2

1https://github.com/higham/chop 2https://github.com/edf-hpc/verrou
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½0; 2Þ can be represented exactly with p binary digits, of
which only p� 1 are stored explicitly. We remark that, as F
is normalized, m can be smaller than 1 only when ex ¼ emin.
In the reminder, we denote the sign of the floating-point
number x 2 F by signðxÞ :¼ ð�1Þs.
As mentioned in the previous section, here we consider

stochastic rounding. We define this rounding mode from
several points of view, starting with an intuitive definition.
We will then provide a more formal definition and two
practical interpretations which will be used to derive our
rounding algorithms and prove their correctness in follow-
ing sections.
The function SR : R! F is a stochastic rounding if (we

use “w. p.” as a shorthand for “with probability”)

SRðxÞ ¼ RAðxÞ; w. p. q ¼ x�RZðxÞ
RAðxÞ�RZðxÞ ;

RZðxÞ; w. p. 1� q;

(

where RA denotes the operator that rounds away from zero.
This definition is illustrated pictorially in Figure 1.
For integers, this gives the rounding function

SRiðxÞ ¼ dxe; w. p. r ¼ x� bxc;
bxc; w. p. 1� r;

�

where the floor and ceiling operators return the largest integer
no smaller than x and the smallest integer no larger than x,
respectively.
In order to give a precise definition in terms of expo-

nents and significands of floating-point numbers, let us
denote the truncation of a number m 2 ½0; 2Þ to its p most
significant digits by trðmÞ :¼ signðmÞ � 21�pb2p�1jmjc. The
function SRf : R! F is a stochastic rounding if one has
that

SRfðxÞ ¼ ð�1Þs � 2ex � trðmÞ; w. p. 1� rx;
ð�1Þs � 2ex � ðtrðmÞ þ "Þ; w. p. rx;

�
(4.1)

where

rx :¼ m� trðmÞ
"

; (4.2)

for any real number x with absolute value between the small-
est and the largest representable numbers in F . We note that
m� trðmÞ 2 ½0; "Þ, which implies that rx 2 ½0; 1Þ.

We note that this definition gives the desired result if x is
subnormal. Let xmax be the largest floating-point number rep-
resentable in F . If jxj � xmax, then the definition (4.1) cannot
be used, since ð�1Þs � 2ex � ðtrðmÞ þ "Þ is not representable
in F . For consistency with the informal definition, we could
assume that if x is larger than xmax in absolute value, then
SRfðxÞ ¼ signðxÞ � xmax rather than SRfðxÞ ¼ signðxÞ � 1.
In practice, we can have different overflow behavior based
on intermediate rounding modes used to simulate stochastic
rounding—we discuss this for each algorithm below. The
quantity rx in (4.2) is proportional to the rounding error when
rounding toward zero, since

x� RZðxÞ ¼ signðxÞ � 2ex � ðm� trðmÞÞ
¼ signðxÞ � 2ex � " � rx ¼: %x: (4.3)

As %x depends only on x, we call it the residual of x.
We now discuss how to implement (4.1). Let X � U I

denote a random variable X that follows the uniform distribu-
tion over the interval I � R. Then for any x 2 R we have that

SRfðxÞ ¼ ð�1Þs � 2ex � trðmÞ; X � rx;
ð�1Þs � 2ex � ðtrðmÞ þ "Þ; X < rx;

�
(4.4)

where rx is as in (4.2) and X � U½0;1Þ. Using the strict
inequality for the second case ensures that if x 2 F then
SRfðxÞ ¼ x, since rx ¼ 0 if x is exactly representable in F .
Note that (4.4) can equivalently be rewritten as

SRfðxÞ ¼ ð�1Þs � 2ex � trðmÞ; X0 > rx;
ð�1Þs � 2ex � ðtrðmÞ þ "Þ; X0 	 rx;

�
(4.5)

for X0 � Uð0;1
. An alternative way of implementing (4.1) can
be obtained by substituting Y ¼ 1� X in (4.5), which yields

SRfðxÞ ¼ ð�1Þs � 2ex � trðmÞ; Y < 1� rx;
ð�1Þs � 2ex � ðtrðmÞ þ "Þ; Y � 1� rx;

�
(4.6)

where Y � U½0;1Þ. We will rely on both (4.4) and (4.6) in later
sections.
Definitions (4.4) and (4.6) are equivalent not only if X and

Y are continuous random variables, but also in the discrete
case. In particular, it is possible to show that both definitions
round up for 2‘rx cases out of 2‘, where ‘ is the number of
bits of the random variables X and Y—or equivalently the
number of digits in rx. This is illustrated for the case ‘ ¼ 2 in

FIGURE 1. Illustration of the stochastic rounding of a negative (left) or positive (right) real number x which sits in-between two floating-

point numbers RAðxÞ and RZðxÞ. The number x is rounded to RAðxÞ with probability rx and to RZðxÞ with probability 1� rx. The residual %x
in the diagrams and the probability rx are connected by the identity in (4.3).
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Table 1, and can be proven by induction on the structure of
the table for any ‘.
Here we provide only the proof for (4.4), that for (4.6) is

analogous and therefore omitted. For ‘ ¼ 1, the result can
be verified by exhaustion. Now we consider the inductive
step ‘ ¼ k. For a k-digit floating-point number y, let us
denote by tðyÞ the integer obtained by interpreting the string
containing all but the leading bit in the significand of y as
an integer. We note that if the leading bit of y is 1 then y ¼
2�1 þ 2�ktðyÞ, whereas if the leading bit of y is 0 then
y ¼ 2�ktðyÞ.
If the leading bit of rx is 0, then x is rounded up only when

the leading bit of X is 0 and tðrxÞ > tðXÞ, which by induc-
tive hypothesis happens in 2krx cases out of 2k�1. Taking
into account the 2k�1 cases in which the leading bit of X is 1
and x is rounded down, we obtain that x is rounded up in 2krx
cases out of 2k.
If the leading bit of rx is 1, on the other hand, x will be

rounded up if 1) the leading bit of the significand of X is 0,
which happens in 2k�1 cases; or 2) the leading bit of X is 1
but tðrxÞ > tðXÞ. By inductive hypothesis, the latter happens
in tðrxÞ cases out of 2k�1, and accounting for the 2k�1 cases
in which the leading bit of X is 0 and x is rounded up, we
obtain that even in this case x is rounded up in 2k�1 þ tðrxÞ ¼
2krx cases out of 2k .

