IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Received 31 August 2014; revised 7 December 2014 and 18 January 2015; accepted 19 January 2015.
Date of publication 17 February 2015; date of current version 26 February 2016.

Digital Object Identifier 10.1109/TETC.2015.2400131

Secure and Anonymous Communication
Technique: Formal Model and Its
Prototype Implementation

KEITA EMURA', AKIRA KANAOKA?, SATOSHI OHTA'!, KAZUMASA OMOTE?,
AND TAKESHI TAKAHASHI', (Member, IEEE)

TNetwork Security Research Institute, National Institute of Information Communications Technology, Tokyo 184-8795 Japan
2Department of Information Science, Toho University, Chiba 274-8510, Japan
3Japan Advanced Institute of Science and Technology, Nomi 923-1211, Japan

CORRESPONDING AUTHOR: K. EMURA (k-emura @ nict.go.jp)

ABSTRACT Both anonymity and end-to-end encryption are recognized as important properties in
privacy-preserving communication. However, secure and anonymous communication protocol that requires
both anonymity and end-to-end encryption cannot be realized through a simple combination of current
anonymous communication protocols and public key infrastructure (PKI). Indeed, the current PKI contradicts
anonymity because the certificate for a user’s public key identifies the user. Moreover, we believe that
anonymous communication channels should have certain authentication mechanisms because such a channel
could incubate criminal communication. To cope with this issue, we propose a secure and anonymous
communication protocol by employing identity-based encryption for encrypting packets without sacrificing
anonymity, and group signature for anonymous user authentication. Communication occurs in the protocol
through proxy entities that conceal user IP addresses from service providers (SPs). We also introduce a proof-
of-concept implementation to demonstrate the protocol’s feasibility and analyze its performance. Finally,
we conclude that the protocol realizes secure and anonymous communications between users and SPs with
practical performance.

INDEX TERMS Anonymous communication, anonymous authentication, secure channel, identity-based

encryption, group signature.

l. INTRODUCTION

Anonymity! is an important aspect of privacy, and systems
that provide services to ensure user anonymity are currently
a topic of keen interest. Such systems can provide services
to users without revealing their identity. With regard to the
latter, a number of studies have been reported on [1], and
many of those studies use cryptography as the important
building block for constructing the systems; however, these
need further improvement before they can be used for actual
services.

A. RESEARCH BACKGROUND

Several cryptographic primitives that can provide anonymity
have been proposed. Among these is group signature [2],
which allows signers to prove anonymously the validity of
signatures. A group manager (GM) with a pair of a group

I This paper considers sender/prover anonymity and does not consider
recipient anonymity.

public key, gpk, and a master secret key, msk, issues a secret
signing key, sk;, to a user U; that computes a group signature,
o (on certain messages), using sk;. No user-dependent value
is required in the verification phase; a verifier verifies o
using only the corresponding gpk. However, these approaches
alone cannot guarantee anonymity when applied to online
communication. For instance, let a signer compute a group
signature and send it to a verifier. The verifier can anony-
mously verify the signature’s validity. However, there is a
question of how to send anonymously the group signature
to the verifier. Usually, a source IP address is included in
a packet that reveals the identity of the sender thus user
anonymity is already infringed. The situation remains the
same regardless of the primitives we implement provided that
direct communication between a sender (signer, prover, etc.)
and a receiver (verifier, etc.) is required.

User IP address is naturally visible in the IP packets sent
from the user, and it cannot simply be erased or forged to
allow bi-directional communication. One approach for this

2168-6750 © 2015 |IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.

88 See hitp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 4, NO. 1, MARCH 2016



Emura et al.: Secure and Anonymous Communication Technique

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

is to use intermediate agents that send packets on behalf
of the actual user terminal, and several such protocols have
already been proposed [1], including Tor [3]. Nevertheless,
another issue arises in the question of how to assure user
legitimacy. We need to discern between legitimate and
illegitimate users in order to restrict unauthorized access to
a particular channel. One might believe that only end-to-end
authentication is required, but it is difficult to authenticate
users without identifying them. For instance, a server needs
to send a response code to a user in basic authentication and
the user needs to return a user ID and password. That is, the
server needs to identify the user. Moreover, it seems difficult
to send a certain message from the server to a user because
the corresponding source IP address is generally required.
Authentication by an intermediate agent (as in Tor [3]) might
be a solution to these problems. The agent can authenticate
a user and can hide the user’s source IP address from the
server. Nonetheless, we still need to know how the server can
authenticate end users directly.

A simple approach to solve anonymous authentication
problems is simply to combine both cryptographic primitives
and anonymous communication protocols as follows.
Let a user compute an anonymously-authenticated token
(e.g., group signature), and send it to a server via an anony-
mous channel (e.g., using Tor). Then, the server can directly
authenticate the user without compromising anonymity.
However, another problem arises here: how to establish a
secure channel (i.e., flowed data is encrypted). If the server
utilizes a user public key (certified by a trusted Certificate
Authority (CA) in a public key infrastructure (PKI)), it can
identify the user because a certificate contains informa-
tion on the key holder. The same problem arises even if
symmetric key encryption is used. Assume that the server
attempts to exchange a secret key with an end user. Because
the server does not know the actual end user, it does not
know its user public key for executing a key exchange
protocol.

In summary, though both anonymity and end-to-end
encryption are recognized as important properties in
privacy-preserving communication, the current PKI contra-
dicts anonymity, and it is highly desirable to construct a
secure and anonymous communication protocol that achieves
anonymity and end-to-end encryption simultaneously.

B. OUR CONTRIBUTION
In this paper, we propose a secure and anonymous
communication protocol. The proposed protocol uses
identity-based encryption (IBE) to encrypt content without
identifying key holders.IBE can set arbitrary values on public
keys; thus, it can allow a user to select a temporary ID for each
session that the server can use as a public key. The protocol
also uses group signature for anonymous user authentication.
Communication in the protocol occurs through proxy entities
that conceal user IP addresses from service providers (SPs).
This paper provides a framework for the proposed protocol,
as well as a formal model and security definitions of the

VOLUME 4, NO. 1, MARCH 2016

proposed protocol in a cryptographic manner; moreover,
we prove that our system is secure in the cryptographic sense.
From the perspective of efficiency, we demonstrate the need-
lessness of the group signature’s open capability for our use,
and then propose an open-free variant of the Furukawa-Imai
group signature scheme [4]. This modification can reduce its
signature size by 50% compared to the original scheme. Note
that if someone needs to identify an illegitimate user, we can
add such a mechanism without relying on cryptographic
techniques; e.g., an IP address managed by proxy.

We demonstrate the feasibility and practicality of the
proposed protocol by introducing our proof-of-concept
implementation. The implementation uses the modified
group signature scheme aforementioned and the
Boneh-Franklin IBE scheme [5] for its underlying IBE
scheme. Such implementation also uses a protocol-specific
HTTP method in order to run the protocol over the Internet.
We compare its performance to SSL communication, and
conclude that the protocol realizes secure and anonymous
communication between users and SPs with practical perfor-
mance. Moreover, we show that the costs of cryptographic
operations of our protocol are not dominant when the
protocols are run over Tor networks.

As a remark, although communication among Tor routers
is encrypted, this is not an end-to-end encryption. More
precisely, a sender sequentially encrypts a content by using
public keys of Tor routers and a receiver, and therefore
the sender cannot encrypt the content without knowing the
receiver public key. This situation contradicts anonymity.
Whereas our protocol establishes end-to-end secure channels
and therefore, no Tor routers can reveal content information
in our protocol.

C. RELATED WORK

In general, the security of cryptographic primitives such as
public key encryption or digital signature has to be proven
mathematically. This provable security guarantees that no
adversary exists unless the underlying complexity assump-
tions are broken. Recently, even secure “systems’ that
employ cryptographic primitives as their building blocks are
required to be provably secure. Some examples are Transport
Layer Security (TLS) [6], Kerberos [7], Single Sign on [8]
and so on. Similarly to these systems, the security of our
system can be proven mathematically.

Similar attempts to our approach do exist.
Sudarsono et al. [9] considered an anonymous IEEE802.1X
authentication system using a group signature scheme. They
used group signatures as the client digital certificate.
However, the means for sending such certificates over
IP networks were outside the scope of the study.
Lee et al. [10] proposed an anonymous subscription service,
called Anon-pass. Their construction methodology is similar
to group signatures, wherein a user proves the possession
of signatures using zero-knowledge proofs. Though
Anon-pass does not consider end-to-end secure (encrypted)
communication, our protocol does.

89



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Emura et al.: Secure and Anonymous Communication Technique

Gilad and Herzberg [11] considered the distribution of
public keys using an anonymous service. They consider
two peers, a querier and a responder. The querier specifies a
random ephemeral public key that is not certified by the CA,
and sends a query that contains this public key to a respon-
der via an anonymous service such as Tor. The responder
replies with a message encrypted by the (anonymous) querier
ephemeral public key. However, a responder cannot verify
whether a public key is a valid key or a random value because
this scheme provides no certification of the public key; more-
over, the responder cannot even detect whether the public key
was replaced by an attacker. Furthermore, no anonymous user
authentication is considered in the Gilad-Herzberg system.
In our protocol, the SP can be convinced that a public key
(i.e., a temporary ID) will work because arbitrary values
can be public keys in IBE systems. In addition, because a
temporary ID is signed by group signature, we can prevent a
key replacement attack and achieve anonymous user
authentication, simultaneously.

