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ABSTRACT Software reliability is one of the most important internal attributes of software systems. Over
the past three decades, many software reliability growth models have been proposed and discussed. Some
research has also shown that the fault detection and removal processes of software can be described and
modeled using an infinite-server queueing system. But, there is practically no company that can afford
unlimited resources to test and correct detected faults in the real world. Consequently, the number of
debuggers should be limited, not infinite. In this paper, we propose an extended finite-server-queueing (EFSQ)
model to analyze the fault removal process of the software system. Numerical examples based on real project
data are illustrated. Evaluation results show that our proposed EFSQ model has a fairly accurate prediction
capability of software reliability and also depict the real-life situation of software development activities
more faithfully. Finally, the applications of our proposed model to project management are also presented.
Our proposed model can provide a theoretically effective technique for managing the necessary activities of
testing and debugging in software project management.

INDEX TERMS Software testing and debugging, queueing theory, software reliability growth model
(SRGM), project management, non-homogeneous Poisson process (NHPP).

I. INTRODUCTION
Presently, software plays an important role in the life of
people, and people need reliable software. But developing
reliable software is not an easy thing since the software
development process has very high variance. There are a lot
of techniques to improve the reliability and availability of
software systems, such as the software rejuvenation, update
release, etc [1]. It is worth noting that rejuvenation works
when the software reliability decreases over time. Addition-
ally, software aging phenomenon should be non-negligible
Software aging is usually a consequence of software faults.
Consequently, the effects of software aging can be reduced or
improved if all detected faults are corrected perfectly before
releasing to the users.

Software reliability is the probability of failure-free
software operation for a specified period of time in a specified
environment, and it is one of the most important internal
attributes of software systems [2]. Over the past three
decades, many Software Reliability GrowthModels (SRGMs)
or some simulation approaches were proposed for software
reliability prediction and estimation [3], [4]. But most of

the previous research assumed that detected faults can be
immediately fixed. In actuality, this assumption may not be
realistic, since the time to remove detected fault(s) typi-
cally depends on the complety of the detected fault(s), the
knowledge, skills and practical experiences of the person-
nel, the size of the development team, the testing/debugging
technique(s) being used, and so on [5].
In the past, some research has also shown that queueing

theory (or the queueing model) can be used to describe
various activities in the software development life
cycle (SDLC) [6]–[20]. For instance, Balsamo et al. [7]
discussed and presented the application of queueing network
models with finite capacity queues and blocking as the perfor-
mance models of software architectures. Antoniol et al. [12]
once proposed a queueing theory-based approach to plan and
control project staffing in a distributed multiphase mainte-
nance process. Dohi et al. [19] also presented an interpre-
tation of traditional SRGMs by treating the software failure
occurrence process as an Infinite-Server-Queueing (ISQ).
It can be found that most of the previous research assumed

that the queueing model for describing software development
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activities is an Infinite Server Queueing Model. But there is
practically no company that can afford unlimited resources
to test and correct software faults in the real world. Conse-
quently, the assumption of the ISQ model has to be properly
modified. Based on our past studies [10], in this paper we
further propose an Extended Finite-Server-Queueing (EFSQ)
model to analyze the fault removal process of the software
system, and to estimate the software reliability. Experiments
will be performed based on two real project data, and exper-
imental results will be analyzed and discussed in detail. The
applications of the proposed model to project management
are also presented.

The remainder of this paper is organized as follows.
Section II gives a survey of describing software reliability
growth using ISQ models in the literature. In Section III,
we study and show how to derive an EFSQ model in excep-
tional detail. In Section IV, based on real software failure
data, experiments will be performed, performance evaluations
among some selected SRGMs are presented, and threats to
validity are also discussed. We further illustrate and show in
Section V how the prediction and analysis results can provide
useful information that can be instrumental to various man-
agement decisions and testing-resource allocations. Finally,
some conclusions are given in Section VI.

II. BACKGROUND AND RELATED WORKS
During the SDLC process, testing and debugging are different
processes. Testing is the process of finding faults in software,
but debugging is the process of fixing detected faults. Practi-
cally developers need some time to accurately determine the
root causes of reported faults. Thus, the time delayed by the
fault detection and correction processes should not be negli-
gible [5]. In the past, some research has shown that classical
SRGMs or ISQ models can be used to describe the activities
of fault detection and removal in the SDLC. For example,
Yamada et al. [4] proposed a delayed S-shaped model,
and the model was designed to capture the fault removal
phenomenon of software systems. Gokhale and Mullen [8]
also considered the effect of queueing system structures, pri-
ority levels and priority disciplines in differential mean times
to resolve defects of different severities. Additionally,
Kapur et al. [15] proposed a unified modeling approach of
applying the ISQ theory and defined fault removal lags as the
random variables.