V. TwoSum AND TwoProdFMA ALGORITHMS

The IEEE 754-2019 standard for floating-point arithmetic [1]
includes, among the new recommended operations, three
augmented operations: augmentedAddition, augmentedSub-
traction, and augmentedMultiplication. These homogeneous
functions take as input two values in any binary floating-
point format and return two floating-point numbers in the
same format: the infinitely precise result rounded to the near-
est floating-point value and the exact rounding error. The
only difference between these routines and the classical
FastTwoSum, TwoSum, and TwoProdFMA algorithms is
the tie-breaking rule, as the former use ties-toward-zero

whereas the latter favor ties-to-even [31], [32]. For simplic-
ity, we will refer to these algorithms as augmented addition/
multiplication algorithms (they are also called error-free
transformations).
How to perform these tasks efficiently is a well-understood

problem. Algorithms for augmented addition (and thus sub-
traction) and augmented multiplication are discussed in [30,
Sec. 4.3] and [30, Sec. 4.4], respectively. The former can be
performed efficiently by using the function TwoSum in
Algorithm 5.1, due to Knuth [33, Th. B] and Møller [34],
which for � ¼ RN computes the correctly rounded sum and
the rounding error at the cost of six floating-point operations.
If the two summands are ordered by decreasing magnitude,
this task can be achieved more efficiently by using Dekker’s
FastTwoSum [29], which requires only 3 operations in
round-to-nearest.
Boldo, Graillat, and Muller [35] explore the robustness of

FastTwoSum and TwoSum with rounding modes other
than round-to-nearest. They conclude that both algorithms
return a very accurate approximation of the error of addition,
and that FastTwoSum is immune to overflow in all the inter-
nal steps, while TwoSum is not only in rare cases, as long as
the main addition does not overflow.
When dealing with augmented multiplication, extra care is

required, as in this case it is necessary to ensure that under-
flow does not occur. In [30, Sec. 4.4] it is shown that if a; b 2
F and

ea þ eb � emin þ p� 1; (5.1)

then t ¼ a � b� �ða� bÞ, with � 2 fRN;RD;RU;RZg,
also belongs to F . In other words, the error of a floating-
point product is exactly representable in the same format as
its arguments. If an FMA (Fused Multiply-Add) instruction
is available, augmented multiplication can be realized very
efficiently with the function TwoProdFMA in Algo-
rithm 5.2, which requires only two floating-point opera-
tions and guarantees that if a and b satisfy (5.1), then
s þ t ¼ a � b regardless of the rounding mode used for the
computation.
If an FMA is not available, another algorithm, due to Dek-

ker [29], may be used to compute s and t. This algorithm
requires 16 floating-point operations, and is therefore

TABLE 1. Demonstration of stochastic roundings in 2-bit arith-

metic for every pair of X=Y and rx.

The table on the left considers (4.4), whereas (4.6) is shown on the right. The
direction of the arrows corresponds to the rounding direction, where #
denote round-toward-�1 and " denotes round-toward-þ1. Correspond-
ing columns in the two tables have the same number of arrows pointing
upward and arrows pointing downward: this shows that for any given rx the
probability of rounding up or down does not depend on which definition is
used.

Algorithm 5.1. TwoSum Augmented Addition

1 Function TwoSum(a 2 F , b 2 F , � : R! F )
Compute s; t 2 F s.t. s þ t ¼ aþ b.

2 s  �ðaþ bÞ;
3 a0  �ðs � bÞ;
4 b0  �ðs � a0Þ;
5 da  �ða� a0Þ;
6 db  �ðb� b0Þ;
7 t  �ðda þ dbÞ;
8 return ðs; tÞ;
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considerably more expensive than TwoProdFMA, which
requires only 2. We do not reproduce the algorithm here, and
in our pseudocode we denote by TwoProdDek the function
that has the same interface as TwoProdFMA and imple-
ments [30, Alg. 4.10]. This algorithm also requires that con-
dition (5.1) hold, but has been proven to work correctly only
when round-to-nearest is used.

Algorithm 5.2. TwoProdFMA Augmented Multiplication

1 Function TwoProdFMA(a 2 F , b 2 F , � : R! F )
If a; b satisfy (5.1), compute s; t 2 F s.t. s þ t ¼ a � b.

2 s  �ða� bÞ;
3 t  �ða� b� sÞ;
4 return ðs; tÞ;

VI. OPERATIONS WITH STOCHASTIC ROUNDING

In order to round a real number x according to the defini-
tion in Section IV, we need to know rx in (4.2) and
Figure 1. It may be possible to compute this quantity
exactly, if the operation producing x is carried out in
higher precision, but the value of rx (or %x) is not avail-
able when one wishes to round the result of an arithmetic
operation performed in hardware in the same precision as
the arguments. When rounding the sum of two binary64
numbers of different magnitude, for example, one must
shift the fraction of the smaller operand in absolute value
to the right, in order to match the exponent of the two
summands. In general, this may cause roundoff bits to
appear. These leftmost bits form rx, a quantity that is
used in hardware for rounding purposes but is usually not
returned to the user. This might change in the future if
the augmented operations recommended by the 2019 revi-
sion of the IEEE 754 standard [1] become prevalent. In
order to manipulate the rounded sum of the two values in
a way that simulates stochastic rounding, we need to
compute rx in (4.2).
The methods discussed in this section use error-free trans-

formations or other techniques for approximating the error in
order to obtain rx or 1� rx (or alternatively, %x or
2ex � "� %x).
Section VI.A covers algorithms that change the rounding

mode, while Section VI.B contains the alternative algorithms
that work only with round-to-nearest.

A. ALGORITHMS THAT SWITCH THE ROUNDING MODE

The solution we propose leverages the TwoSum algorithm to
round stochastically the sum of two floating-point numbers
without explicitly computing the quantity rx. This is achieved
by exploiting the relation between the residual and the round-
off error in round-to-nearest, which can be computed exactly
with the TwoSum algorithm, provided that the sum does not
overflow in round-to-nearest [35, Th. 6.2]. This approach is
shown in Algorithm 6.1.