Sankey and Wright [12] considered a privacy-preserving
next-generation Internet routing protocol called Dovetail that
provides anonymity against an active attacker located at any
single point within the network (incl. untrusted Internet SPs).
Moreover, they insisted that We do not protect the packet
contents, which reside in higher network layers and are thus
out of scope for this paper. Content should be protected end-
to-end using a protocol such as IKEv2, which protects sender
and receiver identities”, where IKEv2 means Internet Key
Exchange Protocol Version 2 [13]. However as mentioned
before, certification of a public key contradicts anonymity,
and an attacker can replace a public key if no certification is
used. Therefore, it is not clear whether Dovetail with IKEv2
provide both anonymity and a secure channel, and we insist
that these must be considered simultaneously.

Proxy re-encryption (PRE) (see [14]) is another candidate
for building secure channels without conflicting anonymity.
In our context, users first compute re-encryption keys using
their secret key and the SP public key, and the SP computes
ciphertext only using its public key. Then, the proxy can
re-encrypt ciphertext. However, the proxy needs to manage all
re-encryption keys, and therefore, it is difficult to assume that
no private information is infringed even if the proxy is cor-
rupted after communication. Moreover, there is a possibility
that other users might decrypt unexpected ciphertext because
the proxy manages many re-encryption keys (from the SP to
each user). Generating re-encryption keys that can be used
in an unexpected manner is undesirable, even if the proxy is
modeled as an honest-but-curious entity and always follows
protocol. In our protocol no unexpected user (including the
proxy) can decrypt ciphertexts because a unique temporary
ID is assigned to each user and each session. We note that
the key escrow problem occurs as an outcome of IBE, where
the key generation center (KGC) can decrypt all ciphertexts.
However, KGC is modeled as a trusted third party, whereas
it is difficult to fully trust all proxies involved in the
systems.

90

D. DIFFERENCES FROM PROCEEDINGS VERSION

In the proceedings version [15], we provided our
experimental results after running the proposed protocol
using Simpleproxy. In this paper, we extend the content by
adding our experimental results after running the proposed
protocol using the Tor network, and confirm that the costs of
the cryptographic operations of our protocol are not dominant
in this case. More details on the protocol and implementation,
as well as a discussion, are elaborated as well; we discuss the
revocation functionality of the underlying group signature,
and provide the security proofs of our protocol that were
omitted in the proceedings version. In addition, we discuss the
protocol’s compatibility and deployability over the Internet.

E. ORGANIZATION

The remainder of this paper is organized as follows:
In Section II, cryptographic tools are introduced; in par-
ticular, we introduce the Boneh-Franklin IBE scheme [5]
and provide our proposed open-free group signature scheme.
In Section III, we introduce the proposed protocol; we begin
with its framework, followed by its formal security defini-
tion (semantic security, anonymity, and unforgeability) in a
cryptographic manner, as well as its construction. We indicate
that the protocol uses IBE and group signature as underlying
cryptographic tools as well as the proxy module for anony-
mous communications, and show that the protocol is provably
secure within the scope of our definition. In Section IV, we
introduce our proof-of-concept implementation that instanti-
ates our protocol. We show that the protocol uses the crypto-
graphic tools and manages Internet communication through
a newly defined HTTP method and header. This section also
evaluates the efficiency of the proposed protocol when
Simpleproxy and Tor are used as the proxy module.
In Section V, we discusses compatibility and deployability of
the protocol, as well as alternative approaches to the secure
and anonymous communication protocol.

Il. CRYPTOGRAPHIC TOOLS

A. IDENTITY-BASED ENCRYPTION

In this section, we give the definition of IBE as follows.
An IBE scheme ZBE consists of four algorithms: i.e.,
(IBE.Setup, Extract, IBE.Enc, IBE.Dec). Let ZD and
M be an identity space and message space, respectively.

Definition 1 (Syntax of IBE [5]):

o IBE.Setup: This algorithm takes as input the security
parameter A, and outputs a public key params and a
master secret key msk.

o Extract: This algorithm takes as input params, msk, and
an identity ID € I'D, and outputs a decryption key dk;p.
This algorithm is supposed to be run by KGC.

o |IBE.ENc: This algorithm takes as input params, ID, and
a message M € M, and outputs a ciphertext Cipg.

o IBE.Dec: This algorithm takes as input params, Cigg,
and dkip, and outputs M.

We require the following correctness property: for all
(params, msk) < |IBE.Setup (1*), all ID and all M,

VOLUME 4, NO. 1, MARCH 2016



Emura et al.: Secure and Anonymous Communication Technique

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Pr[IBE.Dec (params, IBE.Enc (params, ID, M),
Extract(params, msk, ID)) = M] = 1 holds.

We require semantic security (i.e., indistinguishability of
ciphertexts under an adaptive chosen-identity and chosen-
plaintext attack (IND-ID-CPA)) which is defined as follows:

Definition 2 (IND-ID-CPA):

1) The challengerC runs (params, msk) < IBE.Setup(1%),
and gives params to an adversary A.

2) A is allowed to issue extract queries ID. C runs
dkip < Extract(params, msk, ID), and returns dkjp
to A.

3) A sends two messages My and M1, and the challenge
identity ID*, where no extract query for ID* has
been issued. C flips a coin b € {0,1}, computes
Clsr < |BE.Enc(params, ID*, My), and returns Cjyp
to A.

4) A is allowed to issue extract queries ID # ID*. C runs
dkip < Extract(params, msk, ID), and returns dkjp
to A.

5) Finally, A outputs a bit b'.

We say that an IBE scheme is IND-ID-CPA secure if
|Pr[b = b'] — 1/2| is negligible against the security
parameter A.

Next, we introduce the Boneh-Franklin IBE scheme [5] as
follows. This scheme is IND-ID-CPA secure under the
bilinear Diffie-Hellman assumption in the random oracle
model. Let ZD and M be an identity space and message
space, respectively.

Proposition 1 (Boneh-Franklin IBE [5]):

o IBE.Setup: Let (G, Gy, Gr) be a bilinear group with

prime order p, where (g1) = Gi, (g2) = Ga, and
e : Gy x Gy — Gr be a bilinear map.2 Choose
o <$— Zy and compute Ppyy = gf. Output params =
(G1,Ga,Gr, e, 81,82, Ppuv, H1, Hy) and msk = «a,
where Hy : ID — Gy and Hy : Gy — M are hash
Sfunctions modeled as random oracles.

o Extract: For ID € ID, compute H\(ID)* € G, and
output a decryption key dkjp = H1(ID)*.

e IBE.Enc: For M € M, choose r & Zp, compute
Ci = g and Co = M & Hy(e(Ppup, H1(ID))"), and
output Cipg = (Cy, C2).

o IBE.Dec: Output M = Cy, @ Hy(e(Cy,dkp)).
Note that e(Ppu, Hi(ID)Y = e(g%, Hi(ID)) =
e(gy, Hi(ID)*) = e(Cy, dkip) holds.

B. GROUP SIGNATURE WITH OPEN-FREE VARIANT
The proposed secure and anonymous communication
protocol uses a group signature scheme as its fundamental
component. The conventional group signature realizes the
open functionality, where an authority called opener can
identify who the actual signer is. Since the Proxy module
manages source IP address in our protocol, we can regard
2We require bilinearity: for all a,b € Z, e(g,85) = e(g1.82)% =
e(g}l’ , g%), and non-degeneracy: e(g1, §2) # Gy where 1, is the identity

element in G7.

VOLUME 4, NO. 1, MARCH 2016

the Proxy as an opener if the open functionality is
realized. Though arbitrary group signature schemes could be
used (i.e., by ignoring open functionality), it is beneficial to
remove unnecessary functionality and improve performance
efficiency. In this section, we newly give definitions of group
signature with its open-free variant which we call open-free
group signature.’

First, we give the syntax of group signature with its
open-free variant. An open-free group signature scheme
GS consists of four algorithms: (GS.Setup, Join, Sign,
Verify) as follows:

Definition 3 (Syntax of Open-Free Group Signature):

o GS.Setup: This algorithm takes as input the security
parameter A, and outputs a group public key gpk and an
issuer key ik. This algorithm is supposed to be run by
GM.

o GS.Join: This algorithm takes as input gpk and ik (from
GM), and a user is obtained a signing key sk.

o Sign: This algorithm takes as input gpk, a signing key
sk, and a message M, and outputs a group signature o.

o Verify: This algorithm takes as input gpk, o, and M, and
outputs 1 if o is a valid signature on M, and 0 otherwise.

Note that we do not have to assume that the user has a
secret key as a input of the GS.Join algorithm due to the
open-free property.

We require the following correctness property: for all
(gpk, ik) < GS.Setup(1*) and sk < GS.Join(gpk, ik),
Pr[Verify(gpk, Sign(gpk, sk, M), M) = 1] = 1 holds.

Next, we redefine the security definitions of the
Furukawa-Imai group signature scheme, i.e., anonymity,
traceability, and non-frameability, to match the open-free
variant. Anonymity guarantees that no adversary A can
distinguish whether two signers of group signatures are the
same or not, even if .4 has the corresponding signing keys.
Usually, there are two kind of anonymity, CPA-anonymity
and CCA-anonymity. In CCA-anonymity, A is allowed to
issue open queries, where A sends (o, M), and is given the
result of the Open algorithm. Meanwhile, we do not have to
consider these differences due to the open-free property.