It is worth noting that Inoue and Yamada [11] proposed
an ISQ model, considering the time distribution of the fault-
isolation process, based on a concept of classical delayed
S-shaped SRGM. They proposed and summarized the
relationships between the ISQ model and the existing
NHPP models as follows:

P{N (t) = n} =

[∫ t
0 F(t − x)d3(x)

]n
n!

× exp
[
−

∫ t

0
F(t − x)d3(x)

]
(1)

and

M (t) =
∫ t

0
F(t − x)d3(x) (2)

where N (t) denotes a counting process representing the
cumulative number of faults detected by the time t ,M (t) is the
expected cumulative number of faults isolated (or detected)
up to time t and is non-decreasing with respect to time t,
F(t) is the time distribution function of the fault-isolation
process and 3(t) is the expected cumulative number of
failures observed up to time t .
Huang et al. [10] also proposed and used the ISQ model

to predict software reliability under perfect and imperfect
debugging environments. They once defined the probability
that debuggers or developers will be available at time and
took it into the consideration when deriving the mathemat-
ical model of FSQ. They assumed that the probability is

P(c) =
c−1∑
h=0

(ϑhe−ϑ/h!) and (ϑhe−ϑ )/h! is a Poisson

distribution. Note that c is the number of debuggers, h is
number of faults in the correction, andϑ is a positive constant.
But all debuggers have practically identical capabilities, and
a debugger could be chosen at random if multiple debuggers
are available.

From above discussions, it can be found that most of the
published studies which usually assumed the queueing model
for describing fault detection and removal activities, is an
ISQ [6], [11], [15], [18], [19]. But there is practically no
company that can afford unlimited resources to test and
correct software faults in the real world. Consequently, the
assumption of the ISQ model has to be properly modified
and/or adjusted. In the following, an EFSQmodel is proposed
to analyze and discuss the processes of fault detection and
removal.

III. EXTENDED FINITE SERVER QUEUEING MODEL
A. MODEL DESCRIPTIONS
The proposed EFSQ model for describing the activities of
fault detection and correction is based on the following
assumptions [6], [10], [20]:

1) The fault detection process follows an NHPP.
2) The software is subject to failures at random times,

caused by the manifestation of remaining faults in the
system.

3) The mean number of faults detected in the time interval
(t , t + 1t] is proportional to the mean number of
remaining faults in the system. Further, all faults in
a program are mutually independent from the failure
detection point of view.

4) Fault detection activity continues while faults are being
removed, and fault correction action does not affect the
detection process.

5) The detected faults will be fixed by a finite number of
debuggers (denoted c) in a group. The detected faults
are placed in the queue according to a Poisson pro-
cess with rate λ. The correction time of fault for each
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debugger is exponentially distributed with the rate ofµ.
The queueing time and the correction time are mutually
independent.

6) Fault removal time is non-negligible so that the number
of removed faults may lag behind the total number of
detected faults.

Based on assumptions (1)–(6), we can see that the
EFSQ model is an M/M/c queue model [21]. Suppose that
an arbitrary software fault is found at time x; then the prob-
ability that the detected fault has been corrected by time t
is equal to G(t − x) and G(•) is the Cumulative Distri-
bution Function (CDF) of service (failure correction) time
[6], [10], [16], [20]. Under this condition, we let p be the
probability that a fault is detected at time x, and will be com-
pletely corrected in [x, t]. From total probability theorem, we
obtain [10]:

P {Time required for complete removal

≤ t − x ∩ fault detected at x}

= P {Time required for complete removal

≤ t − x| fault detected at x}P {fault detected at x}

The probability that a fault is detected at time x is given by

P{fault is detected at time x} =
m′d (x)

md (t)
, (3)

where md (t) is the cumulative number of detected faults at
time t and m′d (x) is the derivative of md (x) with respect to x.
In this case, we have [6], [10]:

p =
∫ t

0
P {Time required for complete removal

≤ t − x ∩ fault detected at x}

=

∫ t

0
P {Time required for complete removal

≤ t − x| fault detected at x}

×P {fault det ected at x} dx =
∫ t

0
G(t − x)

m′d (x)

md (t)
dx.

(4)

The probability that a fault is detected at time x, and is not
completely removed at time t is q = 1 − p. Thus, we will
have

P {Nr (t) = i} =
[md (t)p]i

i!
exp[−md (t)p], (5)

where Nr (t) denotes the counting process representing the
cumulative number of faults removed (or corrected) by the
time t . Because the expected number of faults removed at
time t and the number of faults that were detected but have
not been removed are independent of each other, the mean of
Nr (t) will be given by

mr (t) = md (t)× p. (6)

Thus, we have mr (t) =
∫ t
0 G(t − x)m

′
d (x)dx and the equation

can be written as [6], [10]:

mr (t) =
∫ t

0
g(t − x)md (x)dx. (7)

