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ABSTRACT Mobile networks are vulnerable to signaling attacks and storms that are caused by traffic
patterns that overload the control plane, and differ from distributed denial of service attacks in the Internet
since they directly affect the control plane, and also reserve wireless bandwidth and network resources
without actually using them. Such storms can result frommalware and mobile botnets, as well as from poorly
designed applications, and can cause service outages in 3G and 4G networks, which have been experienced by
mobile operators. Since the radio resource control (RRC) protocol in the 3G and 4G networks is particularly
susceptible to such storms, we analyze their effect with a mathematical model that helps to predict the
congestion that is caused by a storm. A detailed simulation model of a mobile network is used to better
understand the temporal dynamics of user behavior and signaling in the network and to show howRRC-based
signaling attacks and storms cause significant problems in both the control and user planes of the network.
Our analysis also serves to identify how storms can be detected, and to propose how system parameters can
be chosen to mitigate their effect.

INDEX TERMS Network attacks, malware, app malfunctions, UMTS networks, 3G, 4G, radio resource
control, signalling overload, performance analysis, simulation.

I. INTRODUCTION
Smart devices have not gone unnoticed by cyber-criminals,
who have started to target mobile platforms [1], [2], and
mobile subscribers and mobile network operators (MNOs)
face new security challenges [3], including the identification
and mitigation of signalling attacks and storms, which
overload the control plane through traffic that causes exces-
sive signalling in the network. The susceptibility of mobile
networks to such attacks has been identified [4]–[9], and
they have now become a reality that MNOs have to face
regularly due to side effects of mobile malware, subscribers
with high frequency communication sessions [10], poorly
designed mobile applications [11], [12] and unwanted traffic
from Internet hosts outside the mobile network [13], [14].

While malware and network attacks are common in the
Internet, they have not been prevalent in mobile networks
until recent times. However, they are quickly becoming a
major security concern due to the advent of smart mobile
devices and the increasing capacity and use of mobile

networks for Internet access [15], [16]. The increasing
number of mobile malware and infected devices, together
with changing mobile access patterns of users, can create
signalling anomalies and overloads, either due to deliberate
malicious activity or as a side-effect. Thus signalling attacks
and storms are indeed an emerging cyber-security threat in
mobile networks, which are a major component of our cyber
infrastructure. Smart mobile devices are also increasingly
used in emergency management systems, especially in urban
environments [17]–[19]. Thus they are likely to be targeted in
conjunction with other physical or cyber attacks in order to
further compromise the safety and confidentiality of civilians
and emergency responders [20], [21].

MNOs have a strong incentive to safeguard mobile users
from service outages and degradations due to signalling
attacks and storms, and to protect their mobile network
infrastructure, market reputation and revenue [3], [22]. It is
therefore important to identify how signalling storms are
generated, analyze their effect on network performance,
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and develop detection and mitigation methods in this new
and dynamic playground of smart devices and new gen-
eration mobile networks centered around data services.
As we look at the future, we can expect that UMTS and
LTE networks will also support major machine-to-machine
communications [23] where the human being is not in the
loop to identify and remediate against an apparent storm.
In the first instance, we can expect that UMTS will have
to be secured against such storms and into the future that
LTE should be an increasing object of studies to detect and
mitigate against signalling storms and attacks [24]–[26].

In our previous work [27], we identified the radio
resource control (RRC) protocol of UMTS and
LTE networks [28], [29] to be particularly susceptible to
creating signalling attacks and storms. In [27], we developed
a probability model [30] of signalling state transitions for a
single UMTS user, from which we derived analytical results
regarding the user’s behavior when her device generates user
traffic that causes a signalling storm and the impact it has on
the network. In the work presented here, we expand upon
our earlier work and improve our mathematical model by
introducing the effect of congestion in the control-plane.
We also design and develop a mobile network simulator
that is significantly more complex and realistic than our
mathematical model, and present results from large-scale
simulation experiments that enable us to better understand
the temporal dynamics of user behavior and signalling, and
to validate our analytical results. Based on the insights that we
gain, we discuss how certain network parameters can help to
mitigate against signalling storms, and how signalling storms
can be detected.

II. SIGNALLING ATTACKS AND STORMS
Signalling Attacks are caused by traffic patterns that gen-
erate excessive signalling in the control plane of mobile
networks, and can be launched easily without modification
or compromise of the radio or networking stack of mobile
devices by generating low volumes of carefully timed user
plane traffic. Signalling attacks are in essence distributed
denial-of-service (DDoS) attacks [31], but are different than
DDoS attacks in the Internet since they directly target the
control plane of mobile networks without necessarily gen-
erating a high traffic volume at the user plane. RRC-based
signalling attacks are further troublesome since they reserve
radio resources without actually using them, thereby wasting
radio resources.

In this paper, we assume that signalling attacks are due
to deliberate malicious activity that aims to disrupt mobile
services, as opposed to signalling storms which are discussed
below. While we are not aware of any deliberate signalling
attacks in operational mobile networks up to now, we should
not carelessly dismiss the potential for such attacks since
all the ingredients for their realization are already available.
For example, the mobile world witnessed its first botnet
in 2012 [32], which can be leveraged to launch different types
of signalling attacks [33], in addition to other types of

malicious activities [34]. Furthermore, there are methods
available to an attacker that can be used to improve the
efficiency of the attack. For example, the attacker can
actively probe the network in order to infer the network’s
parameters [35]–[37], and also identify IP addresses at spe-
cific locations within the network [38]. Indeed, a review of
180MNOs showed that 51% of them allow mobile devices to
be probed from the Internet, by either assigning them public
IP addresses, allowing IP spoofing, or permitting mobile-to-
mobile probing within the network [38], [39]. Similar attacks
can also be launched via compromised femtocells [40],
which can further be used to infect other femtocells via
Internet-based connections not controlled by the MNO, and
thus increase the intensity of the attack.
Signalling Storms are similar to signalling attacks, but they

are mainly due to poorly designed or misbehaving mobile
applications that frequently establish and tear-down data con-
nections in order to transfer small amounts of data. Many
mobile applications are designed and developed by software
companies who mainly have an Internet background and thus
are not familiar with the control plane of mobile networks.
They therefore assume that connectivity is a given and design
their applications without taking into account the specifics of
mobile networks. This phenomenonwas studied early in [41],
where a small number of mobile devices were observed to
generate an unproportionately high number of PDP context
activations and deactivations due to poorly designed appli-
cation layer software. A good recent example that shows
that this trend is still continuing despite earlier work is the
case of an Android VoIP application popular in Japan, which
used frequent keep-alive messages even when the users were
idle, causing a signalling overload and a major outage in
the mobile network [42]. In a similar incident, the launch of
the free version of the Angry Birds application on Android
caused excessive signalling load due to the frequent com-
munications generated by the in-game advertisements [43].
Such problems have prompted the mobile network industry
to promote best practices for developing network-friendly
applications [11], [12].