Definition 4 (Anonymity):

1) Anadversary Awith the security parameter ). sends gpk,
sko, sk, and M to the challenger C.

2) C chooses b <$— {0, 1}, computes o* <« Sign(gpk,
skp, M), and sends o* to A.
3) A outputs a bit b’ € {0, 1}.
An open-free group signature GS is said to have anonymity if
Advg{‘;'}l(k) := | Pr[b = b'] — 1/2| is negligible in .
Next, we redefine traceability. In usual definition,
traceability guarantees that no adversary A can produce

3This new primitive is a kind of dynamic group signature, where a new
member can join the system even after the setup phase. We note that,
additional two algorithms, Open and Judge, are usually contained in
dynamic group signatures (see [16]). The Open algorithm identifies the
actual signer by using the GM’s secret key. The Judge algorithm checks
a proof output by the Open algorithm, whether the Open algorithm is
correctly executed or not. Obviously, the Judge algorithm is meaningless
in the open-free variant.

91



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Emura et al.: Secure and Anonymous Communication Technique

a valid-but-untraceable group signature, that is, the Open
algorithm cannot identify the corresponding signer though
the Verify algorithm outputs 1. However, in the open-free
variant, this definition is meaningless. So, we define unforge-
ability here instead of traceability, where no adversary .4 can
produce a valid group signature without knowing a
signing key.

Definition 5 (Unforgeability):

1) The challenger C runs (gpk, ik) < GS.Setup(1*), and
gives gpk to an adversary A.

2) A is allowed to issue the signing query (i, M). If a
user U; has not been joined to the system, then C runs
the GS.Join algorithm, computes sk;, and returns
o < Sign(gpk, sk;, M) to A. If U; has been joined to
the system, then C returns o < Sign(gpk, sk;, M) to A.
Moreover, C appends (o, M) into the list S.

3) Finally, A outputs (c*, M*). We say that A wins if
Verify(gpk, o*, M*) = 1 holds and (c*, M*) ¢ S.

An open-free group signature GS is said to have unforgeabil-
ity if Advgls 4 (1) := Pr[A wins] is negligible in 1.

Finally, we revisit non-frameability. Non-frameability
guarantees that no adversary .4 can produce a valid group
signature whose open result is an honest (i.e., uncorrupted
by A) user (say U). Obviously, this definition is meaningless
in the open-free variant, and therefore we do not consider
non-frameability.

We remark that in order to achieve non-frameability in
conventional group signature schemes, a user chooses a secret
key usk, and is obtained its signing key sk by executing the
GS.Join algorithm with GM. What is critical, GM cannot
know usk itself (but can convince that the user knows usk
by using zero-knowledge proofs). In other words, we can
remove a secret key usk from the syntax of group signature
unless non-frameability is required. This is the reason why
we do not require any secret key of users as input of the
GS.Join algorithm, and the GS.Join algorithm can be
a non-interactive algorithm.

1) BUILDING OPEN-FREE GROUP SIGNATURE

Our group signature scheme modifies the Furukawa-Imai
group signature [4]. In the Furukawa-Imai scheme, a user
certificate issued by the GM is a short signature [17].
The user proves the possession of the certificate by
non-interactive zero-knowledge (NIZK) proofs which are
constructed via the Fiat-Shamir conversion [18]. For imple-
menting the Open algorithm, an ElGamal-type dou-
ble encryption is used over a decisional Diffie-Hellman
(DDH)-hard group (in addition to bilinear groups). In our
open-free scheme, the DDH-hard group can be removed.
Other part is the same as that of the original Furukawa-Imai
group signature scheme.

Note that, a simple construction, where for one signature
verification/signing key pair (VK, SK), each group member
shares SK, can also be seen as an open-free group signature
scheme. However, this simple construction never realizes the
revocation functionality [19]. Here, we newly construct an

92

open-free group signature scheme, and discuss the revocation
functionality of our open-free Furukawa-Imai group
signature scheme later.
Construction 1 (Proposed Open-Free Group Signature):
o GS.Setup: Let (G1, Gy, Gr) be a bilinear group with
prime order p, where (g1) = Gy, (g2) = Gy, and

e : G| x Gy — G be abilinear map. Choose y < Z,,

and h <$— Gy, and compute W = g}zl. Output
grk = (G1, G2, Gr, e, 81,82, h, W, e(g1, 82), e(g1, W),
e(h, W), e(h, g2), H3) and ik = y, where
H3: {0, 1}* — Z, is a hash function modeled as a
random oracle.

o GS.Join: For a user U;, choose x; . 1Zp \ {—y} and

vi 3. Zp, compute A; = (g1h™)7*%, and output
ski = (xi, yi, Ai). )
e Sign: Let sk = (x,y,A). Choose 8 < Z,, set

8§ = Bx —y, and compute T = AhP. Choose ry, rs,
g <$— Z,, and compute R = e(h, g2)"%e(h, W)'#/
e(T,g)>, ¢ = H3(gpk,T,R,M), sy = ry + cx,
ss = 15 + b, and sg = rg + cB, and output
o =(T,c, sy, ss,Sp).

o Verify: Compute

e(h, g2)%e(h, W)  e(T, W)

R = ( )
e(T, g2)* e(g1, g2)
and output 1 if ¢ = Hs(gpk,T,R', M) holds, and 0
otherwise.

Compared to the original Furukawa-Imai scheme, we can
reduce three DDH-hard group elements and three
Zy, elements. Accordingly, we can reduce the size of signa-
ture by 50% compared to the original Furukawa-Imai group
signature scheme.

Note that e(A, g;W) = e(g1,g2)e(h, g2)™” holds
if (x, y, A) is a valid certificate. From this equation,

e(T, W)  e(h, g2)P*Ve(h, W)P
e(g1. 82) e(T, g2)"
holds for T = AhP . Therefore,
e(h, g2)*e(h, W)*¢
e(Tv gZ)S"
_e(h, g2)e(h, W)

e(T, g2)"x
e(T, W) )
e(gi, 82)

e(h, g2)P*Ve(h, W)P
e(T, g2)*

<

(
=R(

holds.

2) REVOCATION

We can additionally consider the revocation function [19].
Actually, the revocation function is indispensable in
practice, e.g., any group-oriented cryptographic primitives
need revocation since a legitimate user may leave the system
or the secret key may be leaked. However, in the anonymous
environment how to realize revocation function is not trivial,

VOLUME 4, NO. 1, MARCH 2016



Emura et al.: Secure and Anonymous Communication Technique

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

since no verifier can know whether a signer is a revoked
member or not.

Currently, the following revocation methodologies have
been proposed. Let r be the number of revoked users and N be
the number of users.

1) A signer and the GM update a signing key and gpk,
respectively, using the revocation list RL. Then, the
signing key update cost is O(r), see [4], whereas the
verification cost is O(1).

2) Though the verification cost is O(r), the signing cost is
O(1) and no signer is involved in the revocation
procedure (verifier-local revocation (VLR)),
see [20], [21].

3) Though signing/verification costs are constant, the size
of gpk is O(v/N) [22] or the size of RL is O(N) [23].

4) All costs are asymptotically quite efficient
(less than O(logN)), but the real costs are
inefficient [19], [24], [25]. For example, a group
signature contains almost 100 group elements.

For the open-free group signature scheme, we applied the first
revocation methodology as follows. Let a user whose signing
key is sk = (A}, x},y)) be revoked. Then, the GM updates
g1 <« gl A" and h < h”"/ and publishes (31, &, (xj, y;)) as
the revocation list RL of the current revocation epoch.
We denote it sk; € RL. Then, any user whose signing
key is (A,,x,,yl) where l # Jj (and thus x; # x;) can

compute A = (glh y’)”‘t for the new (g1, h) such that
((A /gl)hy’)‘ X' since

(Ai/§1)fzyf _ ((g1h yt)y+xl /g )hyﬂ
A —yi(—x;) Xj—xj
_ gi)’+x1)(y+x h(}/+xl)(y+t) _ (glh y,) =
hold. If multiple numbers of wusers are revoked

simultaneously, then this procedure is sequentially run.

C. SECURITY PROOFS OF OUR GROUP SIGNATURE

The remaining part is to show that the proposed open-free
group signature scheme is anonymous and unforgeable. The
proposed open-free group signature scheme is constructed
from an (honest-verifier) zero-knowledge proof of knowl-
edge by using the Fiat-Shamir conversion [18]. First, we
explain the original proof of knowledge protocol as
follows. A prover computes (T, R), and sends it to a verifier.
The verifier sends a challenge value ¢ to the prover. The
prover computes (s, S5, Sg), and sends it to the verifier.
The verifier checks Whether the verification equation

e(h,g2) 8 e(h,W)’B 1 e(T,W)
R = 8o ( e gz)) holds or not. Next, we show

that this 3-move protocol is zero-knowledge (this immedi-

ately leads to anonymity). The simulator chooses A <$— G
and B <$— Zy, and computes T = Ag’f . Note that 8 is chosen
uniformly random. Therefore, T generated from the simulator
is drawn from a distribution that is indistinguishable from
the distribution output by any particular prover. For T € G,

VOLUME 4, NO. 1, MARCH 2016

. $
the simulator chooses c, sx,s,g,sf; <~ Z,, and computes

R = ¢ i%;agsl;qfv L (e‘((ng ?/2))) . Then the transcript (7', R, c,
Sx, 85, sg) here is indistinguishable from transcripts of the
actual protocol.