In actuality, when a fault is detected and placed in the
queue, the total time the fault stayed in the system is the
time it stayed in the queue plus the time needed for being
corrected and removed from the system. And if there are some
debuggers still available when a fault enters the queueing
system, the total time of a fault staying in the system is only
the correction time, because it does not have to wait in queue
for free debuggers. Thus, the probability that a fault has zero
queueing time is given by [21]:

Wq(0)=P{queueing time=0}=P{≤c−1 faults in system}

=

c−1∑
n=0

pn = 1−
rcp0

c!(1− ρ)
, (8)

where Pn is the probability that there are n faults in the
queue system and ρ is the average amount of faults coming
to each debugger per unit time (=λ/cµ). We can also obtain
the average length of queue Lq, that is, the average number of
faults waiting in the queue [21]:

Lq =
∞∑

n=c+1

(n− c)pn =
∞∑

n=c+1

(n− c)
rn

cn−c
p0 (9)

Applying Little’s formula on Eq. (9), we can get the average
time that a fault has to wait in the queue [20], [21]:

Wq = Lq/λ (10)

Here we separated the total time required by a fault into
two circumstances, namely, those faults having zero queue-
ing time with probability Wq(0), and those with the total
time being a queue delay plus the correction time with
probability 1 − Wq(0). For simplicity, we use Ttotal(t) to
represent the CDF of the total time:

Ttotal(t)= T1(t)+T2(t), (11)

T1(t)=P{queueing time =0}(CDF of correction timeTs),

(12)

and

T2(t)=P {queueing time > 0}

×
(
CDF of correction timeTs+queueing timeTq

)
.

(13)

Notice that the sum distribution of two independent random
variables Ts and Tq is the convolution of their individual
distributions [21]–[23].
It’s worth noting that Gokhale and Mullen [8] studied

that the service time of a detected fault for an engineer is
exponentially distributed, irrespective of the defect severity.
Kapur et al. [15] and Xie et al. [24] also reported that it is
more practical to use the exponential distribution for fault
removal times. Thus it is assumed that the CDF of correction
time Ts is identical to the exponential distribution with mean
1/µ according to assumption (5). The distribution of Tq has
a mean of 1/(cµ − λ) [21]. Let F(t) and G(t) be the CDF
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of correction time and queueing time, respectively. Thus we
have

F(t) = 1− exp[− µt] (14)

and

G(t) = 1− exp[− (cµ− λ)t] (15)

Here the Laplace transformwill be used to get the convolution
of F(t) and G(t). According to the convolution theorem
[21]–[23], we have

G∗(s) = L (F(t) ∗ G(t)) = L(F(t))× L(G(t)). (16)

That is, G∗(s) =
(

µ
s(s+µ)

) (
cµ−λ

s(s+cµ−λ)

)
. By the partial frac-

tion expansion, the above equation can be rewritten as:

G∗(s) =
(

c(1− ρ)
c(1− ρ)− 1

)(
µ

s(s+ µ)

)
−

(
1

c(1− ρ)− 1

)(
cµ− λ

s(s+ cµ− λ)

)
(17)

Then we have

(F ∗ G)(t) =
(

c(1−ρ)
c(1−ρ)− 1

)
(1−exp[−µt])

−

(
1

c(1−ρ)−1

)
(1−exp[−(cµ− λ)t]) . (18)

Substituting Eqs. (14), (15), and (18) into Eq. (11),
we obtain [21]:

Ttotal(t) = Wq(0)(1− exp[−µt])+
(
1−Wq(0)

)
×

{
c(1−ρ)

c(1−ρ)−1 (1− exp[−µt])− 1
c(1−ρ)−1

×(1− exp[−(cµ− λ)t])

}
=

c(1− ρ)−Wq(0)
c(1− ρ)− 1

(1− exp[−µt])

−
1−Wq(0)
c(1− ρ)− 1

(1− exp[−(cµ− λ)t]) (19)

Continuing from Eq. (4) we have

p =
∫ t

0
Ttotal(t − x)

m′d (x)

md (t)
dx. (20)

Let No(t) be the number of open remaining faults
(i.e., detected but not corrected faults) at time t , apply the
binomial theorem, and regard the n detections as independent
trials [6], [16]. In this case, we have

P {Nr (t)= i,No(t)=n− i|Nd (t) = n}=
n!

i!(n− i)!
piqn−i.

