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ABSTRACT Mobile cloud computing has been involved as a key enabling technology to overcome the
physical limitations of mobile devices toward scalable and flexible mobile services. In the mobile cloud
environment, searchable encryption, which enables direct search over encrypted data, is a key technique to
maintain both the privacy and usability of outsourced data in cloud. On addressing the issue, many research
efforts resolve to using the searchable symmetric encryption (SSE) and searchable public-key encryp-
tion (SPE). In this paper, we improve the existing works by developing a more practical searchable encryption
technique, which can support dynamic updating operations in the mobile cloud applications. Specifically,
we make our efforts on taking the advantages of both the SSE and SPE techniques, and propose PSU,
a Personalized Search scheme over encrypted data with efficient and secure Updates in mobile cloud.
By giving thorough security analysis, we demonstrate that the PSU can achieve a high security level. Using
extensive experiments in a real-world mobile environment, we show that the PUS is more efficient compared
with the existing proposals.

INDEX TERMS Mobile cloud computing, searchable encryption, personalized search, updates.

I. INTRODUCTION
Mobile cloud computing [1]–[4] is a new and fundamental
model of cloud computing [5], which provides scalable and
virtualized storage and computing resources as a service
to mobile devices [6], [7]. Nowadays, many companies or
data owners are enjoying the convenience of mobile cloud
computing by outsourcing their data to cloud servers and
later accessing to the data via their mobile devices anywhere
anytime. However, noting that the outsourced data may con-
tain sensitive information, e.g. personal emails/videos/photos
and financial transactions, privacy issues have long been
the major concern and barrier of data outsourcing [8], [9].
For instance, in 2014, hundreds of personal photos of
celebrities are stolen from their iCloud. To protect the data
privacy [10]–[12], data owners typically encrypt their data

before outsourcing to cloud. This, however, weakens the
data usability due to the difficulties of searching over the
encrypted data. For example, if one needs to search for a
relevant document in an encrypted data set, it is unreasonable
to first download the whole data set and decrypt it. The
situation could be even worse in the mobile environment due
to the physical limitations of mobile devices, such as low
bandwidth and limited storage capacity.

The searchable encryption [13] represents a promising
technique to address the issue by enabling direct search
over encrypted data. A number of research works have been
focused on the searchable symmetric encryption (SSE) [14],
which adopts the same symmetric key to compute the
searchable index and trapdoor (encrypted search request).
Wang et al. [15] propose a vector-space-based search scheme
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that supports multi-keyword search and result ranking.
However, due to the complexity of the key management in its
setting, SSE is not suitable to support the multi-data-owner
scenario and search authorization that enforces the access
policy for each document to only return the search results
to the authorized mobile users. This motivates search-
able public-key encryption (SPE), which integrates keyword
search and public-key encryption. SPE can achieve function-
alities in terms of access control and search authorization.
For example, Sun et al. [11] and Zheng et al. [16] leverage
attribute-based encryption [17] to propose the attribute-based
search scheme with fine-grained access control. However,
both [11] and [16] only support single-keyword search and
simple conjunctive keyword search. Moreover, SPE is inef-
ficient in practice since it involves many time-consuming
asymmetric cryptography operations (e.g., pairing and expo-
nentiation). Therefore, the dynamic property of the search-
able encryption including index and document updating
remains a challenging issue for both SSE and SPE.

In this paper, we focus on the dynamic searchable encryp-
tion in the mobile cloud environment. By exploring the fea-
tures of mobile cloud computing, we develop a Personalized
Search scheme over encrypted data with efficient and secure
Updates (PSU), which takes advantages of both SSE and
SPE techniques. The main contributions of our work are
summarized as follows.
• Efficient and versatile scheme: by leveraging Bloom
filter [18] and secure k-nearest neighbor [19] tech-
nique, we develop a versatile search scheme that sup-
ports multi-keyword search and relevance-based result
ranking. By introducing the keyword preferences for
mobile users and the score cleaning algorithm on the
server side, the proposed scheme could significantly
enhance the search accuracy and improve the user search
experience accordingly.

• Practical and secured scheme: we modify the attribute-
based keyword search [16], [17] and combine it with
the vector-space-based search technique in the proposed
PSU scheme to achieve the search authorization for the
multi-data-owner scenario while maintaining the high
search efficiency. Moreover, we adopt the Third-party
Auditor (TPA) in the PSU to achieve a highest security
level compared with the existing proposals. Via thor-
ough security analysis, we demonstrate the security of
PSU in terms of confidentiality, trapdoor unlinkability,
forward and backward security, and collusion resistance
and hidden access policy.

• Real-world experiment: we run the real-world experi-
ments on a PC server and smart phones to validate the
performance of our proposal. It is shown that PSU is
more efficient compared with the existing related works
in terms of the functionalities, computation and commu-
nication overhead.

The remainder of this paper is organized as follows.
In Section II, we give an overview of this paper including
the system model, security requirements and design goal.

In Section III, we recap the Bloom filter, secure kNN
technique, and attribute-based encryption with tree-based
access structure. In Section IV, we propose the PSU
scheme. Its security analysis and performance evaluation
are presented in Section V and Section VI, respectively.
In Section VII, we present related work. Finally, we close this
paper with concluding remarks in Section VIII.

II. PROBLEM FORMULATION
A. SYSTEM MODEL
We consider a system consisting of five components:
certificate authority (CA), cloud server (CS), third-party-
auditor (TPA), multiple data owners and multiple mobile
users. The CA is a globally trusted certificate authority, which
takes the responsibility of system setup, mobile user authen-
tication and generation of attribute keys. The TPA is also
assumed to be trusted which is responsible for the auditing
task in the PSU, including verification of the mobile user’s
identity and the behavior of the cloud server. It is reasonable
since both CA and TPA would be audited by the government
office.

FIGURE 1. System model.

The system operates in the following steps. As shown
in Fig. 1, the data owners keep a large collection of
documents. For each document, they would choose multiple
keywords and insert the keywords into the per-document
index constructed as a Bloom filter. The data owners then
encrypt the per-document index before outsourcing. Since
there would be multiple data owners and mobile users in
considered system (a data owner could also be a mobile
user in some situations), it is therefore necessary to enforce
access policy over different documents, and ensure that only
the authorized mobile users could access to the documents.
Thus, the data owners define the access policy and compute
the authorization ciphertext for each document. Finally, the
data owners send the encrypted index with the authorization
ciphertexts to the cloud server.