Algorithm 6.1. Stochastically Rounded Addition

1 Function Add(a 2 F , b 2 F )
Compute % ¼ SRfðaþ bÞ 2 F .

2 Z  randðÞ;
3 ðs; tÞ  TwoSumða; b;RNÞ;
4 h get exponentðRZðaþ bÞÞ;
5 p signðtÞ � Z � 2h � ";
6 if t � 0 then
7 � ¼ RD;
8 ense
9 � ¼ RU;
10 % �ð�ðt þ pÞ þ sÞ;
11 return %;

In the pseudocode, randðÞ returns a pseudorandom float-
ing-point number in the interval [0,1). The algorithm first
computes s, the sum of a and b in round-to-nearest, the
error term t such that s þ t ¼ aþ b in exact arithmetic,
and the exponent h of RZðaþ bÞ. We use round-to-zero in
order to ensure that the exponent is computed correctly
when aþ b is not exactly representable and the closest
floating-point number away from zero is a power of 2. In
this case the exponent of RNðaþ bÞ may be larger than
that of RZðaþ bÞ by one, if aþ b is rounded away from
zero in TwoSum. Then the algorithm generates a p-digit
floating-point number in the interval [0,1) which is scaled
by the value of the least significant digit of RZðaþ bÞ, so
to have the same sign as the rounding error t and absolute
value in ½0; 2h"Þ. Finally, the operation on line 10 performs
stochastic rounding. The alignment of a, b, and p in Algo-
rithm 6.1 is illustrated in Figure 2.
We now argue the correctness of the algorithm. We will

assume, for now, that the quantity �ðt þ pÞ on line 10 is
computed exactly; later we will assess the effect of rounding
errors affecting this operation. Note that if s ¼ aþ b, then
t ¼ 0 and 0 	 Z < 1 guarantees that % ¼ s on line 10.
If s and t have the same sign, then jsj < jaþ bj, and it is

easy to check that if the rounding mode � used on line 10 is
chosen according to the strategy on line 6, then % ¼
RZðaþ bÞ if and only if j�ðt þ pÞj < 2h" or, under the
assumption that �ðt þ pÞ ¼ t þ p, if and only if jt þ pj <
2h". Since s and t have same sign, the latter condition can
be rewritten as jpj < 2h"� jtj, or equivalently as Z <
1� raþb. Similarly, % ¼ RZðaþ bÞ þ 2h" if and only if Z �
1� raþb, and we conclude that Algorithm 6.1 imple-
ments (4.6) when signðsÞ ¼ signðtÞ.

FIGURE 2. Alignment of the fractions of a, b, and p on line 10

of Algorithm 6.1.
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If s and t have opposite sign, on the other hand, then
jsj > jaþ bj. In this case we have that % ¼ RZðaþ bÞ if
and only if j�ðt þ pÞj � 2h", which reasoning as above can
be equivalently rewritten as Z � raþb, since raþb ¼
1� jtj=". The case % ¼ RZðaþ bÞ þ 2h" is analogous,
which shows that Algorithm 6.1 implements (4.4) for
signðsÞ ¼ �signðtÞ.
The diagram in Figure 3 aids to clarify why the rounding

operator � used on line 10 depends on the sign of t. The idea
is that j�ðt þ pÞj can become as large or larger than the least
significant digit of s, in which case the instruction on line 10
will round the final result in the direction opposite to that
originally chosen by TwoSum. If, on the other hand,
j�ðt þ pÞj ends up being smaller than 2h", then the sum com-
puted in round-to-nearest and is returned unchanged.
The error of Algorithm 6.1 depends on the magnitude of

’ :¼ jt þ p� �ðt þ pÞj, which in turn is determined by the
rounding operator � chosen on line 10. It is easy to see that
for round-to-nearest and directed rounding we have that ’ <
2h�p" and ’ < 2hþ1�p" ¼ 2h"2, respectively.
The function get exponentðxÞ returns the biased expo-

nent of the floating-point number x as stored in the binary
representation of x. It is important to stress that
get exponentðxÞ does not coincide with the exponent of x
as computed by the C mathematical library functions
frexp or ilogb if x represents 0 or a subnormal number
with leading zeros. In fact, when x is subnormal or zero,
get exponentðxÞ returns 0� emax ¼ emin � 1, and not the
exponent that x would have if it were a normal number, as
frexp and ilogb would. This exponent is easier to
obtain, as computing it does not require to count the leading
zeros in the significand of x when the latter is subnormal,
which in turn brings a performance gain. For a binary64
number x, the function get exponentðxÞ simply isolates the
exponent bits in the binary representation of x with an
appropriate bit mask, shifts them by 52 places to the right,

and adds the bias of �1023. This ensures that no rounding
is performed when x ¼ 0, as it is the case, for example,
when a ¼ �b: get exponentð0Þ ¼ emin � 1 ensures that
p ¼ 0 if line 5 is evaluated in round-to-nearest.
In the addition and all other algorithms below, the calcula-

tions of the type signðtÞ � Z � 2h � " are implemented by
first isolating the sign bit of t. The computation is then done
by using ldexp to multiply the random number Z (with the
sign of t attached to it using bitwise disjunction) by 2hþ".
Lastly, we comment on the behavior of overflow. The fol-

lowing applies to all the algorithms in this section that use a
rounding mode other than round-to-nearest. If overflow
occurs in the error-free transformation, then our algorithm
returns a NaN since TwoSum sets t to NaN. If this is not
acceptable, then an extra check (not shown in our algorithms)
can be added to return s ¼ 
1. If the operation on line 10
of Algorithm 6.1 overflows, on the other hand, then the max-
imum representable floating-point number of appropriate
sign is returned.

Algorithm 6.2. Multiplication With Stochastic Rounding
Using the FMA Instruction

1 FunctionMul(a 2 F , b 2 F )
If a; b satisfy (5.1), compute % ¼ SRfða � bÞ 2 F .

2 Z  randðÞ;
3 ðs; tÞ  TwoProdFMAða; b;RZÞ;
4 h get exponentðsÞ;
5 p signðtÞ � Z � 2h � ";
6 % RZð�ðt þ pÞ þ sÞ;
7 return %;

An algorithm for rounding stochastically the product of
two floating-point numbers can be obtained analogously. As
two strategies for computing the error produced by a float-
ing-point multiplictions are available, we can derive two var-
iants of the algorithm, one based on TwoProdFMA in
Algorithm 5.2 and one on Dekker’s algorithm for error-free
transformation.
The function Mul in Algorithm 6.2 exploits

TwoProdFMA to compute SRða� bÞ. As TwoProdFMA

works with any rounding mode [30, Sec. 4.4.1], we prefer to
use round-toward-zero for efficiency sake. In this way, %x ¼
t and the exponent can be calculated directly from s, without
requiring an extra floating-point operation as was the case in
Algorithm 6.1.
The correctness of Algorithm 6.2 can be shown with an

argument analogous to that used for Algorithm 6.1. Note that
the proof is easier in this case, as the use of round-to-zero
implies that either t ¼ 0 or signðsÞ ¼ signðtÞ.
A method that exploits TwoProdDek in place of

TwoProdFMA is given in Algorithm 6.3. As Dekker’s mul-
tiplication algorithm has not been shown to be exact for
rounding modes other than round-to-nearest, an extra float-
ing-point operation to get the correct exponent of rzða� bÞ
is necessary. This corresponds to the operation on line 4 of
Add in Algorithm 6.1.