(21)

That is, P {Nr (t) = i,No(t) = n− i} = P
{
Nr (t) = i, No(t) =

n− i|Nd (t) = n
}
× P {Nd (t) = n}

=
[md (t)p]i

i!
exp[−md (t)p]

[md (t)q]n−i

(n− i)!
exp[−md (t)q]. (22)

Since No(t) and Nr (t) are independent of each other, by total
probability theorem [6], [10], we obtain

P {No(t) = n− i} =
[md (t)q]n−i

(n− i)!
exp [−md (t)q] . (23)

And further, from Eq. (6), we have

mr (t) = md (t)
∫ t

0
Ttotal(t − x)

m′d (x)

md (t)
dx

=

∫ t

0
Ttotal(t − x)m′d (x)dx. (24)

Similarly, the MVF of open-remaining faults mo(t) is

mo(t) =
∫ t

0
[1− Ttotal(t − x)]m′d (x)dx. (25)

B. RELATIONSHIP TO OTHER SRGMs
Here the relationship between the proposed EFSQ model and
other SRGMs will be presented and discussed. First, from
Eq. (20), Eq. (5) can be rewritten as

P{Nr (t) = i}

=

[∫ t
0 Ttotal(t−x)dmd (x)

]i
i!

exp
[
−

∫ t

0
Ttotal(t−x)dmd (x)

]
.

(26)

Thus we can determine the time-dependent behavior of the
fault removal process by utilizing Ttotal (t − x) and md (x).
It can also be found that some existing classical SRGMs can
be derived from Eq. (26) when the number of debuggers c
approaches infinity. For example, in Eq. (19), if c approaches
infinity, we will have [21]:

lim
c→∞

Ttotal(t) = lim
c→∞
{Wq(0) (1− exp[−µt])

+ [1−Wq(0)][
c(1− ρ)

c(1− ρ)− 1
(1− exp[−µt])

−
1

c(1− ρ)− 1
× (1− exp[−(cµ− λ)t])]}

= lim
c→∞

{
Wq(0)

}
lim
c→∞
{1− exp[−µt]}

+ lim
c→∞

{
1−Wq(0)

}
× lim

c→∞
{[

c(1− ρ)
c(1− ρ)− 1

(1− exp[−µt])

−
1

c(1− ρ)− 1
(1− exp[−(cµ− λ)t])]}.

(27)

In addition, it can be seen from Eq. (19) that Ttotal(t)
is composed of Wq (0) and 1 − Wq (0). According to the
definition of Wq (0), there would be no need to wait in line
when there are infinite debuggers available. Therefore, the
probability that a fault does not have to wait in the queue
is 1 when there are infinite debuggers [21]. Consequently,
we obtain lim

c→∞

(
Wq(0)

)
= 1. We can further calculate the
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distribution of total time a fault has spent in the queueing
system when c approaches infinity. That is,

lim
c→∞

Ttotal(t) = 1× (1− exp[−µt])+ 0

×

(
c(1− ρ)× (1− exp[−µt])

c(1− ρ)− 1

−
(1− exp[−(cµ− λ)t])

c(1− ρ)− 1

)
= 1− exp[−µt]. (28)

We can see that Eq. (28) is the distribution of the exponential
correction time [1]. When infinite debuggers are available,
a fault can be fixed whenever it enters the queueing system
and the only time it has to wait is the exponential correction
time until it’s fixed.

If the fault detection process is described by the Yamada
delayed S-shaped model [4]:

md (t) = a (1− (1+ bt) exp[−bt]) (29)

(where a is the expected number of total faults in the soft-
ware, and b is the fault detection rate), we can substitute
Eqs. (28) and (29) into Eq. (26), and the MVF of Eq. (26) can
be generalized as

mr (t) = a
(
1− (1− bt +

b2(bt − µt + 1)
(b− µ)2

) exp[−bt]

−
b2

(b− µ)2
exp[−µt]

)
. (30)

We can acquire the following equation, assuming that b = µ:

mr (t) = a (1− (1/2) exp[−bt](2+ bt(2+ bt))) (31)

On the other hand, if the detection process is described by the
Goel-Okumoto model [1], [4], that is,

md (t) = a(1− exp[−bt]). (32)

we substitute both Eq. (28) and Eq. (32) into Eq (26), and
obtain:

mr (t) = a (1− 1/(b− µ)) (b exp[−µt]− µ exp[−bt])

(33)

Note that if b = µ, Eq. (33) will become

mr (t) = a (1− (1+ µt) exp[−µt]) . (34)

And it is the classical Yamada delayed S-shaped SRGM [25].

IV. DATA ANALYSIS AND NUMERICAL EXAMPLE
A. DESCRIPTIONS OF DATA SETS
In this paper, we will validate the performance of the EFSQ
proposed model based on two data sets from real software
projects. The first data set (DS1) was from System T1
of the Rome Air Development Center project reported by
Musa [16], [26], and was collected weekly from each project
member. The system T1 was used for a real-time command
and control application and, the size of the software is approx-
imately 21,700 object instructions. It took twenty-one weeks
and nine programmers to complete the test. During the test
phase, about 25.3 CPU hours were consumed and 136 soft-
ware faults were removed. The second data set (DS2) was
from an US Air Force software system reported by Goel
and Yang in [6] and [27]. Over the course of 86 months,
4,538 faults were detected and 4,312 faults were corrected
eventually.
Table 1 illustrates the selected models for performance