Next, we show that the protocol is a proof of knowledge.
That is, we show there exists an extractor that can extract a
SDH pair from (T, R, c, s, 85, 5g) and (T, R, , s, 5§, sjg),
where ¢ # ¢ and both transcripts satisfy the verification

equation. Set ¥ = 2—F § = (5x—8:)(5p (iﬂ)c )(;s 35)("*0)’
i T W) _ elhg) Teth W)
and 8 = » gD = T 52 holds.

Therefore, for A = T/hP, e(A, & W) = e(g1, g2)e(h, g2)~F
holds. That is, (x, y, A) can be extracted. Briefly, by the above
extractor and the Forking Lemma [26], the simulator rewinds
the adversary, obtains two forged signatures, and can extract
a SDH pair from forged signatures. This immediately leads
to unforgeability.

lll. SECURE AND ANONYMOUS

COMMUNICATION PROTOCOL

This section proposes a secure and anonymous
communication protocol. First, the section describes the
protocol framework as an overview of the system. Then, the
section defines the protocol syntax and provides its construc-
tion. We consider a scenario in which an SP is modeled as a
server that provides service only to legitimate users. That is,
we can assume that the GM has authenticated a user before
issuing a signing key, and the SP can determine whether the
user that can generate a valid group signature is legitimate.

GM KGC

(Before Session Start) a signing key of group signature
(Before No.10 Procedure Start) a decryption key of IBE
corresponding to TemplID

3. g and TempID 5. 0 and TempID
User Proxy SP

9. IBE ciphertext 8. IBE ciphertext

1. Choose TempID 4. Add TemplD and
2. Compute ¢ on TempID Adr, to a table
10. Decrypt IBE ciphertext (Remove them from
and obtain the content the table when the
session is closed)

6. Verify o

7. Encrypt a content
using TemplD as
public key of IBE

FIGURE 1. Framework of the proposed protocol.

A. FRAMEWORK

In this section, we describe our protocol framework. Figure 1
depicts the framework of the proposed protocol, which has
five roles; User, Proxy, SP, GM, and KGC. A User wants to
communicate with an SP without revealing its identity. Here,
we assume that users will never lie about their IP address.
The Proxy assists communication between the User and
SP by relaying packets without revealing the User IP address.
We assume that the SP is honest-but-curious. The SP provides
services to the User, but wants to authenticate it. The SP
is not interested in the identity of the User but needs to

93



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Emura et al.: Secure and Anonymous Communication Technique

confirm whether the User is legitimate. The GM manages
a group key and issuer key, and issues a signing key to the
User to be used for generating an anonymously-authenticated
token. We assume that the GM suitably authenticates the
User before issuing the signing key. The KGC generates
a decryption key for the User. We assume that the KGC
suitably authenticates the User before issuing the
decryption key.

These roles need to collaborate mutually in order to
realize the proposed secure anonymous authentication. Their
interaction sequence is as follows. (1) A User (whose
IP address is Adrsyc) chooses a temporary ID TempID,
(2) the User computes a group signature o on TempID, and
(3) the User sends (o, TempID) to the Proxy. (4) The Proxy
associates Adrg,. with this temporary ID, and (5) forwards
(0, TempID) to the SP. (6) The SP can directly authenticate
the users by verifying the group signature without compro-
mising anonymous communication. (7) If the user is success-
fully verified, the SP encrypts content using TempID as the
public key of IBE; otherwise, it returns L. Here, we apply
an IBE property to establish a secure channel between the
SP and an anonymous user, where arbitrary values can be
a public key, and a ciphertext can be independently com-
puted with the generation of the corresponding decryption
key.* (8) The SP sends this IBE ciphertext to the Proxy, which
again (9) forwards it to the corresponding user. (10) Finally,
the User decrypts the IBE ciphertext using the corresponding
decryption key issued by the KGC. After relaying (mutual)
communication, the Proxy immediately deletes the corre-
sponding pair of (TempID, Adrs,c). Therefore, no private
information is infringed even if the Proxy is corrupted after
communication. We note that Figure 1 explains one-pass
communication. The Proxy can reuse the pair information
(TempID, Adrsyc) of a session provided that the session is
current, but it removes the information from its registry once
the session is closed. In either case, the proxy immediately
deletes the corresponding pair (TempID, Adrsy ) after the
session. Moreover, we can easily extend one-proxy setting to
multi-proxy setting because the Proxy has to do is (1) manage
(TempID, Adrsyc), and (2) forwarding (o, TempID) to the
next proxy. Our framework focuses on encrypted commu-
nication from the SP to users. Furthermore, the framework
can easily be extended to interactive secure communica-
tion because SP is not anonymous to users, and thus, each
user can simply use the SP public key to build a secure
channel.

We state that our framework achieves sending a token
anonymously, and that it is not an authentication protocol in
the strict sense. However, we can construct an authentication
protocol via the classical challenge-and-response methodol-
ogy: an SP sends a random nonce to a User (via the Proxy)
and the User computes a group signature whose signed mes-
sage contains the nonce. Therefore, in this paper, we focus

4This property is used in timed-release encryption [27] context, where an
encryptor can control when ciphertexts will be decrypted.

94

mainly on sending a token anonymously and on establishing
a secure channel.

B. SYNTAX AND SECURITY DEFINITIONS

Let ZD and M be an identity space and message space,
respectively, and Adrsrc, Adrproxy, and Adrgse stand for
IP address of User, Proxy, and SP, respectively. For a set X

and an element x € X, x <$— X means that x is randomly
chosen from X.
Definition 6 (Syntax of the Protocol):

o GM.Setup: This probabilistic algorithm takes as input
the security parameter A, and outputs a group public key
gpk and an issuer key ik.

o KGC.Setup: This probabilistic algorithm takes as input
the security parameter A, and outputs a public key
params and a master secret key msk.

o Join: This probabilistic algorithm takes as input gpk
and ik, and outputs a signing key sk.

o UserKeyGen: This (possibly) probabilistic algorithm
takes as input params, msk, and an (possibly temporary)
identity TempID € ID, and outputs a decryption key
dkTempID-

o SendRequest: This probabilistic algorithm takes as
input gpk, sk, Temp1D, a source IP address AArsyc, a
destination IP address Adryst, and a proxy IP address
Adrproxy, and send a token o, TempID and Adr gt t0
the proxy whose IP address is Adrproxy.

« RelayRequest: This deterministic algorithm takes as
input Adrsyc, Adrgst, an ID/IP table Tbl, o, and
TempID, and relays a pair (6, TempID) and Adrproxy
to the destination SP whose IP address is Adrgst.
Moreover, append (TempID, Adrsyc) to Thl.

« ValidityCheck: This deterministic algorithm takes as
input gpk, o, and Temp1D, and outputs 1 if o is valid,
and 0, otherwise.

« SendContent: This probabilistic algorithm takes as
input gpk, o, TempID, a content to be sent M € M,
and Adrproxy, computes a ciphertext C if the
token o is valid, and sends C to the proxy whose
IP address is Adrproxy. Otherwise, if o is invalid, then
return L.

« RelayContent: This deterministic algorithm takes as
input C and Tbl, and relays C to a user whose
IP address is Adrgy. contained in Tbl. Moreover,
remove (TempID, Adrgyc) from Tbl.

o GetContent: This deterministic algorithm takes as
input C and dkrenp1p, and return M.

Next, we give formal security definitions as follows.
First, we define correctness that guarantees o is valid
and a user always can obtain the corresponding con-
tent if all values are honestly generated according to the
algorithms.

Definition 7 (Correctness): For all (gpk,ik) < GM.
Setup (1*), (params,msk) <  KGC.Setup (1%),
sk <« Join (gpk, ik), TempID € ID, M € M, and

VOLUME 4, NO. 1, MARCH 2016



Emura et al.: Secure and Anonymous Communication Technique

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

(Adrsre, Adrgse, Adrproxy)y

Pr[M « GetContent(RelayContent(C, Tbl),

UserKeyGen(param, msk, TempID))] =1, and
Pr[1 < ValidityCheck(gpk, o, TempID) = 1] =1

where (o, TempID, Adrgst) < SendRequest (gpk,
sk, TempID, Adrgrc,Adrgse,Adrproxy), (0, TempID,
Adrproxy) < RelayRequest (Adrsyc, Adrgst, Tbl, o,
TempID), and C <« SendContent (gpk, o, TempID, M,
Adrproxy)-

Next, we define anonymity, semantic security, and
unforgeability as follows. One session is defined as
sequences of algorithm executions from SendRequest to
GetContent, where SendRequest — RelayRequest —
SendContent — RelayContent — GetContent.
Anonymity guarantees that no adversary .4 who is allowed
to communicate with the proxy (but is not allowed to know
Adrsyc) can distinguish whether the users of two different
sessions are the same or not. In this game, A is modeled as a
malicious SP. Moreover, we care about signing key exposure,
where A can obtain signing keys. In addition to this, we give
msk to A in order to guarantee that the KGC ability has
nothing to right for identifying the user.