FIGURE 3. Diagram that motivates the use of different directed

rounding modes depending on the sign of t. The dot dashed line

represents the range of the variable p; the numbers that fall in

the range of a thick grey line are rounded in the direction of the

black dot at one end. The symbol � represents any of the elemen-

tary arithmetic operations, a � b and s denote the result com-

puted in exact arithmetic and in round-to-nearest, respectively.
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As discussed in Section V, the error-free transformation
for multiplication does not produce the correct result if the
error is smaller than the smallest number representable in the
working precision. Our algorithms for multiplication do not
try to solve this issue, and we return an unrounded result in
the case of underflow in t. In terms of overflow, the behavior
of Mul hinges on what TwoProdFMA returns when the
multiplication overflows. Depending on the implementation
of the FMA, t on line 3 of Algorithm 6.2 may be either 
1
or a NaN. If t ¼ þ1, then Mul will return þ1 correctly,
whereas if t is �1 or a NaN, then an extra check will be
required to ensure that þ1 is correctly returned.

Algorithm 6.3. Multiplication With Stochastic Rounding
Using Dekker’s Algorithm

1 FunctionMulDekker(a 2 F , b 2 F )
If a; b satisfy (5.1), compute % ¼ SRfða � bÞ 2 F .

2 Z  randðÞ;
3 ðs; tÞ  TwoProdDekða; bÞ;
4 h get exponentðRZða� bÞÞ;
5 p signðtÞ � Z � 2h � ";
6 if t � 0 then
7 � ¼ RD;
8 else
9 � ¼ RU;
10 % �ð�ðt þ pÞ þ sÞ;
11 return %;

We now turn our attention to the algorithms for rounding
stochastically operations for which error-free transformations
cannot exist: division and extraction of the square root. It
would not be possible to derive an algorithm for stochasti-
cally rounded division in the spirit of the other algorithms in
this section, as the binary expansion of the error arising in
the division of two floating-point numbers may have, in gen-
eral, infinitely many nonzero digits. An example of this is the
binary number 1=11 ¼ 0:01 ¼ 0:010101. . ..
In order to obtain an algorithm for division, we exploit a

result by Bohlender et al. [36]. Let a and b be floating-point
numbers and let s :¼ �ða� bÞ where � is any of the IEEE
rounding functions. If s is neither an infinity nor a NaN, then
under some mild assumptions (see [37, Th. 4]) t0 :¼ a� s � b
is exactly representable. In our algorithm, we first compute s,
then obtain t0 using a single FMA operation, and estimate the
rounding error in the division by computing t0=b. When an
FMA is not available, t0 can be computed with Dekker’s multi-
plication algorithm. The stochastic rounding step is performed
as in previous algorithms. The method we propose to stochasti-
cally round this operation without relying on higher precision is
illustrated in Algorithm 6.4.
The error ’ :¼ jt þ p� �ðt þ pÞj is larger than that of the

other algorithms discussed so far, since only an approxima-
tion to the actual residual t is available. We note, however,
that this error is of the same magnitude as that introduced by
rounding t þ p, which suggests that ’ < 2h" for round-to-
nearest and ’ < 2hþ1" for directed rounding.

Algorithm 6.4. Division With Stochastic Rounding

1 Function Div(a 2 F , b 2 F )
Compute % ¼ SRfða� bÞ 2 F .

2 Z  randðÞ;
3 s  RZða� bÞ;
4 t0  RZð�s � bþ aÞ;
5 t  RZðt0 � bÞ;
6 h get exponentðsÞ;
7 p signðtÞ � Z � 2h � ";
8 % RZð�ðt þ pÞ þ sÞ;
9 return %;

Algorithm 6.5. Square Root With Stochastic Rounding

1 Function Sqrt(a 2 F )
Compute % ¼ SRfð

ffiffiffi
a
p Þ 2 F .

2 Z  randðÞ;
3 s  RZð ffiffiffi

a
p Þ;

4 t0  RZð�s2 þ aÞ;
5 t  RZðt0 � ð2� sÞÞ;
6 h get exponentðsÞ;
7 p signðtÞ � Z � 2h � ";
8 % RZð�ðt þ pÞ þ sÞ;
9 return %;

The algorithm for the square root given in Algorithm 6.5 is
very similar to that for division. The only difference is the
computation of the approximate error t, which is performed
as discussed by Brisebarre et al. [38].

B. ALGORITHMSWITH SINGLE ROUNDING MODE

Most floating-point hardware uses round-to-nearest by default,
thus we now discuss how the algorithms presented so far can be
modified to rely on this rounding mode alone. It is widely known
that changing the rounding mode of a processor can result in a
severe performance degradation on some hardware, therefore the
algorithms in this section may potentially be much faster despite
being more complex. Algorithms 6.7, 6.8, 6.9, and 6.10 show
how to adapt Algorithms 6.1, 6.2, 6.4, and 6.5, respectively. The
function SRround in Algorithm 6.6 is an auxiliary routine on
which the stochastic rounding algorithms rely on. The quantity
“ulp” represents the size of the gap between the two floating-
point values surrounding s þ t, unless s is zero or subnormal,
in which case it is a quantity half-way between zero and the
smallest subnormal. The function predðxÞ returns the floating-
point number next to x in the direction of 0, if x > 2emin , and
the number x itself if 0 < x 	 2emin . As per line 1 of [32,
Alg. 4], we implement this as ð1� 2�pÞ � x, and since we only
use it to extract the exponent, for x < 0 we call predðjxjÞ and
do not restore the sign. We need to use predðÞ in order to get the
correct exponent when the two neighbouring values surrounding
s þ t have different exponent—in the algorithms in the previous
section this problem was solved by changing the rounding mode
to round-to-zero. Note that predðjxjÞ ¼ jxj when 0 < jxj 	
2emin , which includes subnormals and the smallest normal value,
as shown in [32]. However, for the purposes of Algorithm 6.6
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we only need the predecessor when get exponentðsÞ differs
from get exponentðpredðjsjÞÞ, which is never the case in the
subnormal range.
The value get exponentðpredðjsjÞÞ in our C implementa-