When a mobile user intends to search over the encrypted
data set, she chooses a keyword set of interest and inserts
them into a Bloom filter with different preference weights.
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Then, the mobile user computes the search token using her
attribute keys and encrypts the query Bloom filter. Upon
receiving the search token and the query Bloomfilter from the
mobile user, the cloud server then calculates the inner prod-
ucts of the index and query Bloom filter, and run the score
cleaning algorithm to obtain the final relevance score. After
that, the cloud server determines whether the mobile user’s
attributes satisfy the access policy of the relevant documents
ordered by the relevance scores using the search token and
the authorization ciphertext. TPA would check the validity of
the search results. Finally, the mobile user could obtain the
authorized search results.

B. SECURITY REQUIREMENTS
In PSU, Cloud server is honest but assumed to be
curious [20]; the Cloud server would execute the assigned
task correctly but it is curious on the documents in its
storage. Mobile users are dishonest and may collude with
each other. Therefore, PSU aims to cover the following secu-
rity requirements:
• Confidentiality: Since the documents may contain sen-
sitive information, they should be kept secret and only
authorized mobile users can access to them. Moreover,
the cloud server cannot pry into the encrypted index
while performing search operations.

• Trapdoor Unlinkability: Although the trapdoors are
encrypted before being submitted to the cloud server,
they can still leak privacy of the mobile users when
the cloud server determines the associations between
them. The trapdoor unlinkability means that the trap-
doors should not be linkable. Specifically, the trapdoors
even with the same set of keywords should be totally
different, which requires the generation function to be
randomized. And the search tokens should also be secret
and unlinkable.

• Forward and Backward Security: Forward security
means that the cloud server does not know that the lately
added document contains the keyword searched before.
And backward security means that the deleted docu-
ments cannot be searched anymore. To support secure
dynamic updating, these two security properties must be
covered.

• Collusion Resistance andHidden Access Control Policy:
The mobile users may intent to combine their search
tokens to access to the documents that they cannot
access individually. Thus, the proposed scheme should
be collusion-resistant. Moreover, the access control pol-
icy should not be revealed to the cloud server for privacy
considerations.

C. DESIGN GOAL
We target to achieve the following goals in the proposed
PSU scheme.
• Enhancing Search Experience: The proposed
PSU scheme should support personalized multi-
keyword search and relevance-based result ranking,

since the mobile user would prefer the results of high
search accuracy.

• Privacy Guarantee: The proposed PSU scheme should
cover all the security requirements as listed in the
previous subsection.

• Efficient and Secure Dynamic Updating: The pro-
posed scheme should support various dynamic updating
operations, including the attribute revocation, index and
document updates.Moreover, the updates should be both
efficient and secure.

III. PRELIMINARIES
A. BLOOM FILTER
A Bloom filter [18] can be used to securely compute the
intersection of item sets. Specifically, a (m, k) Bloom filter is
an m-dimensional array. Given a data set S = {a1, a2 . . . al}
with l elements and k independent universal hash functions
H = {h1, h2 . . . hk} where hi : S → [0 . . .m − 1]. For
each ai ∈ S, compute hj(ai) and set the hj(ai)th item in the
Bloom filter to 1, where 1 ≤ j ≤ k . To check whether an
element a is in the set S or not, compute hj(a) for each hash
functions and check whether the corresponding positions in
the Bloom filter is 1. If not, the element is certainly not in S.
Otherwise, the element is likely in S with the false positive
rate (1− (1− 1

m )
kl)k . And when k = m

l (ln2), the Bloom filter
achieves an optimal false positive rate ( 12 )

k .

B. SECURE k-NEAREST NEIGHBORS COMPUTATION
We adopt the work ofWong et al. [19] in the PSU.Wong et al.
propose a secure k-nearest neighbor (kNN) schemewhich can
confidentially encrypt two vectors and compute Euclidean
distance of them. First, the secret key (S,M1,M2) should be
generated. The binary vector S is a splitting indicator to split
plaintext vector into two random vectors. AndM1 andM2 are
used to encrypt the split vectors. The correctness and security
of secure kNN computation scheme can be referred to [19].
In the PSU, to securely compute the inner products of the
index and the query vector, we modify kNN technique and
construct three associated algorithms:
• Enci(p). Given an index vector p, this algorithm gen-
erates an encrypted query vector P. Specifically, split
p into two vectors p′ and p′′ using the key S as
p′j = p′′j = pj, if Sj = 1; p′j =

1
2pj + r, p′′j =

1
2pj − r, otherwise, where r is a random number and
pj is the j-th item of the vector p. Then, compute
P = {MT

1 · p
′,MT

2 · p
′′
} as the encrypted index

vector.
• Encq(q). Given a query vector q, this algorithm gener-
ates an encrypted query vector Q. Specifically, split the
vector q into two vectors q′ and q′′ using the key S as
q′j = q′′j = qj, if Sj = 0; q′j =

1
2qj + r ′, q′′j =

1
2qj − r ′, otherwise, where r ′ is a random number and
qj is the j-th item of the vector q. Then, compute the
Q = {M−11 · q′,M−12 · q′′} as the encrypted query
vector.
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• Comp(P,Q). Given the encrypted index and query
vector P and Q, this algorithm computes the inner prod-
ucts of the original index and query vector p and q.
Specifically, compute the Score as follows:

Score = P · Q
= {MT

1 · p
′,MT

2 · p
′′
} · {M−11 · q

′,M−12 · q
′′
}

= p′ · q′ + p′′ · q′′

= p · q. (1)