Unexpected events in the Internet may also cause
signalling storms in mobile networks. For example, an impor-
tant feature of smartphones is the ability to receive push
notifications from cloud services in order to notify the user
of an incoming message or VoIP call, which is enabled by
having the mobile device send periodic keep-alive messages
to a cloud server, typically with a period of fiveminutes. If the
cloud service becomes unavailable, then the mobile device
may use a much shorter period, generating significantly
higher signalling load. Such incidents have been reported and
analyzed in [44] and [45] with outages in Skype and Google’s
cloud service, respectively.

Signalling storms could also result as a side effect of
large-scale malware infections which target the user rather
than the network, but generate excessive signalling as
a by-product of malicious activity. Examples of malware that
would cause signalling storms if many users are infected are
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SMS/email spammers, adware, premium service abusers and
botclients. All of these malware generate frequent but small
amounts of data, requiring repeated signalling to allocate and
deallocate radio channels and other resources, and therefore
have a negative impact on the control plane of the network.
Unfortunately, such malware are among the top threats
currently encountered on smart devices [1], [46], [47].

Recent incidents such as the ones described here show
that the threat of signalling attacks and storms is very real
and that they have the potential to cause major outages in
mobile networks. Unlike flash crowds which last for a short
time during special occasions such as New Year’s Eve,
signalling attacks and storms are unpredictable and they per-
sist until the underlying problem is identified and resolved
by the MNO. Considering their impact on the availability
and security of mobile networks, it is evident that MNOs
have a strong incentive to safeguard their users from malware
and to proactively detect and mitigate signalling attacks and
storms in order to protect their infrastructure and services.
Although in principle some of these attacks can be mitigated
by smart routing [48] inside the core network, such facilities
are currently not available. We also believe that as MNOs
progressively take on the role of Internet service provider with
4G networks, we will witness signalling-based DDoS attacks
in mobile networks more frequently, and therefore we should
be proactive in their analysis and mitigation.

FIGURE 1. The basic architecture of a UMTS network. The user equip-
ment (UEs), e.g., smartphones, are connected to the mobile network via the
base stations (Node-Bs), which maintain the radio channels with the UEs. The
radio network controller (RNC) manages the radio resources and the Node-Bs
in the access network.

III. THE RADIO RESOURCE CONTROL PROTOCOL
In UMTS networks, the radio resource control (RRC)
protocol is used to manage resources in the radio access
network (RAN) [28]. It operates between the UMTS
terminals, i.e., the user equipment (UE), and the radio net-
work controller (RNC). Figure 1 shows the basic architec-
ture of a UMTS network, depicting the RAN and the core
network (CN) elements comprising the packet-switched
domain of the mobile network. The RNC is the switching and
controlling network element in the RAN, and performs radio
resource management (RRM) functions in order to guarantee
the stability of the radio path and the QoS of radio connec-
tions by efficient sharing and management of radio resources.
The RRC protocol is utilized for all RRM-related control

functions such as the setup, configuration, maintenance and
release of radio bearers between the UE and the RNC. The
RRC protocol also carries all non-access stratum signalling
between the UE and the CN.

FIGURE 2. RRC states in UMTS. The figure on the left shows the typical
number of signalling messages exchanged within the RAN for each transition.
The other figures show the approximate energy consumption and maximum
data rate at the UE.

In order to manage the radio resources, the RRC protocol
associates a state machine to each UE, which is maintained
synchronized at the UE and the RNC via RRC signalling
messages. The RNC controls the transitions between the RRC
states based on information it receives from the UEs and
the Node-Bs on available radio resources, conditions of the
currently used radio bearers, and requests for communication
activity. As shown in Fig. 2, there are typically four RRC
states, given in order of increasing energy consumption and
data rate: idle, cell-PCH, cell-FACH and cell-DCH. In the rest
of this paper, we refer to state cell-X simply as X. Whenever
the UE is not in the idle state, it is in connected mode and has
a signalling connection with the RNC. In connected mode,
the location of the UE is known by the RNC at the level of
a single cell, which is maintained by cell updates sent by the
UE either periodically or when it changes cells. We describe
the RRC states in more detail below.
Idle: This is the initial state when the UE is turned on.

In this state, the UE does not have a signalling connection
with the RNC, and therefore the RNC does not know the
location of the UE. Its location is known by the CN at
the accuracy of the location area or routing area, which is
based on the latest mobility signalling the UE performed with
the CN. Any downlink activity destined for a UE in idle mode
will require paging in order to locate the UE at the cell level.
Since the UE does not have an RNC connection, it cannot
send any signalling or data until an RNC connection has been
established.
FACH: The UE is in connected mode, and the radio

connection between the UE and the RNC uses only common
channels which allow low-rate data transmission.
DCH: The UE is in connected mode, and the radio

connection uses resources dedicated to the UE. While in
DCH, the UE may use shared channels, dedicated channels
or both. The data rate of the connection is significantly higher
than the FACH state, but energy use is also higher.
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PCH: This is a low-energy state that allows the UE to
maintain its RNC connection and thus stay in connected
mode, but it cannot send or receive any traffic while in this
state.While in PCH, the UE listens to paging occasions on the
paging channel. This state is optional and it can be enabled or
disabled by the MNO according to their policies. Although
the PCH state is a low-energy state, the UE still consumes
more power than in the idle state. Therefore, some MNOs
choose to disable the PCH state in order to allow the UE
to return to idle mode quickly and thus reduce its energy
consumption. We will investigate the effect of the PCH state
on signalling load in Sec. VII.