tion is calculated, in the case of binary64 arithmetic, by mul-
tiplying s by the constant 1-ldexp(1, -53), extracting
the exponent bits and adding bias of �1023.
We now discuss the behavior of the modified algorithms in

case of overflow. If there is no overflow in the error-free
transformation, then the exact results of magnitude at least
2emaxð2� 2�pÞ overflow to the closest infinity, whereas those
below this threshold but of magnitude larger than the maxi-
mum representable value are rounded stochastically to the
corresponding infinity. This is due to the use of round-to-
nearest in the final step of the computation of %. If, on the
other hand, the computation performed during the error-free
transformation overflows, then s ¼ 
1 is returned.

Algorithm 6.6. A Helper Function for Stochastic Rounding

1 Function SRround(s 2 F , t 2 F , Z 2 F )
Compute round 2 F .

2 signðtÞ 6¼ signðsÞ
3 h get exponentðpredðjsjÞÞ;
4 else
5 h get exponentðsÞ;
6 ulp signðtÞ � 2h � ";
7 p ulp� Z;
8 if jRNðt þ pÞj � julpj then
9 round ¼ ulp;
10 else
11 round ¼ 0;
12 return round;

Algorithm 6.7. Stochastically Rounded Addition Without
the Change of the Rounding Mode

1 Function Add2(a 2 F , b 2 F )
Compute % ¼ SRfðaþ bÞ 2 F .

2 Z  randðÞ;
3 ðs; tÞ  TwoSumða; b;RNÞ;
4 round SRroundðs; t; ZÞ;
5 % RNðs þ roundÞ;
6 return %;

Algorithm 6.8. Multiplication With Stochastic Rounding
Using the FMA Instruction Without the Change of the
Rounding Mode

1 FunctionMul2(a 2 F , b 2 F )
If a; b satisfy (5.1), compute % ¼ SRfða � bÞ 2 F .

2 Z  randðÞ;
3 ðs; tÞ  TwoProdFMAða; b;RNÞ;
4 round SRroundðs; t; ZÞ;
5 % RNðs þ roundÞ;
6 return %;

Algorithm 6.9. Division With Stochastic Rounding Without
the Change of the Rounding Mode

1 Function Div2(a 2 F , b 2 F )
Compute % ¼ SRfða� bÞ 2 F .

2 Z  randðÞ;
3 s  RNða� bÞ;
4 t0  RNð�s � bþ aÞ;
5 t  RNðt0 � bÞ;
6 round SRroundðs; t; ZÞ;
7 % RNðs þ roundÞ;
8 return %;

Algorithm 6.10. Square Root With Stochastic Rounding
Without the Change of the Rounding Mode

1 Function Sqrt2(a 2 F , b 2 F )
Compute % ¼ SRfð

ffiffiffi
a
p Þ 2 F .

2 Z  randðÞ;
3 s  RNð ffiffiffi

a
p Þ;

4 t0  RNð�s2 þ aÞ;
5 t  RNðt0 � ð2� sÞÞ;
6 round SRroundðs; t; ZÞ;
7 % RNðs þ roundÞ;
8 return %;

VII. PERFORMANCE

In this section we evaluate experimentally the performance of
a C implementation of the techniques in Section VI.
We compared our methods with a C port of the stochastic

rounding functionalities of the MATLAB chop func-
tion [12]. As our focus in this section is on binary64 arithme-
tic, we used the GNU MPFR library [27] (version 4.0.1) to
compute in higher-than-binary64 precision. We denote by
sr_<mpfr_op> the function that uses the MPFR operator
<mpfr_op> to compute the high-precision result that is
subsequently stochastically rounded to binary64. The codes
we used for this benchmark (as well as the experiments dis-
cussed in the next section) are available on GitHub.3

In Table 2 we consider the throughput (in Mop/s, millions
of operations per second) of the functions we implemented
on a test set of 100 pairs of uniformly distributed binary64
random numbers in the interval ½fmin; 1þ fminÞ, where fmin :¼
2�1022 is the smallest positive normal number in binary64.
Subnormals are removed from the interval from which we
draw the random samples, in order to avoid the possible per-
formance degradation which would ensue if subnormals
were handled in software rather than in hardware. For each
pair of floating-point inputs, we estimate the throughput by
running each algorithm 10,000,000 times, and in the table
we report the minimum, maximum, and mean value over the
100 test cases, as well as the value of the standard deviation
and the speedup with respect to the 113-bit variant of the
GNU MPFR-based algorithm.

3https://github.com/mmikaitis/stochastic-rounding-evaluation
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Our experiments were performed on a machine equipped
with an Intel Xeon Gold 6130 CPU running CentOS GNU/
Linux release 7 (Core). The codes were compiled with
GCC 8.2.0 using the options -mfpmath=sse and
-march=native, which includes the flags -mfma and
-msse2, since the Skylake CPU we used supports the FMA
instruction and the Streaming SIMD Extensions 2 (SSE2)
supplementary instruction set. According to the GCC docu-
mentation on the semantics of floating-point mathematics,4

the two flags -msse2 and -mfpmath=sse together
ensure that 80-bit extended precision is not used at any point
in the computation.
For the optimization level, we were forced to use -O0 for

the implementation of Algorithms 6.1, 6.2, 6.4, and 6.5
(more strict optimization causes some issues with the
changes of the rounding mode so that the algorithms do not
pass basic tests), but used -O3 for the functions based on
MPFR and for implementation of Algorithms 6.7, 6.8, 6.9,
and 6.10.
The benchmark results show that the new algorithms that

work only in binary64 arithmetic but switch rounding mode
are 7.3 to 9.1 times faster than those relying on the GNU
MPFR library, regardless of the number of extra digits of pre-
cision used. The alternative algorithms discussed in
Section VI.B, which do not require the change of rounding
mode, are 16.3 to 19 faster than the reference implementation
based on GNU MPFR.