comparison and the classification scheme. It is noted that the
selected MVFs of describing the fault detection process are
the Yamada delayed S-shaped (denoted DSS) model, and the
inflected S-shaped (denoted ISS)model [1], [4]. Additionally,
the MVFs of describing the fault removal process are the pro-
posed EFSQmodels (i.e., Eq. (24)) and the Yamada ISQmod-
els (i.e., Eq. (2)). Here the selected models will be divided
into two groups. The classification is mainly based on the
MVF we used in the phase of fault detection (i.e., md (t)).
Thus the DSS model, our proposed EFSQ model #1, and the
ISQ model #1 will be included in Group A. Group B is made
up of the ISS model, our proposed EFSQ model #2, and the
ISQ model #2.

B. COMPARISON CRITERIA
Kanoun et al. [28] reported that a model can be analyzed
according to its Retrodictive and Predictive capabilities. But
a model that performs well according to one criterion could
perform poorly according to another. In order to check the
performance of proposedmodel, make a fairly comprehensive
comparison with other models, and avoid bias, we use some
criteria as follows.
1) The Relative Error (RE) is defined by [16], [26], [29]:

RE =
m(ti)− mi

mi
, (35)

TABLE 1. Classification scheme of selected models.
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where mi is the actual number of detected or removed
faults by time ti, and m(ti) is the expected number of
faults by time ti estimated by amodel. Positive values of
error indicate overestimation; negative values of error
indicate underestimation.

2) The Mean Square Error (MSE) is used to judge
the Retrodictive ability and is typically defined
as [16], [29], [30]

MSE =
1

n− θ

n∑
i=1

(m(ti)− mi, )2 (36)

where n is the size of the selected data set and
θ is the degree of freedom. A smaller MSE indicates
a smaller fitting error, and better performance.

3) The Mean Absolute Error (MAE) is typically defined
as follows [31], [32]:

MAE =
1
n

n∑
i=1

|mi − m(ti)|. (37)

The MAE indicates the magnitude of the average
error and it is a linear score, which means that all
the individual differences are weighted equally in the
average.

4) The variance is a measure of how far a set of numbers
is spread out, and it is defined as [33]:√√√√ 1

n− 1

n∑
i=1

(mi − m(ti)− Bias)2

and

Bias =
n∑
i=1

m(ti)− mi
n

. (38)

The prediction Bias is the average of the prediction
errors.

5) The Coefficient of Determination (R2) is defined
as [16], [29]:

R2 = 1−

n∑
i=1

(m(ti)− mi)2

n∑
i=1

(mi − m̄)2

and

m̄ =

n∑
i=1

mi

mi
. (39)

R2 denotes the percentage of total variation about the
mean accounted for by the fitted curve. A larger value
indicates a better fit.

6) The Theil’s U Statistic (TS) is a well-known econo-
metrics inequality measure. In this paper, the Theil’s
U Statistics will be calculated and presented in both

of its specifications, which are labeled U1 and U2,
respectively [34]–[36]:

U1 =

√
n∑
i=1

(mi − m(ti))2√
n∑
i=1

m2
i +

√
n∑
i=1

m(ti)2

and

U2 =

√√√√√√√√
n−1∑
i=1

(
m(ti+1)−mi+1

mi

)2
n−1∑
i=1

(
mi+1−mi

mi

)2 (40)

A low value of Ul and U2 indicates a more accurate
predictive capability of the model.

7) The goodness-of-fit statistical test is commonly used
to determine whether the data from a sample comes
from a population with a specific distribution according
to a specific hypothesis [1], [4], [16], [29], [30], [37].
In the past, both the Kolmogorov-Smirnov (K-S) test
and theChi-Square (χ2) test have been widely used and
recommended for the goodness-of-fit testing and the
post-model application for software reliability growth
models. The χ2 test is typically defined by [4], [20]:

χ2
=

n∑
i=1

(mi − m(ti))2

m(ti)
. (41)

Notice that the null and the alternative hypotheses
are H: the data follow the specified distribution, and
H1: the data do not follow the specified distribution.
The hypothesis regarding the distributional form is
rejected at the chosen significance level α if the result
of (41) is greater than the critical value defined as
χ2
(1−α,n−1) with n− 1 degree of freedom. In this paper,

the χ2 test will be compared with the critical value for
the 80% significance level.Wewill use the arrow (↑,↓)
in the following experiments to indicate whether or not
the selected model fits the actual data.

8) The Kolmogorov-Distance (KD) is defined
as [4], [20], [37]:

DK = Supx |F
∗(x)− F(x)|, (42)

where k is the sample size F∗(x) is the normalized
observed cumulative distribution at the x-th time point,
and F(x) is the expected cumulative distribution at the
x-th time point, based on the model.