State demotions from a higher to a lower state,
e.g., DCH→FACH, occur based on radio bearer inactivity
timers at the RNC. The exact order of state demotions is
dependent on MNO policy, but a progression as shown
in Fig. 2 is common, although some MNOs skip the FACH
and/or PCH states. State promotions from the idle and PCH
states occur depending on uplink and downlink activity. For
example, when the UE has uplink data to send, it sends an
RNC connection request if in idle, or a cell update if in PCH,
to the RNC in order to move to a state where it can send and
receive data. Whether the UE is promoted to the FACH or
DCH state is dependent on MNO policy. A FACH→DCH
transition is performed based on buffer occupancy of the
uplink and downlink radio links as observed by the RNC.

TABLE 1. RRC state transitions, number of signalling messages
exchanged, and related parameters.

Table 1 summarizes when RRC state transitions occur
and the number of signalling messages exchanged to effect
each transition. In our simulations, we assume the RRC state
progression given in Fig. 2; whether the UE goes from FACH
to PCH, or to idle, depends on whether the PCH state is
enabled. For an x → y transition, we use rxy and cxy to
denote the number of signalling messages exchanged within
the RAN and between the RAN and the CN, respectively.

The RRC protocol was designed to manage the limited
radio resources among multiple UEs and to decrease energy
use at the UE. It is therefore biased towards demoting the
UE to a lower state as soon as possible, especially if the
UE is in the DCH or FACH state. Indeed, as the number of
smartphones accessing UMTS networks has increased, the
industry has introduced improvements and changes in order

to get more data rate out of limited radio resources, such
as HSDPA and HSUPA, and to improve the energy use of
smartphones. For example, fast dormancy enables the UE to
indicate to the RNC when it has no more uplink data to send
for a speedier demotion to the PCH or idle state. In addition,
someMNOs choose to disable the PCH state in order to allow
the UE to return to idle mode quickly and thus reduce its
energy consumption. As we will discuss in Sec. VII, this
tendency to perform hasty RRC demotions result in excessive
signalling load in the mobile network, especially in the case
of signalling attacks and storms.

The RNC will customarily release radio resources for a
UE soon after activity ceases in its channel, making those
resources available for other UEs. Thus, it uses short inactiv-
ity timers, which are in the order of 2–10 seconds (Table 1).
These short timers make the RRC protocol susceptible to sig-
nalling attacks, as an attacker that approximately determines
the values of the T1 and T2 timers can then launch a devas-
tating attack from a relatively small number of compromised
UEs, as we discuss in Sec. VII. In addition, when combined
with the chatty nature of many mobile applications and with
emerging mobile trends such as buffering streaming traffic
in order to save device energy [49], the tendency to deal-
locate radio channels quickly necessarily leads to increased
RRC signalling in order to reconfigure or setup channels that
were released a short time ago, rendering the mobile network
vulnerable to RRC-based signalling storms.

We thus focus on the RRC protocol in order to better
understand its signalling behavior, and investigate under
which conditions signalling load becomes excessive. In the
next section, we present a mathematical model of the sig-
nalling behavior of a single UE that includes congestion
effects in the control plane, and later derive analytical results
from it. Section V describes our simulation model of UMTS
networks. In Sec. VI, we describe our experimental setup,
and discuss our findings on the effect of signalling attacks
targeting the RRC protocol in Sec. VII. We discuss related
work in Sec. VIII and present a summary of our findings and
future work in Sec. IX.

IV. MODELING SIGNALLING BEHAVIOR OF THE UE
Analytical models [50] are a useful way to gain insight into
the main performance interactions within a telecommunica-
tions system. Thus we will first review the work in [27]
for a single UE’s signalling behavior which focuses on the
potential of causing signalling storms. We then extend the
analysis to include the effect of congestion which limits the
signalling load that a set of misbehaving UEs can impose on
the network during a storm.

Consider a UE which generates both normal and
malicious connections, and suppose that its RRC state
machine is described by Fig. 2. We will represent the state
evolution of the UE by a Markov model, presented in Fig. 3,
whereby future behavior (residual time in current state and
next state) depends only on current state and not on past
behavior. Our motivation behind the choice of this modelling
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FIGURE 3. Markov model of the signalling behavior of the UE. Up-transitions
are caused by either low data rate (L) or high data rate (H) traffic, while
down-transitions are due to timeouts. The model includes the main RRC
states, shown as rounded rectangles, as well as intermediate states, shown as
circles, some of which represent states where the UE is waiting for a response
to a state transition request. The continuous and broken circles represent
intermediate states due to normal and malicious traffic, respectively.

approach is that it provides a balance between capturing the
interactions between user traffic and the RRC protocol and
maintaining analytical tractability, and it can also be extended
to a population of users without much technical difficulty.
Let λL and λH be the rates at which low and high data
rate connections are normally made, and µL and µH be the
rates at which these connections terminate. High bandwidth
connections include video streaming, web browsing, VoIP
and voice calls, while low bandwidth connections represent
small data transfers such as keep-alive messages and location
updates. We denote by FL the state when the UE is using the
bandwidth of FACH, and by DL and DH the states when low
and high rate requests are handled while the UE is in DCH.
Since the amount of traffic exchanged in states FL and DL
is usually very small, we assume that their durations are
independent but stochastically identical. At the end of normal
usage, the UE transitions from FL to F0 or from {DH ,DL}
to D0, where F0 and D0 are, respectively, the states when the
UE is inactive in FACH and DCH, and before the timers T2
and T1 expire. If the UE does not start a new session for some
time, it will be demoted from D0 to F0, and from F0 to P,
and will then return from P to I (i.e., PCH → Idle) when
inactivity timer T3 expires. Since the UE is not able to com-
municate in P, the transition P → I is performed by having
theUEfirstmove to FACH, release all signalling connections,
and finally move to I .
The attacking or misbehaving connections falsely cause

unnecessary up-transitions while the user does not really need
to move to a bandwidth using state (FL ,DL , or DH ), and
therefore the UE is soon demoted to a lower state due to
inactivity, unless the user starts a new data session before
the timeout. Consequently, the attack results in the usage of
network resources both by the computation, state transitions
and exchange of control messages that occur for session
handling, and through bandwidth reservation that remains
unutilised.