C. ATTRIBUTE-BASED ENCRYPTION WITH
TREE-BASED ACCESS CONTROL POLICY
Attribute-based encryption (ABE) [17], [21] is a promising
technique that can provide fine-grained access control. In the
PSU, we adopt CP-ABE technique [17] to achieve search
authorization over the outsourced encrypted documents.
In CP-ABE, the ciphertexts are created with an pre-defined
access policy (e.g., an access tree) and only the mobile users
with attributes that satisfy the access policy can decrypt it.
Specifically, access policy can be described as a tree struc-
ture T in the PSU. Each leaf node of T is associated with
an attribute. Each non-leaf node x acts as a threshold gate.
Denote the number of the children of node x as nx and the
threshold value as kx . We can see that 1 ≤ kx ≤ nx . Node x
represents AND gate when kx = nx and OR gate when
kx = 1. We also denote the associated attribute of leaf node x
as att(x). And p(x) denotes the parent of node x. Moreover,
we denote ind(x) as the index number of the node x, where
1 ≤ ind(x) ≤ np(x). Let Tx denote the subtree rooted
at node x.
Given a set of attributes Atr and an access tree T ,

we define the verification function Verify(Atr,T , x) for
each node x of T . Specifically, if x is a leaf node,
Verify(Atr,T , x) = 1 when att(x) ∈ Atr ; if x is a non-leaf
node, Verify(Atr,T , x) = 1 when at least kx of its children
returns 1. The attribute set Atr satisfies the access policy
represented by T when Verify(Atr,T , r) = 1, where r is the
root node. Moreover, an access tree can be used to divide a
secret s to a set of values corresponding to each of its leaf
node denoted as algorithm SecretShare(T , s) as follows.
SecretShare (T,s): Given a secret s and an access tree T ,

this algorithm generates a set of secret shares {qx(0)} for each
leaf node x. Started with the root node, choose a polynomial
qx for each node x with degree kx−1. For the root node r , set
qr (0) = s and randomly pick kx−1 coefficients to fully define
the polynomial. For other nodes x, set qx(0) = qp(x)(ind(x)).
When this algorithm halts, each leaf node is associated with
a secret share qx(0). As we can see, with at least kx values of
the child node of the node x, one can define the polynomial at
node x. That is, given a set of secret shares, one can recover
the secret s in a bottom-up manner, which would be discussed
in details in our proposed scheme.

IV. PROPOSED SCHEME
In this section, we present the proposed PSU(personalized
search) scheme with efficient and secure updates. In PSU,

we first adopt the Bloom filter [18] to construct the query
and index vector and the kNN computation [19] to securely
compute the inner products. We then apply the Third
Party Auditor (TPA) and the CP-ABE technique [16], [17],
in the PSU to achieve search authorization and forward
and backward security. By carefully choosing the differ-
ent weights in the query and the score cleaning on the
server side, PSU not only achieves the personalized search
but also significantly increases the search accuracy for the
mobile user. PSU proceeds in seven phases, System Setup,
Building Encrypted Database, Trapdoor Generation, Search,
Auditing, Decryption and, Efficient and Secure Updating,
which will be described in details below.

A. SYSTEM SETUP
1) CA SETUP
CA is a globally trusted authority, and is in charge of mobile
user registration and generating attribute keys. First, CA takes
into a security parameter l and outputs two cyclic groups G,
GT of a l-bit prime order p, a generator g of G, and a map
e : G×G → GT , such that e(Pa1,Q

b
1) = e(P1,Q1)ab ∈ GT

for all a, b ∈ Zp and any P1,Q1 ∈ G. Then, CA chooses
k independent universal hash functions HB = {h1, h2 . . . hk}
(hi : {0, 1}∗→ [0,m−1]), for a (m, k) Bloom filter. CA also
selects a collusion-resistant hash function H : {0, 1}∗ → G
modeled as random oracle. CA chooses five random numbers
α, β, a, b, c ∈ Zp and keeps them secret. Moreover, CA
would choose a set of n positive numbers S = {s1, s2, . . . sn},
where si > k

∑i−1
j=1 sj, for 2 ≤ i ≤ n, where k denotes

the number hash functions in the Bloom filter. Finally,
CA computes and publish the public parameters Pub as
follows.

Pub={e, g, p,m, k,HB,H, S,G,GT , ga, gb, gc, gβ, e(g, g)α}.

(2)

2) KEY GENERATION FOR kNN
In the PSU, both the query and the index are built in vector
space model. Thus, the data owner first takes a security
parameter m (regarding to a m-bit Bloom filter), and outputs
the secret key for kNN computations (S,M1,M2), where
S is a m-dimensional binary vector and M1,M2 are
two m ∗ m invertible matrixes.

3) MOBILE USER REGISTRATION
CA would authenticate the mobile user’s identification and
then assign a set of attribute keys according to her role in
the system. Attributes of a mobile user would involve many
aspects, such as position, age, sex, department, name, and
so on. And for each of these attributes, it would include
two parts: attribute name and attribute value. That is, for
attribute ‘‘sex’’, the specific values could be ‘‘male’’ of
‘‘female’’. For a mobile user with an attribute set Atr
(e.g., John Snow,Male, Minister), CA first randomly chooses
r ∈ Zp, a version number vj ∈ Zp, and computes
A = g(ac−r)/b, B = g(α+r)/β . CA would send the version

100 VOLUME 6, NO. 1, MARCH 2018



Li et al.: Personalized Search Over Encrypted Data With Efficient and Secure Updates

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

number to TPA through a secure channel. Then, for each
attribute aj ∈ Atr , CA randomly selects rj ∈ Zp and computes
Sj = (grH (aj)rj )vj , Kj = (grj )vj . The attribute key for the
mobile user is {Atr,A,B, {(Sj,Kj)|aj ∈ Atr}} Finally, mobile
user would obtain the kNN key from the data owner and the
attribute key from CA.

B. BUILDING ENCRYPTED DATABASE
1) ENFORCING ACCESS CONTROL POLICY
OVER DOCUMENTS
In the PSU, each data owner keeps a large collection of doc-
uments, which should be encrypted before being outsourcing
to the cloud server. The data owner firstly chooses a secure
symmetric encryption method (e.g., AES-192). And for each
document, the data owner would choose a different key κ for
the symmetric encryption method. The encrypted form of the
document can be denoted as Encκ (d). Then, this symmetric
key could be encrypted using CP-ABE technique [17], where
the data owner could enforce the access control policy.