9) Prediction at level l. In a set of n software components,
let k be the number of components whose mean mag-
nitude of relative error is less than or equal to l. Then
PRED(l) is defined by [29], [30], [38]:

PRED(l) =
k
n
. (43)

PRED(l) measures the percentage of estimated values
that are within l% of their actual values.

VOLUME 5, NO. 4, DECEMBER 2017 545



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Huang and Kuo: Queueing-Theory-Based Models for Software Reliability Analysis and Management

TABLE 2. Performance of DSS and ISS models for the detected faults of DS1.

TABLE 3. Parameter estimates of selected models for the corrected faults of DS1.

TABLE 4. Comparison results for the corrected faults of DS1.

C. PERFORMANCE ANALYSIS AND DISCUSSION
In general, the Least Square Estimation (LSE) and theMaxi-
mum Likelihood Estimation (MLE) are used for the parameter
estimation of models [4], [16], [26], [27], [30]. It is noted that
sometimes MLE tends to be biased [16], or may lead one to
difficulties [39], but LSE can produce unbiased results [40].
Thus in this paper, LSE is mainly used to estimate the model
parameters for DS1 and DS2.

1) DS1
First, using the detected faults of DS1, we obtain a = 237.19
and b = 963 × 10−2 for the DSS model, and a = 154,
b = 0.35, and ψ = 173.0 for the ISS model. It is instructive
to examine the estimated value of the inflection factor (ψ)
for the ISS model in detail. According to the definition of the
ISS model, it can be found that ψ = (1 − ϕ)/ϕ and ϕ is the
inflection rate [4]. The inflection rate can be interpreted as the
ratio of the number of detectable faults to the total number of
faults in the program. Since the estimated value of ψ is 173,
thus we have ϕ = 0.57 × 10−2 for the fault detection data
of DS1, indicating that only a few faults were detectable at
the beginning and faults rapidly became detectable thereafter.
That is, the observed software reliability growth could be
equivalent to the S-shaped curve [1]. Consequently, the DSS
model and the ISS model are suitable candidate models for
this data set.

Table 2 lists the performance of the DSS and ISS models
for the detected faults of DS1 in terms of MSE, MAE,

TS-U1, TS-U2, R2, variance, and KD. It can be seen that
the DSS and ISS models fit the failure data of fault detection
better. Thus they can be used for the subsequent investigation
and modeling of the fault removal process. Table 3 shows the
estimated parameters of all selected models for the corrected
faults of DS1. As seen from Table 3, the estimated value of c
for the proposed EFSQ models #1 and #2 is 7.2 and 7.44,
respectively. Musa argued that available debuggers would
not always be fully employed during the failure-correction-
personnel-limited period due to the inequality in load among
the debuggers [16].
Table 4 gives the performance comparisons in terms of

MSE, MAE, KD, TS-U1, TS-U2, R2, χ2, and variance. We
can see from Table 4 that in Group A, the proposed EFSQ
model #1 gives the lowest MSE, MAE, KD, TS-U1, and
TS-U2 compared to the DSS model and the Yamada ISQ
model #1 for the corrected failure data of DS1. Moreover,
the proposed EFSQ model #1 provides the larger R2 value
compared with the DSS model.
On the other hand, we can also see from Table 4 that for

Group B, the proposed EFSQmodel #2 gives the lowestMSE,
MAE, KD, TS-U1, and TS-U2 compared to the ISS model
and the Yamada ISQ model #2. In addition, the R2 value of
the proposed EFSQ model #2 is also larger than that of the
ISS model in Group B. Note that Table 4 also shows the
RE values for all selected models. For example, for 100%
of the total corrected data (i.e., at the end of testing in the
21st week), from Eq. (24), i.e., the MVF of the proposed
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EFSQ model #2, we obtain mr (21)=134.55. Thus we can
compute the RE as (134.55 − 136)/136 = −0.01 from
Eq. (35). In other words, the proposed EFSQ model #2
underestimates by 1 percent at the end of testing. But it
also has to be noted that the ISS model underestimates by
4 percent, and the Yamada ISQ model #2 overestimates by
1 percent.

FIGURE 1. Pred(l) curves of the corrected faults (DS1).

Finally, Fig. 1 plots the PRED(l) curves (taken with respect
to different l levels) of all selected models. In actuality, the
plots of PRED(l) are useful tools for drawing conclusions
about the relative predictive capability of models [29], [30].
If one model is better than another model in terms of this
criterion, its PRED curve would lie on top of that for another
model. We can see from Fig. 1 that the PRED (0.25) val-
ues for the DSS model, the proposed EFSQ model #1, the
Yamada ISQ model #1, the ISS model, the proposed EFSQ
model #2, and the Yamada ISQ model #2 are 0.43, 0.43,
0.62, 0.29, 0.62, 0.43, respectively. Because there are totally
21-week tests in DS1 (i.e., the x axis), the number of estimates
that are within 25% of actual values are 9, 9, 13, 6, and 9,
respectively.