To perform a signalling attack, the attacker would need
to infer the radio network configuration parameters (i.e., the
Ti timers and the radio link buffer threshold2), and alsomon-
itor the user’s activity in order to estimate when a transition
occurs so as to trigger a new one immediately afterwards.
Naturally there will be an error between the actual transition
time and the estimated one, and we denote the expected value
of the difference between the two time instants by τL and
τH for malicious transitions to FACH and DCH, respectively.
In a similar manner, if the storm is caused by a misbehaving
mobile application, then τL , τH represent the level of syn-
chronization between the misbehaving traffic bursts and the
UE’s state changes; for instance τH = 0 indicates the extreme
case where a high data rate burst is sent immediately after a
demotion from DCH.

Let σ−1xy be the average time needed to establish and/or
release network resources during state promotion or demotion
x → y, and Sxy be the corresponding state when the UE is
waiting in state x for the transition to complete. Note that this
overhead is incurred only when the UE moves from one RRC
state to another, while changes within the same RRC state
(e.g., from inactive to active) occur instantaneously and are
seamless to the UE. Denote by πx the stationary probability
that the UE is in state x, and let 3H = λH + τ−1H ,

3L = λL + τ−1L , then the state transition model can be
described by a set of linear equations:

πI [3H +3L] = πPT
−1
3 ,

πP[3H +3L + T
−1
3 ] = πF0T

−1
2 ,

πF0 [3H + λL + T
−1
2 ] = πFLµL + πD0T

−1
1 ,

πFL [3H + µL] = [πI + πP + πF0 ]λL ,

πD0 [λH + λL + T
−1
1 ] = πDHµH + πDLµL ,

πDL [λH + µL] = πD0λL + πFL τ
−1
H ,

πDHµH =
∑

x∈{I ,P,F0,FL ,D0,DL }

πxλH , (1)

The left hand side of (1) represents the steady-state probabil-
ity of a state x times the total rate of moving out of the state,
while the right hand side is the sum of the probabilities of
the states from which one can move into x each multiplied
by the corresponding transition rate. Similar balance equa-
tions can be written for the intermediate states Sxy, e.g.
πSIDH σID = πIλH , allowing us to express the normalisation
condition 1 =

∑
x,y∈{I ,P,F0,FL ,D0,DL ,DH } πx + πSxy as:

1 = πI [1+
3H

σID
+
3L

σIF
]︸ ︷︷ ︸

Pr[user in Idle]

+πP[1+
3H

σPD
+
3L

σPF
+
T−13

σPF︸ ︷︷ ︸
Pr[user in PCH]

+
T−13

σFI
]+ πF0 [1+

3H

σFD
+
T−12

σFP
]+ πFL [1+

3H

σFD
]

+ πD0 [1+
T−11

σDF
]+ πDL + πDH︸ ︷︷ ︸

Pr[user in DCH]

. (2)
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The average signalling load (msg/s) on the RNC generated by
the UE due to both normal and malicious traffic is then:

γr = πI [3LrIF +3H rID]+ πP[3LrPF +3H rPD]

+ [πF0 + πFL ]3H rFD + πD0T
−1
1 rDF

+πF0T
−1
2 [rFP1F→P+rFI1F→I]+πPT

−1
3 rPI1F→P, (3)

where the characteristic function 1x→y takes the value 1 if
the transition x → y is enabled and 0 otherwise. The UE also
generates signalling with the CN whenever it moves to/from
the Idle state, leading to an average signalling load on the
SGSN given by:

γc = πI [3LcIF +3HcID]+ πF0T
−1
2 cFI1F→I

+πPT
−1
3 cPI1F→P. (4)

A. MODELING CONGESTION IN THE CONTROL PLANE
The analytical model we just described can be solved in
closed-form [27] when the average transition delays are
known, allowing to determine the conditions and param-
eters for which signalling misbehavior has the most seri-
ous consequences on the network functioning. In normal
circumstances, state promotions and demotions last for few
milliseconds that represent only a small fraction of the total
lifetime of a session. However, when the mobile network
servers become overloaded, as in during a signalling storm,
the time needed to establish and release connections also
increases, which in turn limits the maximum signalling load
that a set of misbehaving UEs can impose on the network.
To better understand the effect of a signalling storm, we
develop a simple model for the average time σ−1xy needed to
perform the transition x → y as follows:

σ−1xy = rxyw+
rxy∑
n=1

(txy[n]+ δxy[n]), (5)

which consists of three components:
• Communication delay txy[n] comprising propagation
and transmission parts that are subject to the physical
characteristics of the links traversed by the n-th sig-
nalling message exchanged during the transition. This
delay depends only on the path followed by the message,
and we ignore queueing at the transmission links, since
signalling storms do not affect the data plane, and thus
they do not translate into congestion in the wireless or
wired links.

• Average queueing delay w at the RNC signalling server,
which is a function of the number of normal UEs served
by the RNCMN, the number of misbehaving onesMA,
and the RNC signalling load (3) of both normal γNr
and misbehaving γAr UEs. Note that we do not rep-
resent congestion at the SGSN, since the CN is less
susceptible to signalling storms, especially when PCH is
enabled.

• Processing time δxy[n] at the mobile network servers
handling the message, which we assume to be constant
per message type1 such that δxy[n] =

∑
s∈servers δxy,s[n].

The aggregate load that the RNC signalling server needs to
handle is then:

0r = MN γNr +M
AγAr .