As shown in Section III, the data owner could define the
access policy as an access tree. In the PSU, we distinguish
the attribute value from the attribute name and only reveal
the attribute name to the cloud server. That is, for each
leaf node of the access tree, the cloud server only knows
the attribute name (e.g., sex) rather than a specific value
(e.g., male of female). Specifically, for each document, the
data owner defines the access tree T consisting of a set of
attribute Ts and chooses a secret r2 ∈ Zp. Then, by run-
ning the algorithm SecretShare(T , r2), the data owner would
obtain secret share values qx(0) for each leaf node x. Then,
the data owner chooses a version number vd and computes
Wx = gqx (0)vd and Dx = H (att(x))qx (0)vd for each leaf
node x, where att(x) denotes the associated attribute value of
the node. Then, the data owner selects two random numbers
r1 ∈ Zp to compute W = gcr1 , W0 = ga(r1+r2)gbr1 ,
W ′ = gbr2 , C = κe(g, g)αr2 and C1 = gβr2 . That is, the
authorization ciphertext Cph of the document is

Cph = {W ,W0,W ′,C,C1, {(Wx ,Dx)|att(x) ∈ Ts}}. (3)

2) ENCRYPTED INDEX CONSTRUCTION
The index for a document is a (m, k) Bloomfilter p, indicating
the keywords contained in it. Each item of the p is set to 0 at
first. For each document, the data owner would select some
keywords. And for a keyword ω, the data owner computes the
hi(ω) using k different hash functions from HB and sets the
value of the associated position in p as 1. Then, the data owner
randomly sets one position in p to 1. The data owner runs the
P = Enci(p) algorithm to encrypt the Bloom filter. Note that,
by introducing the Bloom filter, the PSU gets rid of the limits
of the pre-defined keyword dictionary presented in [14] and
could achieve a high security level since the meaning of each
item in the Bloom filter is not determined.

Finally, the data owner sends the Cph and P to the cloud
server.

C. TRAPDOOR GENERATION
To search over the encrypted data set and obtain the autho-
rized results, the mobile user needs to compute the trapdoor
including a search token and an encrypted query vector.

1) TOKEN GENERATION
The mobile user chooses s ∈ Zp to compute tk1 = (gagb)s,
tk2 = gcs and tk3 = As. Then, for each aj ∈ Atr , where Atr
represents the attribute set of her, the mobile user computes
S ′j = Ssj and K

′
j = K s

j . The search token tk of the mobile user
is as

tk = (tk1, tk2, tk3, {(S ′j ,K
′
j )|aj ∈ Atr}). (4)

2) QUERY GENERATION
The mobile user takes a keyword conjunction $ =

(ω1, ω2, · · ·ωl) with l keywords of interest. For each key-
word, the mobile user could specify a weight to express her
preference for different keywords. Specifically, she would
choose l different preference numbers {s1, s2 . . . sl} in an
increasing order from the pre-defined set S. Each keyword
would be given a preference number and the keyword with
more favor would be given a larger one. Then, the mobile
user initializes each item of an (m, k) Bloom filter q as 0. For
each keyword (e.g.,ωi ∈ $ ), themobile user computes hj(ωi)
using the k different hash functions from HB and increases
the value of the associated item in q by si. That is, if two hash
functions for different keywords collide, the value would be
the sum of the preference numbers, which is a little different
from the index constructionwhere the item of the index vector
is at least set to 1. This preference-based query generation
could not only enhance mobile users search experiences but
also increase the search accuracy which would be discussed
next. The mobile user runs the algorithm Q = Encq(q) to
compute the encrypted query vector Q.
Finally, the mobile user send the search token tk and the

encrypted query vector Q to the cloud server.

D. SEARCH
Upon receiving the trapdoor including the query Q and the
search token tk , the cloud server first uses the Q to match
with the index P of each document in its storage. By running
the algorithm Score = Comp(P,Q) = p · q, the cloud
server would obtain the relevance score for all the documents.
Instead of directly using the inner products to determine
the relevancy of the documents as presented in [15], the
PSU introduces the keyword preferences and designs a score
cleaning algorithm accordingly to significantly increase the
search accuracy. Specifically, given Score and the pre-defined
set S = {s1, s2, . . . sn}, where si > k

∑i−1
j=1 sj, for 2 ≤ i ≤ n,

the cloud server runs the Algorithm 1.
After the score cleaning, the cloud server would obtain the

more accurate relevance scores of the documents. Then, the
cloud server checks whether the mobile user could access to
these documents using the authorization ciphertext Cph and
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Algorithm 1 Score Cleaning
1: Input: S = {s1, s2, . . . sn} and Score

Output: Score′

2: Set Tn = Score and Score′ = 0
3: for j = n to 2 do
4: if Tj ≥ ksj then
5: Tj−1 = Tj mod ksj
6: Score′ = Score′ + ksj
7: else
8: while Tj ≥ sj do
9: Tj = Tj − sj
10: end while
11: end if
12: end for
13: if T1 == ks1 then
14: Score′ = Score′ + T1
15: end if
16: return Score′

search token. As discussed before, the Cph only reveals the
attribute name to the cloud server. Accordingly, the search
token would only also indicate the attribute name to the cloud
server. Thus, the cloud server first checks if there would be
a potential subset of the mobile user’s attributes that satis-
fies the access control policy defined in the Cph of these
retrieved documents. If not, the mobile user cannot access
to the document. If yes, the cloud server would check the
specific attribute values of the mobile user. For each leaf node
x and the search token S ′j ,K

′
j with the same attribute name,

the cloud server computes

Ex = e(S ′j ,Wx)/e(K ′j ,Dx)

=
e((grH (aj)rj )vjs, gqx (0)vd )
e((grj )vjs,H (att(x))qx (0)vd )

= e(g, g)rsvjvdqx (0) (5)

Then, for the non-leaf node x ′ with threshold value kx ′ , it first
computes Ez for all its child nodes z ∈ Cx ′ , whereCx ′ denotes
the set of child nodes of x ′. If the number of Ez is less than kx ′ ,
the algorithm halts and return ⊥. Otherwise, the cloud server
combines the values Ez to recover Ex ′ as follows.