VIII. NUMERICAL EXPERIMENTS

Now we gauge the accuracy of the new algorithms in
Section VI. We do so by illustrating their numerical behavior
on three benchmark problems on which stochastic rounding
outperforms round-to-nearest when low-precision arithmetic
is used. These are the computation of partial sums of the har-
monic series in finite precision, the summation of badly
scaled random values, and the solution of simple ordinary
differential equations (ODEs). The experiments were run in
MATLAB 9.7 (2019b) using the Stochastic Rounding Tool-
box we developed, which is available on GitHub.5 Reduced-

precision floating-point formats were simulated on binary64
hardware using the MATLAB chop function [12].

A. HARMONIC SERIES

In exact arithmetic, the harmonic series

X1
i¼1

1
i
¼ 1þ 1

2
þ 1
3
þ . . .; (8.1)

is divergent. If the partial sums of (8.1) are evaluated in finite
precision, however, this is not the case: using binary64 arith-
metic and round-to-nearest, Malone [39] showed that the
series converges numerically to the value S248 � 34:122. In
the experiment, the author evaluated the sum by simply add-
ing the terms from left to right, and convergence was
achieved on an AMD Athlon 64 processor after 24 days. The
same experiment was run in fp8 (an 8-bit floating-point for-
mat), bfloat16, binary16, and binary32 arithmetics by
Higham and Pranesh [12], who showed that in binary32
arithmetic with round-to-nearest the series converges to
S221 � 15:404 after 221 ¼ 2;097;152 iterations.
Here we use the computation of

Hkðs0Þ :¼ s0 þ
Xk
i¼1

1
i
¼ s0 þ 1þ 1

2
þ 1
3
þ � � � þ 1

k
; (8.2)

as a simple test problem to compare the behavior of stochas-
tic summation with classic summation algorithms in round-
to-nearest. We include two variants of stochastically rounded
recursive summation, one that simulates stochastic rounding
using Algorithm 6.1 and one that relies on the MATLAB
chop function [12]. We use a single stream of random num-
bers produced by the mrg32k3a generator seeded with the
arbitrarily chosen integer 300, and at each step we generate
only one random number and use it for both algorithms. For
round-to-nearest we consider, besides recursive summation
at working precision, compensated summation [40], which at
each step computes the rounding error with TwoSum and
adds it to the next summand, and cascaded summation [41],
which accumulates all the rounding errors in a temporary
variable which is eventually added to the total sum. We do
not include doubly compensated summation [30,
Sec. 5.3.2], [42] because its results are indistinguishable

TABLE 2. Throughput (in Mop/s) of the C implementations of the algorithms discussed in the paper for binary64 stochastic rounding.

sr_mpfr_add Add Add2 sr_mpfr_mul Mul Mul2 sr_mpfr_div Div Div2 sr_mpfr_sqrt Sqrt Sqrt2

MPFR bits 61 88 113 – – 61 88 113 – – 61 88 113 – – 61 88 113 – –

min 3.5 3.7 3.5 18.5 62.5 3.7 3.7 3.7 32.2 66.6 3.3 3.4 3.4 31.2 62.5 3.6 3.0 2.8 28.5 52.6
max 3.8 4.2 4.0 31.2 71.4 4.2 4.1 4.0 34.4 76.9 3.6 3.6 3.6 33.3 71.4 4.2 3.6 3.6 30.3 58.8
mean 3.7 3.8 3.8 28.2 68.8 3.9 3.9 3.8 33.9 72.4 3.5 3.5 3.5 32.2 67.2 4.1 3.5 3.5 29.5 57.4
,! speedup 0.9� 1.0� 1.0� 7.3� 17.9� 1.0� 1.0� 1.0� 8.7� 18.6� 1.0� 1.0� 1.0� 9.1� 19.0� 1.1� 1.0� 1.0� 8.3� 16.3�
deviation 0.1 0.1 0.1 2.3 2.5 0.1 0.1 0.1 0.6 2.3 0.1 0.1 0.1 0.4 1.9 0.1 0.1 0.1 0.4 1.7

The parameter p represents the number of significant digits in the fraction of the MPFR numbers being used; algorithms that do not use MPFR have a missing
value in the corresponding row. The baseline for the speedup is the mean thoughtput of the MPFR variant that uses 113 bits to perform the same operation.

4https://gcc.gnu.org/wiki/FloatingPointMath
5https://github.com/mfasi/srtoolbox
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from those of compensated summation on this example. As
reference we take the sum computed by recursive summation
in binary64 arithmetic.
Our goal is to show that recursive and compensated sum-

mation stagnate with the standard IEEE 754 rounding mode
but not when stochastic rounding is used; stagnation is easily
achieved in bfloat16 and binary16 arithmetics for k well
below 105. For binary16, we had to set s0 ¼ 256 to cause
stagnation. In other words, for binary16 we computed 256þP1

i¼1 1=i, obtaining the results in Figure 4(b). As expected,
recursive summation is the first method to fail, while com-
pensated summation follows the reference quite accurately
before starting to stagnate. Cascaded summation stagnates
after recursive summation but before compensated summa-
tion. When paired with stochastic rounding, on the other
hand, recursive summation suffers from an error larger than
that of compensated summation, but does not stagnate.
Observe that Algorithm 6.1 and chop perform differently,
despite the fact that the same random number was used at
each step: this is expected, as the two algorithms use the ran-
dom numbers in a totally different way.

B. SUM OF RANDOM VALUES

In this second test we compare the different summation algo-
rithms on the task of computing the sum

Skðs0Þ ¼ s0 þ
Xk
i¼1

xi; (8.3)

where the xi are uniformly distributed over an open interval
that contains both negative and positive numbers, but is

biased towards positive values to ensure that the value of
Skðs0Þ is increasing for large k. These random numbers were
generated from a stream seeded with the arbitrarily chosen
integer 500. We initialized the sum to a positive number s0
large enough compared with the range of the random num-
bers to cause stagnation.
Figure 5 shows the results of this experiment. In binary16

arithmetic both recursive and cascaded summation stagnate
very early just as in the previous experiment, but compen-
sated summation does not in this test. We note, however, that
all three algorithms would face this problem if smaller ran-
dom numbers were used.
In order to test the algorithms at precision natively sup-

ported by the hardware without using simulated arithmetics,
we ran some experiments in binary64. In MATLAB, the
rounding behavior of the underlying hardware can be con-
trolled in an IEEE-compliant way: the commands feature
(’setround’, 0) and feature(’setround’,

0.5) switch to round-towards-zero and round-to-nearest,
respectively. Our test problem is similar to those above, as
we aim to sum random values small enough for stagnation to
occur (random numbers required to observe stagnation in
binary64 are so small that this phenomenon is unlikely to be
observed in real applications).
The results of this experiments are reported in Figure 6.