Note that 0r is a function of w, which itself is determined
by 0r . Using a simple M/M/K system to model the RNC
signalling server, the average queueing delay becomes [51]:

w=
(Kρ)K

K !(1− ρ)(Kν − 0r )

[
K−1∑
i=0

(Kρ)i

i!
+

(Kρ)K

K !(1− ρ)

]−1
, (6)

where ρ = 0r
Kν , and ν is an ‘‘equivalent’’ average service rate

which depends on the composition of the signalling messages
processed by the RNC:

ν−1 = 0−1r

∑
C∈{N ,A}

MC ∑
x,y

aCxy

rxy∑
n=1

δxy,r [n],

where aCxy is the rate at which a UE of type C ∈ {N ,A}
triggers the transition x → y (i.e. γ Cr =

∑
x,y a

C
xyrxy),

and δxy,r [n] ≥ 0 is the RNC’s processing time of the
n-th signalling message exchanged during the transition.
Finally, w is obtained by solving the system of equations (1),
(2), (5) and (6), from which the steady state probabilities and
average signalling loads follow directly.

V. SIMULATION OF UMTS NETWORKS AND
SIGNALLING ANOMALIES
The mathematical user model we have developed and
described in Sec. IV differentiates between normal and attack
or misbehaving traffic, but it aggregates all the different
user plane applications and services, and other control plane
events carried by RRC such as mobility management updates,
into a few representative traffic rates assuming Poisson
arrivals. Therefore, this model is necessarily an approxima-
tion of the overall signalling behaviour of the UE, and the
traffic parameters of the user need to be carefully selected
based on the scenario of interest and the real-life behaviour
of users as they interact with various mobile applications and
services. This process would normally involve the aggrega-
tion of all user plane activity into the few traffic rates of
the model and an approximate translation of non-Poisson
traffic patterns into Poisson arrivals, which introduces some
discrepancy between the mathematical model and the actual
behaviour of the UE.

Although the model enables us to quickly derive analytical
results in order to investigate the effect of signalling storms
and the values of the various network parameters, such as the
Ti timers, on signalling load, it cannot represent the user plane
behaviour at the application level in detail, e.g., it cannot

1Note that signalling message types are defined by the 3GPP standards
and known a priori.
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differentiate between traffic patterns due to web traffic and
instant messaging. Another assumption of the mathematical
model is that we know the (aggregate) normal and attack
traffic patterns and therefore can select the corresponding
traffic parameters accordingly. In cases when the misbehav-
ing traffic pattern is not known, or if we cannot clearly
distinguish between normal and attack traffic, the mathemat-
ical model is still useful for improvised evaluations, but it
is significantly more difficult to choose the correct model
parameters for a more realistic analysis.

In order to capture such aspects of the mobile network not
explicitly represented in the mathematical model, we have
developed a discrete event simulation model of the UMTS
network, focusing on the signalling layer in the RAN. The
simulation models were developed independent of the mathe-
matical model, and are indeed a more realistic approximation
of the UMTS protocol stacks of both the control and user
planes. Each node of the mobile network is represented as a
self-contained and independent entity in the simulation, and
nodes communicate through message exchanges, which are
modeled based on the 3GPP standards for mobile protocols.
We have developed models of the UE, Node-B, RNC, SGSN
and GGSN, and also models of the Internet cloud and
Internet hosts (i.e., servers). While we do not model the
circuit-switched (CS) domain explicitly, the SGSN model
contains aspects of the MSC server necessary to establish
and tear-down CS calls, i.e., voice calls and SMS; our SGSN
model is therefore a hybrid of the SGSN and the MSC server.

FIGURE 4. The simulation model of a radio bearer, consisting of a (single
server, single FIFO queue) pair in each direction. The uplink and downlink
servers are located at the UE and the Node-B, respectively.

In the control plane, we model the session manage-
ment (SM), GPRS mobility management (GMM) and RRC
layers in significant detail. In the user plane, we model
different applications at the application layer, which includes
CS and IP applications and allows us to differentiate between
different types of user activity. We also realistically model the
transport layer (TCP and UDP) and the IP layer. We have a
simplified model of the RLC layer, but we do not explicitly
model the MAC and PHY layers; effects of changes in
radio conditions are modeled as random variations in the
data rate of the radio channels. Uplink and downlink radio
transmissions over a radio bearer (RB) are modeled by two
single server, single FIFO queue pairs, one for each direction
as shown in Fig. 4. The service time at the transmission server,

i.e., radio bearer, is calculated based on the length of the
currently transmitted RLC packet and the current data rate
for the RB. Changes in the RB data rate are reflected on the
service time of the current packet. Each UE has one signalling
RB and one data RB. In addition to the transmission delays for
the RBs, propagation and processing delays are alsomodeled.
We also model the usual communication delays
(i.e., transmission, propagation and processing delays) over
wired links connecting the different network elements,
e.g., between the RNC and the SGSN.

In order to improve the performance of simulations
and to be able to realistically evaluate large scale mobile
networks, we combine packet-level and call-level representa-
tion of user plane communications in our simulation model.
Communications that are message-based or bursty in nature
are represented at the packet level; these include communica-
tions for SMS, email, web browsing, and instant messaging.
Other types of communications are represented at the call
level: examples include voice and VoIP calls, and multime-
dia streaming. Furthermore, our simulation models support
distributed simulation, allowing us to leverage multiple hosts
and processors in a single simulation.

In addition to the control plane protocols discussed above,
we model the RANAP, NBAP and GTP protocols. The RRC
model in the RNC consists of a single signalling server and
a single FIFO queue, used to model the processing time δxy,r
for RRC signalling messages. The server handles two classes
of signalling messages, where one class consists of signalling
messages that effect a state transition x → y (e.g., the
RB setup message), and the second class includes all other
signalling messages, including mobility updates. The service
time assigned to the first class reflects the time taken to
allocate and deallocate radio resources by the RNC, whereas
a default and smaller service time is used for the second class
(onems in our simulations). In the analytical results presented
in the next section, K = 1, and ν is calculated based on the
δxy,r values, which are given in Table 2. These values were
chosen based on the typical processing required to effect a
change that the signalling involves, for example setting up
a radio bearer, and reflects the complexity of the procedure
based on 3GPP standards. It should be noted that while these
values are realistic, they are by no means definitive since
the exact values are vendor-dependent. The signalling server
at the RNC is one of the main points of interest in our
simulations, and as we will discuss in Sec. VII, it will become
overloaded as the severity of the signalling storm increases.