At l = 0.25, we can find that more than 60% of the
estimates from the proposed EFSQ model #2 are within 25%
of the actual values. The corresponding percentages for the
ISS model and the Yamada ISQ model #2 are 29% and 43%,
respectively. It is also interesting to note that the curves for the
DSS model and the Yamada ISQ model #2 cross at l = 0.25.
An examination of Fig. 1 suggests that the proposed EFSQ
model #2 performs well at different l levels. Overall, from
these figures, tables, and comparison criteria, the proposed
EFSQ model #2 gives a better fit to the DS1, and predicts
future behavior well.

2) DS2
Similarly, using the detected faults of DS2, we obtain
a = 14219.19 and b = 135 × 10−2 for the DSS model, and
a = 4610.05, b = 0.1, and ψ = 196.86 for the ISS model.
It is also noticed that the estimated value of the inflection
factor for the ISS model is 196.86. Thus the inflection rate
ϕ = 0.51×10−2, and this indicates an S-shaped growth curve.
Both the DSS model and the ISS model still are in the set of
candidate models. Table 5 shows the performance of the DSS
and ISS models for the detected faults of DS2 in terms of
MSE, MAE, TS-U1, TS-U2, R2, variance, and KD. It can be
seen that both the DSS and the ISS models provide a good fit
for the fault detection data of DS2, as illustrated in Table 5.
Thus they still will be used for describing the fault removal
process of DS2.
The estimated parameters of selected models for DS2

are presented in Table 6. As seen from Table 6, the
estimated number of debuggers for the proposed EFSQ
models #1 and #2 is 216.32 and 198.2, respectively. Note
that we may not be able to find out the actual number of
debuggers for DS2 from Yang’s past studies in [6] and [27].
But Yang [6] once reported that DS2 was collected from
an US Air Force software system, and the total amount of
testing time is 86 months [6]. There were 4,538 faults that
were detected and 4,312 faults that were corrected eventually.
It can be inferred that large-scale development teams were
responsible for software development and testing. Thus it

TABLE 5. Performance of DSS and ISS models for the detected faults of DS2.

TABLE 6. Parameter estimates of selected models for the corrected faults (DS2).
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TABLE 7. Comparison results for the corrected faults (DS2).

should be reasonable that there were nearly two hundred
developers for this software system.

Table 7 gives the results of model comparisons in terms of
MSE, MAE, KD, TS-U1, TS-U2, R2χ2, and variance. As for
the results presented in Table 7, the proposed EFSQmodel #1
gives the lowest TS-U1, TS-U2, and χ2 compared to the DSS
model and the Yamada ISQ model #1. As seen from Table 7,
the computed RE values are−0.09,−0.06,−0.06 for the DSS
model, the proposed EFSQmodel #1, and the Yamada ISQ #1
model, respectively. That is, for 100% of the detected faults
of DS2, both the proposed EFSQ model #1 and the Yamada
ISQ #1 model underestimate by 6 percent, but the DSS model
underestimates by 9 percent. Additionally, the RE values for
the ISSmodel, the proposed EFSQmodel #2, and the Yamada
ISQ model #2 are −0.03, −0.03, and −0.05, respectively.
We can also see that the proposed EFSQ model #2 gives

the lowest MAE, KD, χ2, TS-U1, and TS-U2 in Group B,
as shown in Table 7. Although the proposed EFSQ
models #1 and #2 don’t provide the smallest MSE in Groups
A and B, the difference is small. Additionally, the R2 and
PRED (0.25) values of the proposed EFSQ models #1 and #2
are larger than those of the ISS model, the DSS model and the
Yamada ISQ models #1 and #2. Finally, Fig. 2 also shows the
PRED(l) plots of all models. It can be found that the proposed
EFSQ model #2 performs well at different l levels. Over-
all, the proposed EFSQ model #2 performs reasonably well
on DS2.

FIGURE 2. Pred(l) curves of the corrected faults (DS2).

D. DISCUSSION OF VALIDITY CONSIDERATIONS
In this section, the threats to both internal and external validity
of this paper will be briefly discussed [2], [41]. There are
some factors that may be able to affect the internal validity.
First, the threats to the internal validity are the collection
process of software failure data we used. Additionally, this
could be a risk for the selected data sets that were incomplete
or partial, and therefore insufficient for quantitativemodeling.
In practice, user reported defects may not always be well
documented or testers could report faults informally (keeping
them out of the defect tracking system).
On the other hand, the threat to internal validity has also to

be concerned with the estimated values of model parameter.
In practice, a prediction model that works well for one data
may not guarantee to perform well for the other data. In order
to eliminate bias and control for this threat, other methods can
also be used for the parameter estimation of selected models.
Another threat to internal validity is the number of candi-
date models when comparing the predicted value to the real
value.
Finally, in order to minimize the threats to external validity

of the experiments, two failure data collected from different
projects were used. Note that DS1 has been widely cited by
many researches in the field of software reliability engineer-
ing. In principle, if we propose a newmodel, it should be com-
pared with other existing models. All models are needed to
apply to the same software failure data and the experimental
results should be provided to show whether the proposed new
model fits better than the other models or not. Thus the threats
to external validity should be minimal.