Definition 8 (Anonymity):

1) The challenger C runs (gpk,ik) < GM.Setup(1*)
and (params, msk) < KGC.Setup(1*), and computes
two signing keys sko, sk; < Join(gpk, ik), and gives
gpk, sko, ski, and (params, msk) to an adversary A.
Moreover, C initializes Tbl := (.

2) A is allowed to issue the SendRequest query
(i, TempID) € {0, 1} xZD. C runs SendRequest(gpk,
skp, TempID, Adrsrc, Adrgse, Adrproxy), and returns
o (generated via the SendRequest algorithm) fo A.

3) A is allowed to issue the RelayRequest gquery
(0, TempID). C runs RelayRequest(Adrsyc, Adrgst,
Tbl, o, TempID) and updates Tb1.

4) Ais allowed to issue the RelayContent query C. C runs
RelayContent(C, Tb1), and updates Tb1.

5) A sends TempID* € ZID to C. C flips a coin

b <$— {0, 1}, and runs (c*, TempID*, Adrgst) <

SendRequest(gpk, skp, TempID*, Adrsyc, Adrgst,
AdTproxy) and (0, TempID*, Adrproxy) <« Relay
Request(Adrg,, Adrgst, Tbl, o*, TempID*). A ret-
urns an arbitrary C to C. C runs C <« Relay
Content(C, Tbl). We note that A can know the tran-
script of these algorithms executed by C: (o*, TempID¥,
Adrgst), (0%, TempID*, Adrproxy), and C. Aoutputs
b €{0,1}.

The protocol is said to have anonymity if

Advgpcg%(k) := | Pr[b = b'] — 1/2| is negligible in ).

5We remark that we exclude the trivial case that KGC is offered to generate
a decryption key of TempID from a user whose IP address is Adrsyc, and
observes that the transcript containing TempID.

VOLUME 4, NO. 1, MARCH 2016

Next, we define semantic security which guarantees that
no information of content M is revealed from the transcripts
of algorithms. In this game, an adversary 4 is modeled as a
malicious proxy. Moreover, A is allowed to obtain ik in order
to guarantee that no information of M is revealed even from
the GM’s viewpoint.

Definition 9 (Semantic Security):

1) The challenger C runs (gpk, ik) <— GM.Setup(1*) and
(params, msk) < KGC.Setup(1*), and gives gpk, ik,
and params to an adversary A.

2) A is allowed to issue the UserKeyGen query
TempID € ZD. C runs UserKeyGen(params, msk,
TempID) and returns dkremp1p.

3) A sends TempID* € ID,Mj,M{ € M and
sk* to C as his choice, where TempID* has not
been sent as a UserKeyGen query. C flips a coin
b <$; {0, 1}, runs SendRequest (gpk, sk*, TempID*,
Adrsrc, Adrgst, Adrproxy) and C* < SendContent
(gpk, o, Temp1D, MZ‘, AdTproxy) and sends
(0, TempID™*, Adrgst) and C* to A.

4) A is allowed to issue the UserKeyGen query
TempID € ZID where TempID # TempID™*
C runs UserKeyGen(params, msk, TempID) and

returns dkremp1p.
5) Finally, A outputs b’ € {0, 1}.

The protocol is said to have semantic security if
Advzfo’A()L) = |Pr[b = b1 — 1/2| is negligible
in A.

Finally, we define unforgeability which guarantees that no
adversary .4 who does not have a signing key will be accepted
by the ValidityCheck algorithm. In this game, A is modeled
as a malicious user. Moreover, A is allowed to obtain msk in
order to guarantee that nobody can be accepted by SP even
by KGC.

Definition 10 (Unforgeability):

1) The challenger C runs (gpk, ik) < GM.Setup(1*) and
(params, msk) < KGC.Setup(1*), and gives gpk and
(params, msk) to an adversary A. Moreover, C
initializes S = .

2) A is allowed to issue the SendRequest gquery
(i, TempID). If sk; has not been generated, then
C runs sk; < Join(gpk,ik) and preserves sk;.
C runs SendRequest(gpk, sk;, TempID, Adrsyc,
Adrgse, Adrproxy), and sends o to A. Moreover, C
appends (o, TempID) to S.

3) Finally, A outputs (c*, TempID*). We say that A wins
if (c*, TempID*) ¢ S and ValidityCheck(gpk, o*,
TempID*) = 1.

The protocol is said to have unforgeability if
Advgfro,.A (1) := Pr[ A wins] is negligible in X

We say that a protocol is called secure anonymous authen-
tication protocol if the protocol is correct and has anonymity,
semantic security, and unforgeability. We remark that we
need to assume that (1) the GM and KGC need to be fully
trusted, (2) the proxy does not collude with the SP, and (3)
users never share their signing key with other people if ALL

95



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Emura et al.: Secure and Anonymous Communication Technique

security notions (anonymity, semantic
unforgeability) are required to be hold.

security, and

C. PROTOCOL CONSTRUCTION

In this section, we give our proposed construction.
Let (IBE.Setup, Extract, IBE.Enc, IBE.Dec) be an
IBE scheme, and (GS.Setup, Join, Sign, Verify) be an
open-free group signature scheme. In this construction, a
signed message of the underlying group signature is TempID
which is also regarded as a public key of the underlying IBE.

Corollary 1 (Proposed Protocol):
o GM.Setup: Run (gpk,ik) < GS.Setup (1*), and

output (gpk, ik).

o KGC.Setup: Run (params, msk) < IBE.Setup (1%),
and output (params, msk).

o Join: Run sk < GS.Join(gpk, ik), and output sk.

o UserKeyGen: Run dkremptn < Extract (params,
msk, TempID), and output dkrenp1p.

« SendRequest: Choose TempID & ID. Run
o < Sign (gpk, sk, TempID), and send (o, TempID,
Adrgst) to the proxy whose IP address is Adrproxy.

« RelayRequest: Append (TempID, Adrsyc) fo Tbl,
and relays a pair (o, TempID) and Adrproxy to the
destination SP whose IP address is Adr gst.

o ValidityCheck:  Outpur 1 if Verify
TempID) = 1, and 0, otherwise.

« SendContent: Outpur L if ValidityCheck (gpk, o,
TempID) = 0. Otherwise, run Cigr < |IBE.Enc
(params, TempID, M), and send Cipg to the proxy
whose IP address is Adrproxy.

« RelayContent: Relay Cigg to a user whose IP
address is Adr syc contained in To1l. Moreover, remove
(TempID, Adrsyc) from Tbl.

o GetContent: Output the result of IBE.Dec (params,
CIBE ’ dkTempID)~

We note that our construction only considers one-proxy

setting, and therefore no anonymity is guaranteed from the
viewpoint of the Proxy. This situation does not contradict our
definition of anonymity (Def. 8). We can simply extend this
protocol to a multi-proxy setting, where each Proxy relays
(0, TempID) or Cjpr between the previous Proxy and the
next Proxy. Then, anonymity is guaranteed even from the
Proxies’ point of view unless all Proxies collude with each
other.

(gpk, o,

D. SECURITY PROOFS OF PROPOSED PROTOCOL
Theorem 1: Our protocol is anonymous if the underlying
group signature scheme is anonymous.

Proof: Let A be an adversary who can break anonymity
of our protocol. Then, we can construct an algorithm B that
breaks anonymity of the underlying group signature scheme
as follow. Let C be the challenger of the underlying group
signature. B generates gpk, skg, and sk;, and generates
all IBE-related values. Then B gives (gpk, sko, sk, params,
msk) to A. In the challenge phase, 153 gets TempID* from A,
forwards it to C, and gets o* from C. 3 uses o * as the output of

96

the SendRequest algorithm, and similarly simulates other
algorithms. A outputs " and B also outputs b’ as the guessing
bit. Then, B can break anonymity of the group signature with
the same advantage of .A. This contradicts that the underlying
group signature is anonymous. ]

Theorem 2: Our protocol is semantic secure if the
underlying IBE scheme is IND-ID-CPA secure.

Proof: Let A be an adversary who can break semantic
security of our protocol. Then, we can construct an algorithm
B that breaks IND-ID-CPA security of the underlying IBE
scheme as follows. Let C be the challenger of the underlying
IBE. C runs (params, msk) < |IBE.Setup(1%), and sends
params to B. B runs (gpk, ik) < GS.Setup(1%), and sends
(gpk, ik) and params to A. If A issues a key extraction query
TempID, then B forwards TempID to C, obtains dkremp1n,
and returns dkremprp to A. A sends TempID*, My, My,
and sk* to B. B forwards TempID*, My, and M to C. C
computes C}y -, and sends it to 3. B computes o on TempID*
using sk*, and sends (o, TempID*, Cjyp) to A. If Aissues a
key extraction query TempID # TempID*, then B forwards
TempID to C, obtains dkremprp, and returns dkremprp to A.
Finally, A outputs b € {0, 1}, and B outputs b’ and breaks
IND-ID-CPA security of the underlying IBE scheme. (|

Theorem 3: Our protocol is unforgeable if the underlying
group signature scheme is unforgeable.