While recursive summation stagnated as expected, we were
unable to find any combination of parameters that caused
compensated summation to stagnate in binary64. Therefore,
compensated summation seems to be the best choice in
binary64 arithmetic, whereas lower precision appears to ben-
efit from recursive summation with stochastic rounding.

FIGURE 4. Numerical value of the sum Hkðs0Þ in (8.2) accumulated in bfloat16 (left) and binary16 (right) arithmetics with various summa-

tion algorithms. The sum computed in binary64 precision is taken as reference. The algorithms use round-to-nearest (RN) or stochastic

rounding (SR) as indicated in the legend.
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C. ODE SOLVERS

1) EXPONENTIAL DECAYODE

Explicit solvers for ODEs of the type y0 ¼ f ðx; yÞ have the
form ytþ1 ¼ yt þ hfðxt; yt; h; f Þ for a fixed step size h. For
small h, they are therefore susceptible to stagnation. In fixed-
point arithmetic, stochastic rounding was shown to be very
beneficial on four different ODE solvers [11]. Here we use the
algorithms developed in Section VI to show that stochastic

rounding brings similar benefits in floating-point arithmetic, as
it increases the accuracy of the solution for small values of h.
For these experiments we used the default MATLAB random
number generator seeded with the value 1.
Higham and Pranesh [12] tested Euler’s method on the

equation y0 ¼ �y using different reduced precision floating-
point formats, and showed the importance of subnormal num-
bers. A similar experiment for time steps as small as 10�8 is
shown in [43, Sec. 4.3]. We use their code6 and compare
round-to-nearest and stochastic rounding on the same test
problem. The ODE with initial condition yð0Þ ¼ 2�6 (chosen
so that it is representable exactly in all arithmetics) is solved
over [0,1] using the explicit scheme ynþ1 ¼ yn þ hf ðtn; ynÞ
with h ¼ 1=n for n 2 ½10; 106
. Figure 7(a) shows the absolute
errors of the ODE solution at x ¼ 1 for increasing values of
the discretization parameter n. For small integration steps, the
error is around four orders of magnitude smaller when stochas-
tic rounding is enabled for the 16-bit arithmetics.
We tested two other algorithms for the numerical integra-

tion of ODEs:
� the midpoint second-order Runge–Kutta method (RK2)

ynþ1 ¼ yn þ hf
�
tn þ 1

2
h; yn þ 1

2
hf ðtn; ynÞ

�
;

� Heun’s method

y0n ¼ yn þ hf ðtn; ynÞ;
ynþ1 ¼ yn þ 1

2 h
�
f ðtn; ynÞ þ f ðtn þ h; y0nÞ

�
:

(

FIGURE 5. Numerical value of the sum Skðs0Þ in (8.3) accumulated in bfloat16 (left) and binary16 (right) arithmetics using various algo-

rithms. The algorithms use round-to-nearest (RN) or stochastic rounding (SR) as indicated in the legend.

FIGURE 6. Numerical value of Skðs0Þ � 1, for the sum Skðs0Þ as

defined in (8.3), accumulated in binary64 arithmetic using vari-

ous algorithms with s0 ¼ 1, xi 2 ð0; 2�65Þ. The algorithms use

round-to-nearest (RN) or stochastic rounding (SR) as indicated

in the legend.

6https://github.com/SrikaraPranesh/LowPrecision_Simulation
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The results for these two methods are reported in
Figures 7(b) and 7(c), respectively.
To cause stagnation in binary32 we need to reformulate the

problem in order to have a smaller integration period and a
larger initial condition. One possibility is to consider the same
ODE y0 ¼ �y but choose as initial condition yð0Þ ¼ 1 over
½0; 2�6
 with h ¼ 2�6=n for n 2 ½10; 106
. The constant in the
initial condition only ought to be large relative to the time step
size, the number 1 was an arbitrary choice. Now at every step
of the integration, a very small positive value, whose magnitude
decreases with the time step size, will be subtracted from 1, and
even binary32 will show more significant errors. Another option
to increase the errors is to introduce a decay time constant other
than 1 into the differential equation. The ODE y0 ¼ �y=20, for
instance, will cause the updates at each step of a solver to be

even smaller. Figure 7(d) shows this scenario using Euler’s
method. In this case only binary64 and binary32 with stochastic
rounding manage to avoid stagnation for small time steps.

2) UNIT CIRCLE ODE

The solution to the system of ODEs

u0ðtÞ ¼ vðtÞ;
v0ðtÞ ¼ �uðtÞ;

�

with initial values uð0Þ ¼ 1 and vð0Þ ¼ 0 represents the unit
circle in the uv-plane [44, p. 51]. Higham [44, p. 51] shows
also that the forward Euler scheme

ukþ1 ¼ uk þ hvk;
vkþ1 ¼ vk � huk;

�
(8.4)

FIGURE 7. Absolute errors in Euler, Midpoint, and Heun methods for the exponential decay ODE solutions with different floating point

arithmetics and rounding modes. The x-axis represents n while y-axis represents the error.
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with h ¼ 2p=32 produces a curve that spirals out of the unit
circle. Euler’s method can be improved by using a smaller
time step, which gives a more accurate approximation to the
unit circle at a higher computational cost. From the previous
section we know, however, that smaller time steps are more
likely to cause rounding issues.
The goal of this experiment is therefore to see what curve

the methods draw when using round-to-nearest and stochas-
tic rounding at small step sizes. We note that here stochastic
rounding is used for both addition and multiplication opera-
tions in (8.4). Figure 8 shows some circles drawn when solv-
ing (8.4) for various step sizes h ¼ 2p=n.
As expected, for large step sizes the solution spirals out of

the unit circle, then gets gradually closer to the right solution
as the step size decreases, until rounding errors start to domi-
nate the computation causing major issues: for a small
enough step size the solution computed using round-to-near-
est looks like an octagon. Stochastic rounding seems to avoid
this problem and keeps the solution near the unit circle. We
do not report the results for binary32, as we found its behav-
ior to be the same as that of binary16/bfloat16 at n ¼ 29

regardless of the step size.
The octagonal shape of the circle approximation with

round-to-nearest is interesting and worth looking at in more

detail. In Figures 8(c) and 8(g) we can see that during the
first few iterations, v changes while u remains constant. In
theory, we would expect u to start decreasing because of the
negative values of v, but the number being subtracted from
u0 ¼ 1 is too small for the 16-bit floating-point number sys-
tems considered in this experiment, as we now explain.
In order to simplify the analysis, we now assume exact

arithmetic. If no rounding errors occur, after 7 integration
steps we get, for a given h,

u7 ¼ 1� 21h2 þ 36h4 � 7h6;

v7 ¼ �7hþ 35h3 � 21h5 þ h7:
(8.5)