Ex ′ =
∏
z∈Cx′

E
1d,C ′

x′
(0)

z , where

{
d = ind(z)
C ′x ′ = {ind(z) : z ∈ Cx ′}

=

∏
z∈Cx′

(e(g, g)rsvjvdqz(0))
1d,C ′

x′
(0)

=

∏
z∈Cx′

(e(g, g)rsvjvdqp(z)(d))
1d,C ′

x′
(0)

=

∏
z∈Cx′

(e(g, g)rsvjvdqq(x′)(d))
1d,C ′

x′
(0)

= e(g, g)rsvjvdqx′ (0) (using polynomial interpolation)

(6)

ind(z) represents the index number of node z. The polynomial
interpolation recovers the parent node’s value by defining the
coefficients of the polynomial and computing the qx(0). For
more details, we direct the readers to [17]. When the above
algorithm halts at the root node r of the access tree, the cloud
server recovers the Er = e(g, g)rsvjvd r2 .
Finally, it would send the values Er and the part of the

search token tk1, tk2, tk3 to TPA, and ask TPA to check the
validity of the documents and search token. The accuracy and
efficiency of the search phase would be discussed in details
in Section VI.

E. AUDITING
Upon receiving theEr and search token from the cloud server,
TPA checks if

e(W , tk1)(Er )1/(vjvd )e(tk3,W ′)

= e(gcr1 , (gagb)s)e(g, g)rsr2e(g(acs−rs)/b, gbr2 )

= e(g, g)acs(r1+r2)+bcsr1

= e(ga(r1+r2)gbr1 , gcs)

= e(W0, tk2) (7)

Equation 7 only holds when the attribute keys of the mobile
user and the ciphertext of the document are valid and the
attribute value of the mobile user satisfies the access control
policy embedded in the access tree. Then, TPA would send
the most relevant and authorized documents, the associated
ciphertext C , C1 and E ′r = E

1/(vjvd )
r of these documents to

the mobile user.

F. DECRYPTION
Upon receiving the encrypted documents and the associated
C,C1,E ′r , the mobile user computes

C
e(C1,B)/(E ′r )1/s

=
κe(g, g)αr2

e(gβr2 , g(α+r)/β )e(g, g)−rr2
= κ (8)

Then, the mobile user could use the key κ to further decrypt
corresponding encrypted documents.

G. EFFICIENT AND SECURE UPDATING
The PSU should support efficient and secure updating
operations, including attribute revocation, index updating and
document updating.

1) ATTRIBUTE REVOCATION
In the system, a mobile user’s role may dynamically change.
Thus, the set of her attributes may need to be altered accord-
ingly or the mobile user should be revoked from the system.
In that case, CA needs to re-assign the attribute keys to the
mobile user. First, CA regenerates a new version number v′j
for the mobile user and sends the (j, v′j) to TPA, where j is the
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id of the mobile user. Then, CA chooses a new random num-
ber r ′ for the mobile user and computes A′(ac−r

′)/b, B′(α+r
′)/β .

CA assigns a new set of attributes Atr ′ to the mobile user. And
for each attribute aj′ ∈ Atr ′, CA randomly selects r ′j ∈ Zp
and computes Sj′ = (grH (aj)

r ′j )v
′
j , Kj′ = (gr

′
j )v
′
j . Finally,

CA sends the new attribute keys {Atr ′,A′,B′, {(Sj′ ,Kj′ )|aj′ ∈
Atr ′}} to the mobile user and the previous attribute keys are
invalid since they contain the old version number vj. In the
Auditing phase, TPA would check the validity of the mobile
user’s attribute keys using the new version number v′j. And the
mobile user would not succeed in auditing if she manages to
submit the search tokens generated by the outdated attribute
keys.

2) INDEX UPDATING
The existing scheme [14] that adopts the vector space model
to construct the query and index vector, which requires a
pre-defined global dictionary of keywords. This pre-defined
dictionary could result in the limitation of dynamic updating
of the index, since the keywords of the system are determined
at the initial phase of the system. And it would bring much
additional computation and storage cost especially when
inserting a keyword that is not in the dictionary to the index.

In the PSU, to overcome the limitation, we adopt the
Bloom filter technique. When the index of a document needs
to be changed or some new keyword ω is introduced to the
system, the data owner only needs to compute the hi(ω) using
k different hash functions and set the associated item in the
index p′ to 1. Then, the data owner runs the P′ = Enci(p′)
algorithm to compute the encrypted index vector P′. This
enables a much more flexible and efficient way for the index
updating.

3) DOCUMENT UPDATING
The data owners need dynamically add or delete documents
on the cloud server. Meanwhile, the data owner would also
need to change the access control policy of the outsourced
documents sometimes. Moreover, the data owner needs to
ensure that the mobile user cannot obtain the documents that
are deleted or access to the documents with old access control
policy, i.e., enabling the backward security. In the PSU, this
could be easily achieved via the auditing of TPA.

When deleting one document, the data owner asks the
cloud server to delete it in its storage and then sends the
document id to TPA. TPA would add the id to the deletion
list. If the cloud server sends the deleted documents and its
authorization ciphertext to TPA, TPA would check the dele-
tion list and thus not do the decryption work for the mobile
user. And when adding a new document or changing the
access control policy of the exited document, the data owner
would choose a new symmetric key κ ′ to encrypt the docu-
ment. Then, the data owner defines the new access control
policy and builds the access tree accordingly. The data owner
chooses new random numbers r ′1 and r ′2, as well as a new
document version number v′d and computes the authorization
ciphertext as shown in Section IV-B1. Finally, the data owner

sends the encrypted document to the cloud server with the
new authorization ciphertext and the new document version
number to TPA.

V. SECURITY ANALYSIS
Within the system model presented in Section II, this section
provides the detailed security analysis on PSU based on the
security requirements as listed in Section II.

A. CONFIDENTIALITY
Since there would be multiple data owners in the PSU,
confidentiality should be well preserved by enforcing access
control policy over the documents. In the PSU, data owners
would first choose a symmetric key to encrypt the documents.
Specifically, the data owners could choose different keys
for each document or for a set of documents. Then, for the
documents with the same symmetric key, data owners would
define the access control policy and encrypt the symmet-
ric key using ABE technique. That is, only mobile users
with attribute keys that satisfy the access control policy of
the documents could obtain the symmetric key and further
decrypt the document. Moreover, the per-document index is
encrypted using the kNN key, the cloud server could not
deduce any additional information while performing search
operations. In addition, adopting Bloom filter to construct
the index rather than using a pre-defined dictionary would
make the index more indistinguishable for more the cloud
server. Thus, the confidentiality of documents and index is
well preserved in the PSU.