V. APPLICATIONS FOR SOFTWARE
PROJECT MANAGEMENT
In this section, we will show how to apply the proposed
EFSQ model to project management and control in soft-
ware development. Due to space limitations, here we only
select DS1 and the proposed EFSQ model #2 to illustrate
the suggested project management applications. Similar anal-
yses and discussions can be applied to the other models
or DS2.
First, we can see from Table 3 that the estimated fault

detection and correction rates of the proposed EFSQmodel #2
are λ = 6.82 faults/week and cµ = 6.94(= 7.44 × 0.933)
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TABLE 8. The statistical results of using various M/M/c models for DS1.

faults/week, respectively. Thus we have ρ = 0.98 and this
means that project managers nearly run out of the resources
of the software development team. Obviously, the original
scheduling would not be able to match the actual timing if
feature (or scope) creeps in or unexpected events happen, such
as if the developers were to leave, new developers were to be
added too frequently, etc. One of the mitigation strategies is
to delay the release schedule.

Musa et al. [16] once reported that it took 21 weeks and
nine programmers to test the system for DS1. It can also be
found that the number of detected faults is one after the test
of 20 weeks, and this number is relatively low. Consequently,
if we would like to extend the release deadline for DS1 to
26 weeks, i.e., a five-week deadline extension, the modi-
fied fault detection and correction rates can be computed by
λ′ = (6.82 × 21)/(21 + 5) = 5.51 faults/week and
µ′ = (6.94 × 21)/(21 + 5) =5.61 faults/ week [13], respec-
tively. But we still can find that the modified value of ρ is less
than 1 and all faults can be corrected by the time the software
is released. In this case, the maximum percentages of staff
resources can be reduced by 100 × (6.94 − 5.61)/6.94 =
19.16%. That is, if originally nine developers were planned
and were required to test the system, we can make some
reasonable adjustments on the personnel arrangement.

Finally, the statistical results of using various
M/M/cmodels for the corrected faults of DS1 are illustrated
in Table 8. For instance, from Eqs (9) and (10), we obtain

Lq =
∞∑

n=10
(n− 9)× 8.87n×(1.47 × 10-5)/(9n−9) = 64.6

faults and Wq = Lq/λ = 64.6/6.8 = 9.51 weeks if
there are nine developers. This indicates that an average of
64.6 faults was waiting in the queue, and the average time
required for a fault to stay in the queue was 9.5 weeks. Notice
that the mean response time that a detected fault spends in the
queue until it is fixed can also be calculated. It can be found
that both the average waiting time and the mean response
time get high when there are fewer debuggers. In such a
circumstance, even a minor change may lead to the instability
of the process. To avoid this, more resources are required and
have to be added to improve the response time. Since the
debugging process described in this paper is a finite queueing
system, we will be able to increase the overall debugging rate
by increasing personnel resources. Additionally, extending
the schedule may also be helpful when it comes to saving
personnel resources, but it may have no effect on shortening
the response time.

VI. CONCLUSION
The fault detection and removal processes play important
roles in software development and reliability assessment.
Most of classical SRGMs have assumed that the fault removal
time can be ignored. In actuality, this assumption may not
always be true since the developers indeed need time to
analyze the root causes of the failure and correct them later.
Although some studies have tried to take the fault correction
time into consideration and also showed that the debugging
can be described by the ISQmodel, there is no software devel-
oping team that owns infinite (personnel) resources in the
debugging process. In this paper, we thoroughly applied the
queueing theory to jointly investigate the fault removal pro-
cess, considering fault correction time and finite debugging
resources. We selected and utilized some classical SRGMs
as the candidate models to depict the processes of software
testing and debugging. We also showed and illustrated that
the ISQ model is a special case of the proposed EFSQ model.
Also note that the proposed EFSQ model can be reduced
to classical SRGMs under some circumstances Experiments
are performed based on real software failure data and the
experimental results demonstrate that the proposed
EFSQ models have a better goodness-of-fit and predict the
future behavior well.
Finally, we also presented how to use the proposed EFSQ

model from a project management perspective. In actuality
knowing the status of the average number of faults that are
waiting in the queue and the mean response time can greatly
assist developers in efficiently setting up a reasonable sched-
ule. Such information can also provide project management
with flexibility in resource allocation and handling unex-
pected events. Our proposed model and method provide an
effective foundation for managing the necessary activities of
software development, and can also be instrumental to various
management decisions.
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