It is clear that the value of v7 will depend on h even for very
small time steps, but the value of u7 might not, as this coordi-
nate has a constant term and the update is a second-order
term in h that can potentially be much smaller. The other
terms in this expression for u7 are even smaller, so we focus
only on the the first two. If we expand them and make the
sequence of operations performed by Euler’s method
explicit, we obtain that

u7 � 1� 21h2 ¼ 1� h2 � 2h2 � 3h2 � 4h2 � 5h2 � 6h2;

FIGURE 8. Unit circle drawn by Euler’s method in (8.4) with various arithmetics and rounding modes compared to the exact solution.

The default MATLAB random number generator seeded with 500 was used. The x- and y-axis represent u and v, respectively. Note that

in (d) and (h) only a very small part of the solution computed with round-to-nearest is visible (marked with an arrow) since the ODE

solver failed because of stagnation.
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where eachmultiplication and subtraction can potentially cause
a rounding error. If h2 is significantly smaller than 1, in particu-
lar, the subtraction 1� kh2 might result in stagnation, as the
rounding would return 1 and thus yield ukþ1 ¼ 1 ¼ u0. That is
why in Figure 8 the value of u initially remains constant with
round-to-nearest but changes immediately with stochastic
rounding: the latter manages to erode 1 by rounding up some of
the kh2 terms. As k increases, the terms kh2 will eventually
become large enough for subtractions to start taking effect with
round-to-nearest, at which point the curve will move to a differ-
ent edge of the octagon.
The situation is similar at the bottom of the circle, where

vN=4 ¼ �1 and uN=4 ¼ 0. At first, the value of hui is so small
that viþ1 ¼ �1� hui evaluates to �1 in finite precision. As
the magnitude of ui < 0 increases, so does �hui, which
eventually becomes large enough for round-to-nearest to
round up the result of �1� hui. When rounding stochasti-
cally, this is not as problematic, since any nonzero value of
hui has a nonzero probability of causing the subtraction to
round up. The expanded expression for the first two terms of
vN=4þ7 is similar to u7, with increasingly larger multiples of
h2 being added to �1 at each step of Euler’s method

vN=4þ7 � �1þ 21h2 ¼ �1þ h2 þ 2h2 þ 3h2 þ 4h2 þ 5h2 þ 6h2:

In Figures 8(d) and 8(h), on the other hand, the step size h
is so small that even v stops progressing in round-to-nearest,
and only a small portion of the octagon is drawn. This can be
explained by looking at (8.5): the largest term supposed to
decrease v0 ¼ 0 is the first order term �h, therefore for large
enough h in finite-precision arithmetic one will have vk ¼
�kh. As can be seen from the figure, this works for the first
few iterations, during which v grows in magnitude while h
remains constant, eventually causing stagnation to occur.
Note that u is also fixed at 1 at that point, which means that
the other terms in the expansion of v in (8.5) vanish and the
whole system of ODEs cannot progress any further. This
does not happen when rounding stochastically, as this round-
ing mode avoids stagnation of both variables.
This simple experiment resembles the integration of plane-

tary orbits. For example, Quinn, Tremaine, and Duncan [45,
Sec. 3.2] use multistep methods to integrate orbits over a
time span of millions of years with a time step of 0.75 days.
The authors comment that roundoff errors arising in the addi-
tions within the integration algorithm can become a dominant
source of the total error, and propose to keep track of these
errors and add them back to the partial sum as soon as their
sum exceeds the value of the least significant bit. This tech-
nique is similar to the approach taken by cascaded summa-
tion. The use of stochastic rounding in the floating-point
addition might alleviate this issue by reducing the total sum-
mation error without requiring any additional task-specific
code or extra storage space at runtime.
We believe that the exploration of stochastic rounding in this

particular application should be a main direction of future
work. Our algorithms for emulating stochastically rounded

elementary arithmetic operations, along with the code for
binary64 precision arithmetic that we provide, will allow those
interested in looking into this problem to easily access arithme-
tic with stochastic rounding without requiring the use ofMPFR
or alternative multiple-precision libraries.

IX. CONCLUSION

There is growing interest in stochastic rounding in various
domains [6], [7], [10], [15]–[19], and this rounding mode has
started appearing in hardware devices produced by Graph-
core [20] and Intel [21]. In this work we proposed and com-
pared several algorithms for simulating stochastically rounded
elementary arithmetic operations via software. The main fea-
ture of our techniques is that they only assume an IEEE-compli-
ant floating-point arithmetic, but do not require higher-
precision computations. This is a major advantage in terms of
both applicability and performance. On the one hand, these
methods can be readily implemented on a wide range of plat-
forms, including those, such as GPUs, for which multiple-pre-
cision libraries are not available. On the other hand, the new
techniques lead to more efficient implementations: our experi-
ments in double precision show a speedup of order 10 or more
over anMPFR-basedmultiple-precision approach.
We also discussed some applications where stochastic

rounding is capable of curing the instabilities to which
round-to-nearest is prone. We showed that, in applications
where stagnation is likely to occur, using stochastic rounding
can lead to much more accurate results than standard round-
to-nearest or even compensated algorithms. This is especially
relevant for binary16 and bfloat16, two 16-bit formats that
are becoming increasingly common in hardware.
We feel that other applications would benefit from the use

of stochastic rounding at lower precision, and believe that
this rounding mode will play an important role as hardware
that does not support 32/64-bit arithmetics becomes more
prevalent. This will be the subject of future work.
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