Proof: Let A be an adversary who can break
unforgeability of our protocol. Then, we can construct an
algorithm B that breaks unforgeability of the underlying
group signature scheme as follows. Let C be the challenger
of the underlying group signature. C runs (gpk,ik) <
GM.Setup(1*) and gives gpk to B. B runs (params, msk) <
KGC.Setup(1*), and gives gpk and (params, msk) to A.
If A sends (i, TempID) to B3, then B forwards (i, TempID)
to C as a signing query. C runs SendRequest(gpk, sk;,
TempID, Adrgrc, Adrgse, Adrproxy), and sends o to B. B
sends o to A. Finally, A outputs (6*, TempID*). B outputs
(0*, TempID*) and breaks unforgeability of the group
signature scheme. O

In summary, our protocol is secure (i.e., semantic secure,
anonymous, and unforgeable) if the underlying IBE and
group signature are secure.

IV. PROOF-OF-CONCEPT IMPLEMENTATION

This section introduces a prototype that implements the
proposed protocol and evaluates its performance to demon-
strate the feasibility and practicality of the protocol.

A. COMMUNICATION SEQUENCES

Three types of communication sequences are implemented:
User-GM, User-KGC, and User-Proxy-SP, and each of the
sequences runs the modules defined in Section III-C.

The User-GM sequence begins with the Join module,
which communicates with the GM. The GM then computes
the signing key sk, and returns it to the User. This sequence
needs to be run before the User-Proxy-SP sequence starts.
For simplicity, the proof-of-concept implementation runs the

VOLUME 4, NO. 1, MARCH 2016



Emura et al.: Secure and Anonymous Communication Technique

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

User-GM sequence manually and obtains o prior to the start
of the User-Proxy-SP sequence.

The User-KGC sequence begins with the UserKeyGen
module, which communicates with the KGC. The User sends
TempID to the KGC, and the KGC then computes the
decryption key dkrempip, and returns it to the User. This
User-KGC sequence and the User-Proxy-SP sequences are
run in parallel, though the User-KGC procedure needs to be
completed before the GetContent module of the User-Proxy-
SP procedure is run. For simplicity, the proof-of-concept
implementation runs this sequence manually and obtains
dkremptp prior to the start of the User-Proxy-SP sequence.

The User-Proxy-SP sequence begins with the SendRequest
module that sends a group signature and TemplD.
Upon receiving them, the Proxy registers each pair
(TempID, Adrsyc) in a table and runs the RelayRequest
module that forwards the pair to the SP. The SP then runs
the ValidityCheck module as well as the SendContent mod-
ule that returns an IBE ciphertext to the Proxy, which
forwards that to the User. The User then runs the GetContent
module that decrypts the IBE ciphertext using the
corresponding dkremp1p.-

We use the HTTP protocol for communication between
roles because the modules we use for Proxy, i.e., Simpleproxy
and Tor routers, support the HTTP protocol. In order to
integrate the proposed protocol with the HTTP protocol,
we define an additional method for the HTTP protocol,
called “A-GET”, and a new header, called A-Authorization.®
When we use A-GET method, we are required to use the
A-Authorization header that embeds the ¢ and TemplD, as
described in Figure 2. Note that we have used ““***%*” for
the separator.

A-Get [path name] HTTP/1.0 \r\n
Host: [host name]: [port number] \r\n
A-Authorization: o [separator] TempID \r\n

FIGURE 2. A-GET method and A-authorization header

B. MODULE SOFTWARE IMPLEMENTATION

The roles are implemented as separate modules. The User
role is implemented using C language (GCC version 4.2.1).
For proof-of-concept implementation, we have prepared
a simple client software that supports our protocol. The
software uses the aforementioned A-GET method and
A-Authorization header so that it can convey group signature
and TempID. The software has a command line interface,
through which we can send a request to the designated
IP address. After sending the request, this software awaits a
response from the SP and displays the response upon receiv-
ing it. Figure 3 describes the HTTP communication log of the
prototype.

OWe added anonymity to the existing protocol, thus we have put the prefix
of “A- to these newly defined method and header.

VOLUME 4, NO. 1, MARCH 2016

A-GET /index.html HTTP/1.0
Host: 192.168.35.160:12345
A-Authorization: *****
*ExEXBCMCeW/ [omitted]
*H*kR*pK SkpK Sk [omitted]

skeskoskoskosk

(a)

HTTP/1.0 200 OK
Content-type: text/html
It works!!

(b)
FIGURE 3. Prototype’s HTTP communication. (a) HTTP request.
(b) HTTP response.

The SP role is implemented using C language
(GCC version 4.2.1). Because this is a proof-of-concept
implementation, its functionality is minimal. This software
awaits requests from the User. Upon receiving a request from
the User, the software replies with a simple HTML document
to the User if the request has the Get method, whereas the
software runs decryption and encryption using TempID and
anonymous authentication using o before replying to the User
if the request has the A-GET method. The software simply
replies with a simple HTTP document to requesters upon
receiving GET or A-GET messages from them.

The Proxy role is implemented using the
Simpleproxy [28] and Tor [3] software. A Simpleproxy
generates a child process upon receiving a packet from the
User. The process opens a new connection with the
destination, i.e. SP, and forwards the packet to the SP. This
process maintains separate sessions with the User and with
the SP. In this way, any information lower than the session
layer is concealed; the IP address information and the port
information are hidden. When the session is closed, the
process is also closed; one child process is responsible for
only one session. In our protocol, we prepared a new soft-
ware, called A-Proxy, which is generated by modifying the
Simpleproxy. When the child process is generated, A-Proxy
extracts the TempID value from the packet sent from the
User and stores it inside its repository along with the source
and destination IP address. When the connection is closed,
the process deletes the stored information before closing the
process. The User-Proxy-SP sequence with the A-Proxy is
summarized in Figure 4.

In the case of using Tor as our Proxy, we need to consider
the way in which the User connects to a Tor router because
the router requires communication using the Socks protocol.
Because our User module does not support the Socks proto-
col, we use the A-Proxy and torsocks modules provided by
the Tor project [3]. Then, the User connects to the torsocks
module of a Tor router via our A-Proxy. In this way, the
Simpleproxy can relay the request from the User to
a Tor Router and can manage the A-GET request as
mentioned above. The User-Proxy-SP sequence with the
Tor network is summarized in Figure 5.

97



IEEE TRANSACTIONS ON

EMERGING TOPICS

Emura et al.: Secure and Anonymous Communication Technique

IN COMPUTING
A-Proxy A-Proxy
[ e | N
x H .
: Table update

HTTP (GET)
Create
child process -

HTTP (GET)
HTTP (RESPONSE)

HTTP (RESPONSE
( Table update

- - Exit child process:

FIGURE 4. The user-proxy-SP sequence with simpleproxy.

L

r HTTP (GET) 1
Table update :

1

1

< Table update

HTTP (RESPONSE):_

FIGURE 5. The user-proxy-SP sequence with Tor.

The GM and KGC module are implemented using
the TEPLA library [29], with which we implement the
Boneh-Franklin IBE scheme and our open-free group
signature scheme. The GM module produces a group key and
an issuer key, whereas the KGC module produces a public
key, and a master secret key. This library supports optimal
Ate asymmetric pairings over Barreto-Naehrig (BN) elliptic
curves [30] with 254-bit prime order and the corresponding
embedded degree is 12. This enables 128-bit security.

C. PERFORMANCE MEASUREMENT

For the purpose of performance measurement, we set up a
test system as follows: an Apple MacBookPro (processor:
2.6GHz Intel Core i7, Memory: 16GB, 1600 MHz DDR3,
Darwin Kernel Version 13.1.0), and two VMs using VMware
Fusion 6.0.2. We assigned the roles of User to the MacOS and
the roles of Proxy and SP to each of the VMs. For the Proxy,
one of the VMs ran FreeBSD amd64 9.1-RELEASE with one
processor and 256MB of memory, and for the SP, the second
VM ran CentOS 5.9 x86_64 with one processor and 512MB
of memory.

Here, we show that our protocol is feasible by showing the
running time of the algorithms and the total running time of
one session in the order of msec. First, we show the running
time of one session (User— Proxy— SP— Proxy— User) in
the following cases: (1) HTTP communication (i.e., without
any cryptographic operations), (2) SSL communication,
and (3) our protocol in Table 2. To measure the running time
of the SSL communication, we use the s_server/s_time
command of the OpenSSL library (ver. 1.0.1e) [31]. We use
DHE-RSA-AES128-SHA256 cipher suite with a 3,072-bit
size public key because this supports 128-bit security similar
to ours. Tables show the average time of 1000 times
execution.

98

TABLE 1. Running Time (algorithms).

[ Algorithm | Entity [ Time(msec) | Proxy Module ]

SendRequest User 63.90 Simple Proxy
62.50 Tor

ValidityCheck SP 87.67 Simple Proxy
89.40 Tor

SendContent SP 87.36 Simple Proxy
85.99 Tor

GetContent User 52.17 Simple Proxy
54.23 Tor

TABLE 2. Running time (one session).

[ Scheme | Cryptographic Operations [ Time(msec) | Proxy Module |

None - 2.55 Simple Proxy
- 8375.48 Tor

SSL Enc 14.22 Simple Proxy
&Auth 7750.00 Tor

Ours Enc 293.53 Simple Proxy
&Anon. Auth 9755.53 Tor

First, we compare the running time of each algorithm as
follows (see Table 1). Our result proves that each
algorithm execution is independent of from the underlying
proxy module. Note that the GM.Setup, KGC.Setup, and
Join algorithms can be run offline, and that the UserKeyGen
algorithm can be run separately against the session.
Moreover, we ignore the RelayRequest and RelayContent
algorithms because these (run by Proxy) simply relay the
communication and are run independently against any cryp-
tographic operations. The dominant factor for the User is the
SendRequest algorithm that computes a group signature.
Note that this procedure can also be run offline by assuming
that the User chooses TempID and computes a group signa-
ture before starting a session. Then, we can ignore the running
time of the SendRequest algorithm.