B. TRAPDOOR UNLINKABILITY
In the PSU, trapdoor consists of the encrypted query vector
and search token. When generating the query vector rep-
resented as a (m, k) Bloom filter, the mobile user would
compute k hash values using the k different hash functions
and set the corresponding position in the Bloom filter to a
specific preference number. Moreover, the mobile user could
set some dummy positions to the preference number while
not affecting the search accuracy. Thus, the two query vector
containing the same set of keywords could not be the same for
the different choices of the preference weights and dummy
positions. Then, the query vectors are encrypted using the
kNN key (S,M1,M2), which makes the encrypted query vec-
tor totally different. As for the search token, CAwould choose
a random number r to generate the attribute keys for each
mobile user, which makes the attribute keys with the same
attribute for different mobile users unlinkable. Moreover, the
mobile user would encrypt her attribute keys by randomly
choosing a secret s when generating the search token. That
is, search tokens for the same mobile user would be totally
different and unlinkable. Thus, the PSU could achieve the
trapdoor unlinkability.

C. FORWARD AND BACKWARD SECURITY
The PSU supports dynamic operations while preserving the
forward and backward security. As for the forward security,
the newly added document with the per-document index is
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encrypted before being outsourced to the cloud server.
As mentioned before, the data owner and the mobile user
could add some dummy numbers in the index or query vector,
which makes the encrypted form totally different. That is,
the generation functions for both index and query vector are
randomized rather than determined. Thus, the cloud server
could not deduce the specific keyword information in the
encrypted index and query vector and the forward security
is ensured.

On addressing the backward security problem, we adopt
the third-party auditor technique in the PSU. When comput-
ing the index for the document, the data owner would choose
a secret document version number vd for the document and
send it to TPA. If the content of the document or the access
control policy is changed, the data owner needs to re-compute
the authorization ciphertext with a new version number v′d .
Meanwhile, when generating the attribute keys for the mobile
user, CA would also choose a secret user version number
vj and send it to TPA. When some of the mobile user’s
attributes need to be changed, it requires CA to select a new
user version number v′j to generate the new set of attribute
keys. And TPA is responsible to check the behaviors of the
mobile user and server during the Auditing phase. When the
cloud server returns the deleted document or the document
with outdated access control policy to the mobile user, the
equation 7 would not hold since the document does not con-
tain the new version number v′d , which goes the same for the
situation when the mobile user tries to obtain the document
with outdated attribute keys. That is, the backward security
are well protected in the PSU.

D. COLLUSION RESISTANCE AND HIDDEN ACCESS
CONTROL POLICY
The mobile users are assumed to be dishonest in the PSU
and may intend to combine their search tokens to access
to the documents that they cannot access to individually.
However, when generating attribute keys, CA would choose
two random numbers r and vj for the mobile user. Thus,
if two mobile users tries to combine their search tokens, the
equation 7 would not establish in the Auditing phase. And
existing schemes, such as [11] and [16], require the data
owner to reveal the access control policy to the cloud server,
which may lead to the information leakage of the documents.
In the PSU, we separate the attribute values from the attribute
name. Specifically, the data owner only needs to reveal the
attribute name to the cloud server, e.g. ‘‘homeland’’. And
the specific value of this attribute may be ‘‘New York’’ or
‘‘Florida’’. Only the search token with correct attribute value
could decrypt the authorization ciphertext. This is reason-
able since revealing the attribute name would only leak little
information to the cloud server. Moreover, the generation
function for search token is randomized, which could prevent
the cloud server from deducing the access control policy
from the search tokens via dictionary attack. That is, the PSU
could achieve collusion resistance and partially hidden access
policy.

TABLE 1. Comparison of security level.

As shown in Table 1, we compare the security level among
the scheme [11], [15], [16] and the PSU. As we can see,
while [15] does not consider the search authorization
problem, the PSU achieves the highest security properties.

VI. PERFORMANCE EVALUATION
In this section, we conduct real-world experiments to show
the performance of the proposed PSU, and compare the PSU
with the existing schemes [11], [15], [16] from the aspects
of functionalities, computation and communication overhead,
respectively.

TABLE 2. Comparison of functionalities.

A. FUNCTIONALITIES
Table 2 summarizes the functionalities provided by
PSU, [11], [15], [16]. PSU supports multi-keyword per-
sonalized search and relevance-based result ranking, which
would significantly increase the search accuracy. In addition,
PSU enables search authorization and dynamic updates,
which are important functions for practical deployments.
Compared with PSU, most existing works as in Table 2 only
support partial functionalities as listed.

B. ACCURACY ANALYSIS
To support multi-keyword ranked search which has not been
addressed in [11] and [16], we introduce the vector space
model and Bloom filter in the PSU. In Wang’s scheme [15],
the authors use the inner products of the index and the query
vector constructed by Bloom filter as the relevance score.
Since the collision arises when the number of keywords
inserted to the index increases, the score may be ‘‘dirty’’
(obscure) and lead to a decline of the search accuracy
accordingly. For example, when there do not exist com-
mon keywords between the per-document index and query,
the cloud server may still return the irrelevant documents
according to the scores. In specific, the probability that any
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two different keywords collide for only one-bit in the (m, k)
Bloom filter is P1 = 1− (1− 1

m )
kn, where n is the number of

the keywords in the index. Therefore, P1 would significantly
increase when inserting many keywords to the index.
Moreover, since the mobile users typically select a few key-
words only for their search requests [22], the relevance scores
for the documents could be hard to distinguish [23] in this
scenario.

PSU fixes the issue by introducing preference weights
for different keywords to construct the Bloom filter, instead
of setting the item to 1. PUS is further equipped with a
score cleaning algorithm to eliminate the noise caused by the
Bloom filter. Therefore, in PSU, the relevance score would be
affected if and only if there exist k-collisions in the index and
query vector with the probability P2 = (1 − (1 − 1

m )
kn)k .

This increases the search accuracy compared with [16].
Meanwhile, the weights of the different keywords would lead
to a more personalized search results.