VI. EXPERIMENTS
In order to understand the effect of RRC-based signalling
attacks in UMTS networks, we implemented our simula-
tion model in the OMNeT++ simulation framework [52].
We present results from simulation experiments and analyti-
cal results derived from our mathematical model. The UMTS
network topology used in the simulations closely resembles
the architecture shown in Fig. 1. In the simulations, we have
1,000 UEs in an area of 2 × 2 km2, which is covered by
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TABLE 2. Service times at the RNC signalling server for handling
RRC signalling messages.

seven Node-Bs connected to a single RNC. The CN consists
of the SGSN and the GGSN, and the GGSN is connected to
ten Internet hosts acting as web servers. All UEs attach to
the mobile network at the start of the simulation, and remain
attached. We simulate a high level of web browsing activity
in a two and a half hour period. Our web browsing model
is based on 3GPP recommendations [53], and is described
below.

FIGURE 5. Web traffic model representing interactive user browsing in our
simulations. The traffic model is self-similar, consisting of active browsing
sessions and inactive intervals. This user model is independent of and
significantly different than the simpler aggregate signalling model of the user
presented in Sec. IV. Time is not drawn to scale.

A. THE WEB BROWSING MODEL
We model interactive web browsing behavior using
a self-similar traffic model as shown in Fig. 5. The param-
eters of the web traffic model are random variables from
probability distributions; Table 3 gives the values we used
in our simulations, which are based on web metrics released
by Google [54]. This simulation model of the user is signif-
icantly more complex than in the mathematical model, and
allows us to represent user behaviour more realistically and
without assuming Poisson arrivals.

The day-night cycle of the user is represented by the
activity period, which is the time the UE is actively generating
web traffic during a 24-hour period. The user starts its first
activity period after an activation delay da, and the period
consists of one or more browsing sessions. The first session
within an activity period starts after an initial session delay ds,
and the inter-session interval is is the time between the last
and the first main request in one session and the next.

Within a session, the user generates main page requests
and embedded object requests for web pages and the web

TABLE 3. Parameters of the web traffic model used in the
simulation experiments.

objects embedded within the main page, respectively. The
first main page request is scheduled at the start of the session,
which results in a page response from the web server. This
response is subject to a processing delay dpc at the client,
which represents the time it takes for the web client at the
UE to process the received response. A web page contains
zero or more embedded objects, and the client generates
an embedded object request for each one. We assume that
HTTP version 1.1 is used and that each embedded object
request is pipelined over a single TCP connection. The length
of a request is denoted by lr. The inter-request interval ir
is the time between the generation of two consecutive main
page requests, and it is independent of the reception of the
responses. The session length is controlled by the number of
main page requests ns in the session.

The web server generates a response for each request it
receives after a processing delay dps . The length of a main
page response is lm, and it excludes the sizes of any embed-
ded objects and TCP/IP headers. The number of embedded
objects per page is ne, and we model two types of objects:
images and text (e.g., CSS documents, scripts). The size
of an embedded object is limg and ltxt for image and text
objects, respectively. Rimg gives the ratio of image objects
to all embedded objects in a page. In the simulations, a client
selects a web server uniformly at random for each main page
request.

B. THE ATTACK MODEL
We consider two different attack strategies, or equiva-
lently, misbehaviour patterns in our evaluation: FACH and
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DCH attacks. Note that in the rest of this paper, we will use
the terms attack andmisbehaviour interchangeably. In FACH
attacks, the attacker aims to overload the control plane by
causing superfluous promotions to the FACH state, and there-
fore needs to know when a demotion from FACH occurs in
the UE. In DCH attacks, the demotion of interest is from the
DCH state. As introduced in Sec. IV, the error between the
actual transition time and the estimated one is denoted by τL
and τH in the FACH and DCH attack scenarios, respectively.
Consequently, 1/τ is a measure of the aggressiveness of the
misbehaving application.

In FACH attacks, the attacker sends a small data packet
to a random Internet server in order to cause a promotion to
FACH. Higher rate data traffic is generated in DCH attacks in
order to cause the buffer threshold to be reached and therefore
result in a promotion to DCH. For simulation purposes, our
RRC model at the UE informs all registered malicious appli-
cations when an RRC state transition occurs. Before launch-
ing the next attack, the attacker waits for a period of τL or τH
after a suitable demotion is detected, e.g., from FACH to PCH
in the FACH attack case, where τL , τH are random variables.
In our experiments, we assume that τL , τH are exponentially
distributed with mean = {0, 1, 2, 4, 6, 10, 14, 20, 30}s to
simulate varying degrees of error on behalf of the attacker. For
signalling storms, τ represents the synchronization between
the RRC state machine of the UE and the misbehaving
application, while the attack scenario represents whether the
misbehaving application generates low-rate or high-rate
traffic. We present results from the DCH attack scenario only
since the FACH attack scenario produces similar behaviour
in most cases.

VII. MODELING AND SIMULATION RESULTS
We performed simulation experiments in order to investi-
gate the effect of signalling attacks and storms due to the
RRC protocol on the RAN and the CN. We vary the number
of compromised or misbehaving UEs from 1% to 20%
of all UEs. Both normal and misbehaving UEs generate
normal traffic based on the web browsing model described
above. The misbehaving applications are activated gradually
between 20 and 30 minutes from the start of the simulation
in order to prevent artifacts such as a huge spike of signalling
load due to many malicious applications coming online at the
same time. We collect simulation data only from the period
when all misbehaving UEs are active. Each data point in the
presented results is an average of five simulation runs with
different random seeds, resulting in different mobility and
traffic patterns. The relevant RRC protocol parameters are
as given in Tables 1 and 2. The simulation results do not
capture signalling due to mobility and session management,
but we have observed from other experiments that these
signalling activities have negligible effect on the resulting
signalling load in the network since the rate of signalling
messages exchanged for these activities is minor compared
to RRC signalling, especially in the case of a signalling
storm.

We present analytical results derived from our mathemati-
cal model together with the simulation results. However, we
do not present analytical results for Figs. 8 and 9 to prevent
repetition of similar results, and for Fig. 8 since the math-
ematical model does not capture quality-of-experience. The
parameters of the mathematical model were chosen based
on an initial set of simulation experiments, from which we
derived the aggregate normal and misbehaving user patterns
for the UE. This enabled us to validate the mathematical
model using simulation experiments in similar settings and
parameters.