Next, we show the running time of our protocols as follows.
Table 2 demonstrates that the running time of our proto-
col (Simpleproxy) is approximately 20 times slower than
that of SSL communication. This inefficiency is caused
by the pairing computation that is not required in usual
public key encryption, digital signature, and authentication
(these are used in SSL). Nevertheless, it is particularly
worth noting that our running time still fits inside the msec
order. In addition to this, if the User chooses TempID
and computes a group signature before starting a session,
we can assume that the SendRequest algorithm is run
offline. Then, the total running time of one session becomes
approximately 200 msec.

Next, we estimate the Tor case. In a Tor network, data
are communicated via several Tor routers. That is, different
servers are chosen in each communication to hide source
IP addresses, and this costs significantly. In reality, the
growth of the Tor network was investigated in [32]. Moreover,
communication among Tor routers is encrypted (note that
this is not an end-to-end encryption, whereas our protocol
establishes end-to-end secure channels and therefore,

VOLUME 4, NO. 1, MARCH 2016



Emura et al.: Secure and Anonymous Communication Technique

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

no Tor routers can reveal content information in our protocol).
Because of this, the running time of Tor cases have a wider
range at each execution, and from Table and 2, we can
interpret that the cost of all cryptographic operations are not
dominant when Tor is used as the underlying proxy module.

V. DISCUSSION AND ANALYSIS

This section discusses and analyzes the proposed protocol
from the standpoint of compatibility with and deployability
over the Internet. It also considers the other approaches to
realize secure and anonymous communication.

A. COMPATIBILITY

The proposed protocol can be modified to be compatible with
existing HTTP proxies and Tor routers. The current imple-
mentation sends an HTTP request using the A-GET method.
In this case, only the proxies and Tor routers that understand
this extended HTTP request can function as expected, and the
other routers cannot manage the request properly.

We intentionally defined the A-GET method instead of
using the existing GET method in order to stop communica-
tion in case our protocol is not supported by either a Proxy
or an SP. If a Proxy or an SP receives a packet with the
A-GET method and does not understand the method, it will
respond with the status code 400 (Bad Request) and discard
the packet, provided that it follows the HTTP protocol. Even
if the SP receives the packet, it contains no information that
could reveal the identity of the User; thus, anonymity is still
maintained.

We could have used the GET method instead of the A-GET
method to build anonymous secure communication channels
with authentication. In this case, even if the Proxy does not
understand our scheme, the packets are relayed to the SP.
Thus, the anonymous secure communication channel with
authentication is built if the SP understands our protocol,
regardless of the Proxy’s understanding of our scheme. This
could have been alternative approach for designing the
protocol, but it completely removes the method for tracking
real identity and TemplD, i.e., the function that tracks
mapping, implemented inside Proxy is disabled.

Moreover, by using the GET method, the User could allow
multiple authentication methods with several headers. For
instance, the User might employ both an Authentication
and A-Authentication header for HTTP basic authentication
and our scheme’s authentication. In the case where the SP
understands our protocol, it runs our scheme’s authentication,
whereas it runs only the HTTP basic authentication in the case
where it does not understand our protocol. In this way, the
User can establish a communication channel with or without
our scheme depending on SP support of our scheme.

Note that this discussion assumes that the HTTP protocol is
implemented properly following RFC 2616 [33], but there is
no guarantee that implementations do this properly. Though
behavior differs depending on implementation, anonymity is
still maintained unless the Proxy intentionally leaks the
(IP address, TempID) mapping table to malicious parties.

VOLUME 4, NO. 1, MARCH 2016

B. DEPLOYABILITY

In order to use the proposed protocol over the Internet, the
User and SP need to manage the proposed protocol.
In addition to this, the Proxy needs to be deployed over the
Internet. This section discusses the deployability of the Proxy
over the Internet.

The Proxy requires several features that are specific to the
proposed protocol. Thus we need to implement Proxies over
the Internet. The protocol works if we have at least one Proxy
over the Internet. This is the same for both Simpleproxy and
Tor cases. In the case of Simpleproxy, we need to deploy
at least one Simpleproxy over the Internet, so that Users
can employ it to run the protocol. In the case of Tor, we
need to deploy at least one Simpleproxy that communicates
with Torsocks, so that Users can use Tor networks to run the
protocol. Thus, the Proxy can be incrementally deployed.

Note that the protocol could have been designed so that
no protocol specific features are required for the Proxy, as
discussed in Section V-A. In this case, arbitrary HTTP proxies
could have been used to run the proposed protocol. Indeed,
many HTTP proxies are already available over the Internet,
and thus, the protocol can be easily deployed.

C. ALTERNATIVE APPROACH

The proposed protocol realizes secure and anonymous
communication but is not the only approach. Another
approach is the combined use of our open-free group
signature scheme, Tor, and TLS with ephemeral key
exchange. It suffices for anonymous communication among
parties. Diffie-Hellman (DH) key exchange is also applicable
to our model. In this case, a group signature works as a
certificate of the public key without revealing the client’s
identity, gven that the client chooses an ephemeral public key
for the DH key exchange, creates a group signature on the key,
and sends the signature with the key to the server via proxy
entities. This approach is viable pending thorough evaluation
and review.

Compared to this approach, our IBE-based approach has an
advantage; it incurs smaller costs on the client side in terms
of the number of communication sequences. In our protocol,
the client computes a group signature on a temporary ID.
By contrast, the DH-based protocol requires that the client
runs the key exchange protocol in addition to computing
a group signature that requires additional interaction and
computation. Even if a public key encryption (PKE) scheme
is applied, where a client chooses an ephemeral public key
and computes a group signature on the key, the client needs
to compute the public key from the corresponding secret key.
In this case, a secret key needs to be chosen first, following
which the corresponding public key is computed (e.g., in the
case of ElGamal encryption, a secret key x € Z, is first
chosen, and the corresponding public key is then computed,
such that X = g*). This requires an additional computation
and communication sequence. In case of IBE, no such com-
putation or sequence is required because any value works as
the public key.

99



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Emura et al.: Secure and Anonymous Communication Technique

On the other hand, currently used IBE schemes
(e.g., the Boneh-Frankiln scheme that we used) are less
efficient in terms of total transaction time, than PKE and DH,
even if we take into account the additional cost discussed
above. This is because the heavy pairing computation is
required to construct an IBE. Indeed, the IBE decryption
algorithm requires 50 msec in our implementation whereas
the PKE key generation algorithm and its decryption
algorithm require only 5 msec in total. Nevertheless, as
mentioned in Section IV-C, cryptographic operations are not
the dominant factor when Tor is used as the proxy entity.
Moreover, the total procedure can be reduced by using IBE
as mentioned above. Furthermore, since we have proposed a
generic construction of the protocol, any IBE is applicable
to it. Thus, when an efficient IBE scheme becomes available
in the future, our construction will be rendered more efficient
by adopting the scheme.

VI. CONCLUSION

The proposed protocol along with IBE and group
signature allow secure anonymous authentication. The
difficulty lies in the point where we let encryption and
authentication techniques work together without sacrificing
anonymity. The proof-of-concept implementation demon-
strated the feasibility of the proposed protocol. Based on the
implementation, we measured the protocol transaction time
and concluded that its performance is within the range of
practical acceptance. We also concluded that the protocol is
compatible with and deployable over the Internet; although
the protocol requires several protocol-specific features, it can
draw incremental deployment.

We believe this work can contribute to the management
of anonymous communication systems. Assorted anonymous
communication systems [3], [34], [35] carry the risk of being
used by malicious parties, but they can be sanitized by
introducing our protocol and running anonymous user
authentication; in this way, illegitimate users cannot use these
systems whereas legitimate users can still use them without
compromising anonymity. Through this work, we want to
facilitate secure, anonymous, and authenticated communica-
tion over the Internet.

ACKNOWLEDGMENT
The authors thank Dr. Goichiro Hanaoka
Dr. Miyako Ohkubo for their invaluable comments.

and

REFERENCES

[1] Selected Papers in Anonymity. [Online]. Available: http:/freehaven.
net/anonbib/date.html, accessed Feb. 20, 2015.

[2] D. Chaum and E. van Heyst, “Group signatures,” in Advances in
Cryptology—EUROCRYPT. Berlin, Germany: Springer-Verlag, 1991,
pp. 257-265.

[3] Tor Project. [Online]. Available: http://www.torproject.org/, accessed Feb.
20, 2015.

[4] J. Furukawa and H. Imai, “An efficient group signature scheme from
bilinear maps,” IEICE Trans., vol. E89-A, no. 5, pp. 1328-1338, 2006.

[5] D. Boneh and M. Franklin, “Identity-based encryption from the Weil
pairing,” SIAM J. Comput., vol. 32, no. 3, pp. 586-615, 2003.

100

[6]

[71

[8]

[91

[10]

(11]

(12]

[13]

[14]

[15]

(16]

(17]

(18]

(19]

[20]

(21]

[22]

(23]

(24]

(25]

[26]

[27]

(28]

[29]

(30]

H. Krawczyk, K. G. Paterson, and H. Wee, ““On the security of the TLS
protocol: A systematic analysis,” in Advances in Cryptology—CRYPTO.
Berlin, Germany: Springer-Verlag, 2013, pp. 429-448.