C. COMPUTATION OVERHEAD
In this subsection, we conduct real-world experiments to
evaluate the performance of the proposed PSU scheme from
the aspects of encrypted database setup, trapdoor generation,
search and updating, respectively. Specifically, we apply a
real data set from National Science Foundation Research
Awards Abstracts 1990-2003 [24], and select some docu-
ments and associated keywords. We conduct our experiments
on a laptop computer with Core i3 2.13GHz processor and
4 GB memory using C and JAVA code. Moreover, we run the
trapdoor generation phase on a real mobile phone (Huawei
Honor 6) with Hisilicon Kirin 920 processor and 3 GB
memory using JAVA code. For the implementation of the
bilinear map, we adopt the Java Pairing-Based Cryptography
Library (JPBC) [25]. For the (m, k) Bloom filter, we choose
m = 10000 and k = 10 and implement it using SHA-1 hash
function. And we use some notations here. In specific, we
denote Tg and Tgt as the time for an exponentiation operation
in G and GT , respectively, and Tp as the time for a paring
operation. And we denote the n as the number of attributes in
a authorization ciphertext and N as the number of attributes
in the system.

1) ENCRYPTED DATABASE SETUP
To build the encrypted database, the data owner needs to
compute the per-document index and authorization cipher-
text. For the index, the data owner selects some keywords
and computes k hash values using the hash functions fromHB
and sets the associated item in the m-bit Bloom filter p to 1.
Then, the data owner encrypts the p using the kNN technique.
For each per-document index, the data owner performs two
multiplications of a m ∗ m matrix and a m-dimension vector.
The computational complexity is O(m2). Thus, the time for
computing all the encrypted index is linear to the number of
documents in the data set.

For the computation of the authorization ciphertext Cph,
it would take the data owner approximately (2n+ 5)Tg + Tgt

FIGURE 2. Computation overhead for building the encrypted
database. (a) Time cost for generating the encrypted index for
different number of documents in the system with the same size
of Bloom filter, where m = 10000 and k = 10. (b) Time cost for
generating a per-document authorization ciphertext for different
number of attributes involved.

time for a single document. Compared with that in
Sun’s scheme [11], it would take the data owner approxi-
mately (N + 1)Tg + Tgt time. While time cost is linearly
increasing with the number of the attributes in the whole sys-
tem in Sun’s scheme [11], the PSU is much efficient since it is
mainly affected by the number of documents in a ciphertext.
And we run the real experiments to evaluate the execution
time as shown in Fig. 2. For each document, we randomly
select about 70 different keywords. And we set the access
control policy for each document as a combination of
AND gates. As we can see, time cost for building the
encrypted index is mainly affected by the number of docu-
ments in the data set and time cost for a authorization cipher-
text linearly increases with the number of attributes involved.
Note that, the data owner only needs to build the encrypted
database once and therefore the computation overhead is
acceptable for practical uses.

2) TRAPDOOR GENERATION
The trapdoor in the PSU includes the encrypted query vector
and the search token. To generate the query vector q, the
mobile user takes a keyword set of interest and insets them
into them-bit Bloom filter. Then, the mobile user encrypts the
q using kNN technique with the complexityO(m2). As for the
search token, the mobile user needs to choose a subset of her
attribute keys to satisfy the access control policy and compute
the search token accordingly. It would approximately take the
mobile user (2s + 4)Tg time, where s denotes the number of
attributes in the attribute subset. Compared with that in
Sun’s scheme [11], it would approximately take the user
(2N + 1)Tg, which is lineally increasing with the number of
the attributes in the whole system, the PSU is more efficient.

Moreover, we run experiments on a real smartphone.
Specifically, themobile user would select 10 keywords for the
search request. As shown in Fig. 3 (a), the execution of time
for computing the encrypted query vector is increasing with
the size of the Bloom filter when other parameters are set.
And the time cost for computing the search token is linearly
increasing with the number of attributes involved. As shown
in Fig. 3 (b). Note that, a larger size of the Bloom filter
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FIGURE 3. Computation overhead for trapdoor generation on a
real smartphone. (a) Time cost for generating the encrypted
query vector for different size of Bloom filter with the same of
keywords of interest. (b) Time cost for generating a search
token for different number of attributes involved.

would significantly decrease the collision rate but increase
the computation cost. Thus, there exists a trade-off between
efficiency and utility. And the access control policy may not
be that complex such that the number of attributes involved
could be reduced. That is, overall efficiency of the trapdoor
phase could be restricted in an acceptable level.

3) SEARCH
In the attribute-based keyword search scheme [11], [16],
searching over one single document would require many
time-consuming operations (e.g. paring and exponentiation).
In this case, time cost for searching over the whole database
could be unacceptable when there is a large number of docu-
ments on the cloud server, which makes it difficult for adopt-
ing the attribute-based keyword search for practical uses.

In PSU, by leveraging vector space model, the search
efficiency could be significantly improved. Specifically,
upon receiving the trapdoor, the cloud server first uses the
encrypted query vector Q to search over the encrypted index
and obtains the documents that are more relevant to the search
request. Then, the cloud server could ask TPA to determine
whether the mobile user could access to the documents using
the authorization ciphertext and search token, rather than per-
forming the attribute-based search over the whole database.
Moreover, when the relevance score of the documents is
under the specific threshold value, the cloud server stops the
authorizing operations since these documents are irrelevant
to the mobile user’s search request. To summarize, PSU is
much more efficient by avoiding unnecessary authorizing
operations.

The experimental results are shown to consolidate our
claim. For the search operation, we assume that the encrypted
index has been loaded in the memory to avoid time-
consuming I/O operations. As shown in Fig. 4(a), we can
see that although the time for calculating relevance score
is linearly increasing with the number of the documents in
the system, it is still a quite light-weight process compared
with the verification operation. Moreover, given the rele-
vance scores, PSU only requires the cloud server to perform
the verification operation over the more relevant documents
instead of the whole data set. Then, we compare the time cost

FIGURE 4. Computation overhead for calculating relevance
score and verification. (a) Search time for different number of
documents. (b) Time cost for verifying one single document
with the different number of attributes in a ciphertext.

for verifying one single document between PSU and
Sun’s scheme [11] by assuming that the number of attributes
in the system is five times of that in a ciphertext. As shown
in Fig. 4(b), although the time costs in both schemes are
linearly increasing, the increase rate of PSU is less than that
in Sun’s scheme.