FIGURE 6. Signalling load (sum of the rates of the incoming and outgoing
signalling messages) on the RNC vs. aggresiveness (1/τH) under DCH
attacks. Each line represents a different number of misbehaving devices. The
1/τH = 0 case corresponds to a no attack scenario. We present analytical and
simulation results with the PCH state enabled or disabled in the network, and
observe that the analytical model can produce accurate results given that the
parameters of the model are correctly chosen. (a) PCH enabled (simulation).
(b) PCH disabled (simulation). (c) PCH enabled (analytical). (d) PCH disabled
(analytical).

Figure 6 shows the signalling load in the RAN under DCH
attacks, with PCH enabled or disabled; the signalling load is
calculated as the sum of the rate of incoming and outgoing
signalling messages to and from the RNC, and therefore it is
not a direct measure of the capacity of the RNC. We observe
that the rate of increase of the signalling load is significantly
higher when the number of attackers is high, and that enabling
the PCH state slightly decreases the signalling load in the
RAN. A worrying observation is that when PCH is disabled,
there is a possibility to induce a maximum signalling load
on the RNC without requiring a high level of synchroniza-
tion between the misbehaving application and the RRC state
machine. Enabling the PCH state resolves this issue. Another
useful observation is that given a fixed number of attackers,
RRC attacks are self-limiting: as signalling load on the RNC
increases, this prevents attackers from being able to attack
the network at a high rate since they are themselves subject to
longer waits for channel allocations.Wewill re-visit this issue
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FIGURE 7. Signalling load (sum of the rates of the incoming and outgoing
signalling messages) on the SGSN vs. aggresiveness (1/τH) under DCH
attacks. Each line represents a different number of misbehaving devices. The
1/τH = 0 case corresponds to a no attack scenario. We present analytical and
simulation results with the PCH state enabled or disabled in the network, and
observe that enabling it significantly reduces signalling load on the SGSN. The
analytical and simulation results still show a high degree of agreement. (a)
PCH enabled (simulation). (b) PCH disabled (simulation). (c) PCH enabled
(analytical). (d) PCH disabled (analytical).

when we discuss congestion at the RNC signalling server
below.

Figure 7 shows the signalling load in the CN under DCH
attacks, with PCH enabled or disabled, and demonstrates
the advantage of enabling the optional PCH state. Most
RRC-induced signalling with the CN occurs when the UE
enters and exits the idle state. With PCH enabled, signalling
load on the SGSN drops with decreasing τH since more
frequent messages prevent the UE from entering the idle state
and thus reduce the signalling load on the SGSN. Therefore,
our recommendation would be to enable PCH as a first step
in the mitigation of RRC-based signalling attacks and storms.
Enabling the PCH state also eliminates the problem of the
maximum signalling load observed in Fig. 7 for high values
of τH , which is due to the interaction between τH and the RRC
inactivity timers T1 and T2.When τH > T1+T2, theUE enters
the idle state as a result of inactivity, and then themisbehaving
application causes the UE to go into FACH or DCH in order
to send data, resulting in excessive signalling with the CN.
The long T3 timer for demotion from the PCH state solves
this issue.

Our results so far demonstrate how the mobile network
infrastructure is seriously affected by RRC-based signalling
anomalies. These anomalies also have an appreciable impact
on the quality-of-experience (QoE) of the mobile user.
Figure 8a shows the application response time, which is
defined as the time between when the user requests a web
page and when all of the web page is received, at a normal
UE. The response time is not greatly affected when there

FIGURE 8. Effect of signalling storms on application response time at normal
devices, and on queueing time at the RNC signalling server under DCH
attacks, with PCH disabled. (a) Application response time (s) vs.
aggresiveness (1/τH) under DCH attacks, with PCH disabled. Each line
represents a different number of misbehaving devices. (b) Average queueing
time (s) at the RNC signalling server vs. percentage of misbehaving devices
under DCH attacks, with PCH disabled. Each line represents a different τH
value.

are very few misbehaving UEs and when τH is high. But
delay increases by up to 400% as the severity of the attack
increases with increasing number of attackers and 1/τH .
Users normally tolerate a wait of 2–10 seconds for a web page
to download [55], and therefore the observed response times
are significant from a QoE view. The affected mobile users
are highly likely to attribute the bad QoE to the MNO, so the
MNOhas onemore incentive to detect andmitigate signalling
problems in its network.

The main reason for the increase in application response
time is the time it takes for the UE to acquire a radio channel
in order to send and receive data, which includes, in addi-
tion to the communication delays between the UE and the
RNC, the service and queueing times experienced by the
RRC signalling messages effecting the channel acquisition.
Figure 8b shows that queueing time at the RRC signalling
server component of the RNC greatly increases as the number
of attackers increase. We observe that effects of congestion at
the server become significant when the percentage of attack-
ers is ≥8%, affecting application response time for normal
users, and also placing a limit on the impact of signalling
attacks on the network since the attackers themselves are
subject to longer delays for channel acquisition. This
self-limiting behaviour imposes a maximum signalling load
of around 200msgs/s on the RNC (Fig. 6). Note that the
service time for RRC messages effecting a FACH→DCH
transition, which is the transition exploited in the DCH attack
scenario, is 35ms, meaning that the RNCwould be congested
by an incoming rate of 30 msgs/s of such messages. However,
the signalling load observed on the RNC is significantly
higher than this (around 200msgs/s) since it is (mostly) the
rate of incoming signalling messages to the RNC, which
is only loosely based on the service capacity of the RNC
because the congestion at the RNC signalling server does
not prevent the UEs from sending channel requests until they
are blocked waiting for a reply to their previous request.
This behaviour is the main cause of the self-limiting nature
of the signalling storm: if all the UEs in the area are blocked
due to congestion, no more signalling requests are received
by the RNC until it has processed some of the requests and
therefore has allowed those UEs to send subsequent requests.
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The service capacity in the RAN can be increased by
installing more RNCs to handle the same number of sub-
scribers or by using a node with more capacity. Installing
more RNCs is very cost-ineffective, and thus would be
shunned by MNOs. Installing a higher-capacity RNC also
does not address the inherent signalling problem since the
RNC would then be provisioned to handle a larger number
of base stations, and thus more subscribers, due to cost effi-
ciency reasons. We therefore need to understand the nature
of signalling storms so that we may develop cost-effective
detection and mitigation methods, which could be installed
as part of the admission control component in the RNC and
prevent the signalling storm from occurring in the first place.