A. Boldyreva and V. Kumar, “Extended abstract: Provable-security analy-
sis of authenticated encryption in Kerberos,” in Proc. IEEE Symp. Secur.
Privacy, May 2007, pp. 92-100.

J. Wang, G. Wang, and W. Susilo, “Secure single sign-on schemes
constructed from nominative signatures,” in Proc. 12th IEEE Int. Conf.
TrustCom, Jul. 2013, pp. 620-627.

A. Sudarsono, T. Nakanishi, Y. Nogami, and N. Funabiki, “Anony-
mous IEEE802.1X authentication system using group signatures,” J. Inf.
Process., vol. 18, pp. 63-76, Mar. 2010.

M. Z. Lee, A. M. Dunn, B. Waters, E. Witchel, and J. Katz, ‘‘Anon-pass:
Practical anonymous subscriptions,” in Proc. IEEE Symp. SP, May 2013,
pp. 319-333.

Y. Gilad and A. Herzberg, “Plug-and-play IP security—Anonymity
infrastructure instead of PKI,” in Computer Security—ESORICS. Berlin,
Germany: Springer-Verlag, 2013, pp. 255-272.

J. Sankey and M. Wright, “Dovetail: Stronger anonymity in next-
generation internet routing,” in Privacy Enhancing Technologies. Berlin,
Germany: Springer-Verlag, 2014, pp. 283-303.

C. Kaufman, P. Hoffman, Y. Nir, and P. Eronen, Internet Key Exchange
Protocol Version 2 (IKEv2), document Rec. RFC 5996, Sep. 2010.

B. Libert and D. Vergnaud, “Unidirectional chosen-ciphertext secure
proxy re-encryption,” IEEE Trans. Inf. Theory, vol. 57, no. 3,
pp. 1786-1802, Mar. 2011.

K. Emura, A. Kanaoka, S. Ohta, and T. Takahashi, “Building secure
and anonymous communication channel: Formal model and its prototype
implementation,” in Proc. 29th Annu. ACM Symp. Appl. Comput., 2014,
pp. 1641-1648.

M. Bellare, H. Shi, and C. Zhang, “Foundations of group signatures:
The case of dynamic groups,” in Topics in Cryptology—CT-RSA. Berlin,
Germany: Springer-Verlag, 2005, pp. 136-153.

D. Boneh and X. Boyen, “Short signatures without random oracles and
the SDH assumption in bilinear groups,” J. Cryptol., vol. 21, no. 2,
pp. 149-177, 2008.

A. Fiat and A. Shamir, ‘““How to prove yourself: Practical solutions to iden-
tification and signature problems,” in Advances in Cryptology—CRYPTO.
Berlin, Germany: Springer-Verlag, 1986, pp. 186—-194.

B. Libert, T. Peters, and M. Yung, “Group signatures with almost-for-
free revocation,” in Advances in Cryptology—CRYPTO. Berlin, Germany:
Springer-Verlag, 2012, pp. 571-589.

D. Boneh and H. Shacham, “Group signatures with verifier-local revoca-
tion,” in Proc. 11th ACM CCS, 2004, pp. 168-177.

T. Nakanishi and N. Funabiki, ‘“Verifier-local revocation group signature
schemes with backward unlinkability from bilinear maps,” in Advances
in Cryptology—ASIACRYPT. Berlin, Germany: Springer-Verlag, 2005,
pp. 533-548.

T. Nakanishi, H. Fujii, Y. Hira, and N. Funabiki, ‘“Revocable group signa-
ture schemes with constant costs for signing and verifying,” in Public Key
Cryptography. Berlin, Germany: Springer-Verlag, 2009, pp. 463—480.
C.-1. Fan, R.-H. Hsu, and M. Manulis, “Group signature with constant
revocation costs for signers and verifiers,” in Proc. 10th Int. Conf. CANS,
2011, pp. 214-233.

N. Attrapadung, K. Emura, G. Hanaoka, and Y. Sakai, “A revocable group
signature scheme from identity-based revocation techniques: Achieving
constant-size revocation list,” in Proc. 12th Int. Conf. ACNS, 2014,
pp. 419-437.

B. Libert, T. Peters, and M. Yung, “Scalable group signatures with revo-
cation,” in Advances in Cryptology—EUROCRYPT. Berlin, Germany:
Springer-Verlag, 2012, pp. 609-627.

D. Pointcheval and J. Stern, ““Security arguments for digital signatures and
blind signatures,” J. Cryptol., vol. 13, no. 3, pp. 361-396, 2000.

J. H. Cheon, N. Hopper, Y. Kim, and I. Osipkov, ‘“‘Provably secure timed-
release public key encryption,” ACM Trans. Inf. Syst. Secur., vol. 11, no. 2,
2008, Art. ID 4.

Simpleproxy: Crocodile Group Software. [Online]. Available: http:/www.
crocodile.org/software.html, accessed Feb. 20, 2015.

TEPLA: University of Tsukuba Elliptic Curve and Pairing Library.
[Online]. Available: http://www.cipher.risk.tsukuba.ac.jp/tepla/index_e.
html, accessed Feb. 20, 2015.

P. S. L. M. Barreto and M. Naehrig, “Pairing-friendly elliptic curves
of prime order,” in Selected Areas in Cryptography. Berlin, Germany:
Springer-Verlag, 2005, pp. 319-331.

VOLUME 4, NO. 1, MARCH 2016



Emura et al.: Secure and Anonymous Communication Technique

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

[31] OpenSSL: Cryptography and SSL/TLS Toolkit. [Online]. Available:
http://www.openssl.org/, accessed Feb. 20, 2015.

[32] M. Edman and P. Syverson, “As-awareness in Tor path selection,” in Proc.
16th ACM Conf. Comput. Commun. Secur., 2009, pp. 380-389.

[33] R. Fielding et al, Hypertext Transfer Protocol-HTTP/I.1,
document Rec. RFC 2616, Jun. 1999. [Online]. Available: http://www.
ietf.org/rfc/rfc2616.txt

[34] A. Houmansadr, C. Brubaker, and V. Shmatikov, “The parrot is dead:
Observing unobservable network communications,” in Proc. IEEE Symp.
SP, May 2013, pp. 65-79.

[35] H. M. Moghaddam, B. Li, M. Derakhshani, and I. Goldberg,
“SkypeMorph: Protocol obfuscation for Tor bridges,” in Proc. ACM
CCS, 2012, pp. 97-108.

KEITA EMURA received the M.E. degree
from Kanazawa University, in 2004, and the
Ph.D. degree in information science from the
Japan Advanced Institute of Science and Tech-
nology (JAIST), in 2010. He was with Fujitsu
Hokuriku Systems Ltd., from 2004 to 2006.
He was with the Center for Highly Dependable
Embedded Systems Technology, JAIST, as a
Post-Doctoral Researcher, from 2010 to 2012. He
has been a Researcher with the National Institute
of Information and Communications Technology since 2012, where he has
also been a Senior Researcher since 2014. His research interests include
public-key cryptography and information security. He is a member of the
Institute of Electronics, Information and Communication Engineers (IEICE),
and the International Association for Cryptologic Research. He was a
recipient of the SCIS Innovation Paper Award from IEICE in 2012.

AKIRA KANAOKA received the Ph.D. degree
in engineering from the University of Tsukuba, in
2004. He was with SECOM Company, Ltd., from
2004 to 2007, and the University of Tsukuba from
2007 to 2013. He is currently an Assistant
Professor with Toho University. His research inter-
ests include network security and cryptographic
application. He is a member of the Institute
of Electronics, Information and Communication
Engineers, and the Information Processing Society

of Japan.

VOLUME 4, NO. 1, MARCH 2016

SATOSHI OHTA received the M.S. degree from
the Japan Advanced Institute of Science and
Technology, in 2002, where he is currently pur-
suing the Ph.D. degree. He has been a Technical
Expert with the National Institute of Information
and Communications Technology. His research
interests include network protocol and Internet
security.

KAZUMASA OMOTE received the Ph.D. degree
in information science from the Japan Advanced
Institute of Science and Technology (JAIST), in
2002. He was with Fujitsu Laboratories, LTD,
from 2002 to 2008, and was involved in research
and development of network security. He has
been a Research Assistant Professor with JAIST
since 2008, where he has also been an Associate
Professor since 2011. His research interests
include applied cryptography and network secu-
rity. He is a member of the Institute of Electronics, Information and Com-
munication Engineers, and the Information Processing Society of Japan.

TAKESHI TAKAHASHI (M’05) received the
Ph.D. degree in telecommunication from Waseda
University, in 2005. He was with the Tampere Uni-
versity of Technology as a Researcher from 2002
to 2004, and Roland Berger Ltd., as a Business
Consultant, from 2005 to 2009. Since 2009, he
has been with the National Institute of Information
and Communications Technology, where he is cur-
rently a Senior Researcher. His research interests
include Internet security and network protocols.
He is a member of the Association for Computing Machinery, and the
Institute of Electronics, Information and Communication Engineers. He was
a recipient of the Funai Information Technology Incentive Award in 2005,
and the ITUAJ’s Incentive Award in 2012. He serves as the Co-Chair of IETF
MILE Working Group.

101