4) UPDATING
By introducing TPA in PSU, the data owner could dynami-
cally update the documents and associated index efficiently
and securely. Specifically, the data owner only needs to
re-compute the encrypted document and index. Then, the
data owner asks TPA and the cloud server to update the cor-
responding information. Although PSU achieves almost the
same computation overhead for document and index updating
compared with [11] and [16], PSU obtains a higher security
level including forward and backward security as discussed
in Section V. For the attribute revocation problem, as it is
only considered in Sun’s [11], we would only compare PSU
with [11].

In [11], when one of the mobile user is revoked from the
system, the cloud server needs to update all the authorization
ciphertexts that are involved with the revoked attribute and
the attribute keys of the non-revoked mobile users who hold
the revoked attribute, resulting in (Nc + Ns)Tg time, where
Nc and Ns denote the number of these authorization cipher-
texts and mobile users, respectively. While in PSU, CA only
needs to re-compute a set of attribute keys for the revoked
mobile user with execution time (3s + 2)Tg, where s is the
number of the attributes a mobile user holds.

In the next experiment, we show the efficiency of PSU.
We assume that the number of attributes in the system is five
times of the number of attributes of a mobile user. As shown
in Fig. 5(a), we compare the time cost for the generation of
attribute keys between PSU and Sun’s scheme [11]. Since
time cost for key generation is linearly increasing with the
number of attributes of a mobile user in PSU rather than the
number of attributes in the system as that in Sun’s, we can see
that the increase rate of PSU is much less than that of Sun’s.
Then, we assume that a mobile user could hold at least
20 attributes and compare the time cost for attribute
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FIGURE 5. Computation overhead for attribute revocation.
(a) Time for generating the attribute keys for the different
number of attributes of a mobile user in PSU. (b) Comparison
for attribute revocation for the different number of mobile user
and authorization ciphertext involved.

revocation with [11] as shown in Fig. 5(b). We can see
that while the execution time is linearly increasing in
Sun’s scheme [11] with the number of authorization cipher-
texts (Nc) and the mobile users (Ns) involved, time cost for
attribute revocation is constant in the PSU.

D. COMMUNICATION OVERHEAD
Since the search authorization problem has not been con-
sidered in [15], we only compare the communication over-
head among PSU, [11], [16]. Once the system is setup,
the communication overhead is mainly determined by the
search and updates. As for the search operations, PSU sup-
ports multi-keyword personalized search and result ranking;
[11] and [16] supports single-keyword search or simple con-
junctive keyword search. Therefore, with more informative
keywords, the mobile user would obtain the results that are
more relevant to their search request in PSU. This accordingly
can significantly reduce the unnecessary Internet traffic by
only sending back the top documents rather than undiffer-
entiated results. As for the attribute revocation, PSU incurs
much less communication cost since it only requires to send
a new set of attribute keys to the revoked mobile user while
it requires to update the associated authorization ciphertexts
and attribute keys in Sun’s scheme [11].

VII. RELATED WORK
The Searchable Encryption (SE) has recently attracted keen
research efforts [26]–[30]. Song et al. [31] first propose
the concept of the searchable symmetric encryption (SSE),
which can support single keyword search. Curtmola et al. [32]
extends the work by giving the formal definitions of search-
able encryption and security model. The basic idea of [32]
is to introduce a keyword-based search index. However, the
construction of the index and search token is for deterministic
encryption and therefore reveals the search keywords to the
cloud server with strong background knowledge [14]. Based
on [32], subsequent works, such as [33] have been developed
to extend the searchable symmetric encryption to a dynamic
setting. However, these proposals still require deterministic
encryption method to construct the search token.

Li et al. [14] adopt the vector space model and design
a search scheme that supports multi-keyword search and

relevance-based result ranking. However, the proposed
scheme [14] requires a pre-defined dictionary for all the
keywords in the system, which limits the dynamic properties
of the SSE.Moreover, search authorization problem, which is
of great significance for multiple-contributors scenario, has
not been addressed in [14]. Later, Li et al. [34] propose an
authorized multi-keyword ranked search scheme that lever-
ages attribute-based encryption and vector space model to
provide the search users both good search experience and
search authorization. However, the proposed search scheme
in [34] still requires a pre-defined dictionary in the system
thus lacks in efficiency in dynamic updating. To solve the
problem of the pre-defined dictionary, Wang et al. [15] pro-
pose a multi-keyword search scheme that adopts the Bloom
filter [18] instead of a pre-defined dictionary in the proposal,
to construct the search index and trapdoor. The proposed
search scheme in [15], however, may reduce the accuracy
of the search results due to the false positive caused by the
Bloom filter.

Besides SSE, Boneh et al. [35] first propose the con-
cept of the searchable public-key encryption (SPE) and
design a search scheme based on the public key setting
that supports single keyword search. Attribute-based encryp-
tion (ABE) [17], [36] is a promising technique that could
provide fine-grained access control over the outsourced data.
Sun et al. [11] and Zheng et al. [16] leverage ABE with
SPE technique to achieve authorized keyword search, which
returns the results to the authorized users only. Sun et al. [11]
propose an attribute-based keyword search scheme with
fine-grained owner-enforced search authorization. The pro-
posal also supports user revocation by adopting the proxy
re-encryption technique. However, [11] may require per-
forming time-consuming operations over the entire data set
and could hardly guarantee the backward security when
the documents on the cloud server needs to be updated.
Zheng et al. [16] propose an attribute-based keyword search
over outsourced encrypted data. However, their scheme does
not support the dynamic operations.

VIII. CONCLUSION
In this paper, we have proposed a personalized search scheme
with efficient and secure updates in mobile clouds. We have
conducted extensive security analysis to demonstrate that
the proposed scheme could achieve confidentiality, trapdoor
unlinkability, forward and backward security, and collusion
resistance and hidden access policy. Using extensive exper-
iments, we have shown that our proposed scheme is more
efficient in terms of functionalities, computation and commu-
nication overhead compared with the existing schemes. For
the future work, we intend to further research on the dynamic
nature of the searchable encryption technique and test our
proposal in the real-world cloud platform.
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