We observe that while RRC-based attacks have a signifi-
cant impact on the RAN, they do not greatly affect the CN.
This is due to the nature of the RRC protocol, which is
essentially an access network protocol between the UE and
the RNC. Therefore, an attacker that wishes to attack the CN
directly needs to adopt other strategies, such as authentication
attacks [56]. The advantages of the investigated attack for the
attacker is its ease of implementation since it only requires
that the attacker estimates the RRC-related parameters of the
network, which is easily attainable [35], and then listens to
user activity in order to estimate when RRC state transitions
will occur on the infected device. A simpler attack that would
have a similar impact would be sending frequent and periodic
messages in order to induce unnecessary state transitions,
and this is indeed the type of behaviour we observe with
misbehaving or poorly designed applications which cause
signalling storms rather than deliberate signalling attacks.

FIGURE 9. Radio channel utilization vs. aggresiveness (1/τH) under DCH
attacks, with PCH disabled. We observe that normal (1/τH = 0) and
misbehaving (1/τH 6= 0) devices exhibit markedly different channel utilizations,
which suggests that channel utilizations and busy and idle times can be used
as representative features for efficient detection of signalling storms. (a) Ratio
of time spent in the FACH state while idle and busy to total time spent in all
RRC states. (b) Ratio of time spent in the DCH state while idle and busy to
total time spent in all RRC states.

Our final results relate to how the UE utilizes its allo-
cated radio resources, and provide a useful feature that we
aim to exploit in our future work on the detection of
signalling attacks. Figure 9 shows the ratio of time the UE
is in the FACH or DCH state while busy (i.e., ending or
receiving data) and idle. The most important observation is
that a normal UE, represented with 1/τH = 0, has a markedly
different behaviour than a misbehaving UE (1/τH > 0), and
the discrepancy increases with 1/τH . Normal UEs do not

spend a significant time in FACH or DCH as busy or idle,
but attackers spend a long time as idle while in FACH and
DCH, i.e., their session tails are comparatively longer than
their session body. This is because normal users only acquire
the channel when they have legitimate traffic, and they send
larger chunks of data and therefore use the channel for longer
than attackers, resulting in a low ratio of idle to busy time.
Attackers, on the other hand, frequently acquire the channel to
send only a small amount of attack traffic and therefore waste
most of the radio channel as reflected in their high ratio of idle
to busy time. The exception to this is the FACH state when
there is congestion in the control plane due to the signalling
attack: we observe that attackers spend significantly long
times as busy in the FACH state when there is congestion,
e.g., with 20% of attackers, which is due to the long delay it
takes the UEs to acquire the channel as discussed above.

VIII. RELATED WORK
The vulnerability of mobile networks to different types sig-
nalling attacks and storms have been recognized even prior
to 3G networks. Pre-3G signalling attacks include the SMS
flooding attack [57] and the paging attack [4]. Enck et al. [57]
show that an SMS attack originating from GSM-capable
Internet hosts can significantly degrade, and in the worst case
prevent voice and SMS services on the cellular network. Two
countermeasures are proposed in [7]: providing differentiated
services via queue management, and resource provisioning
to preferentially allocate channel resources over the air
interface. In [9], the possibility of SMS attacks originating
from mobile devices within the cellular network is consid-
ered, and the authors show the feasibility of such an attack by
implementing it using feature phones on a 2G network.

The paging attack exploits the paging mechanism which
is used to locate and connect to idle devices in the mobile
network for incoming calls. Serror et al. [4] addressed the
problem of paging attacks due to Internet-originating data
calls on a CDMA2000 network, and showed that the paging
channel exhibits a sharp rather than a graceful degradation
under load. Similar problems still exist in 4G networks as
discussed in [58].

RRC-based signalling attacks and storms have been inves-
tigated in [6], where the authors consider a remote host-based
attack on UMTS networks and propose an online detection
method based on the statistical cumulative sum test. The
detector is located at the GGSN, and uses a packet sniffer
to look at IP metrics such as destination addresses and the
estimated radio access bearer setup time in order to detect
the intention of launching an attack, even though the activ-
ity may not actually have an effect on the signalling load.
Our investigation of signalling storms suggests that a better
method would be to install the detector at the RNC, possibly
as part of the existing admission control mechanisms, since
then an effectivemitigationmechanism can be combinedwith
the detector to jointly identify and solve the problem.

RRC-based signalling attacks [59] and storms [60] effect
LTE networks as well. In [59], the authors evaluate the effect
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of an RRC-based signalling attack on an LTE network using
simulation experiments, and show the resulting performance
degradation in the eNode-Bs and the evolved packet
core (EPC). The utilization of LTE radio channels such as
PUSCH and PUCCH due to keep-alive messages is studied
in [60]. We are currently investigating the effect of signalling
storms in LTE networks, paying special attention to machine-
to-machine communications, which are a considerable source
of signalling problems [23].

RRC-based signalling attacks are not the only possible
attacks targeting the control plane of mobile networks. Other
attacks typically target the core network, aiming to overload
the Home Location Register (HLR) or the Authentication
Center (AuC). Various types of authentication attacks exploit-
ing the authentication mechanism between the UE and the
mobile network in UMTS networks have been discussed
in [56], and the signalling load of authentication messages
in LTE networks has been evaluated using renewal process
theory and analytical modeling in [61]. An interesting attack
that exploits the network attach procedure in UMTS networks
is described in [62], where SIM-less devices are used to
overload the HLR and the AuC.

The IP Multimedia Subsystem (IMS) in 3G and
4G networks has also been the target of signalling attacks.
Early work in this area has looked at the signalling load due
to the Session Initiation Protocol (SIP) used in the IMS [63].
Zhao et al. [64] have identified an IMS attack that overloads
the presence servers by exploiting SIP, and have proposed a
detection mechanism based on the Girshick-Rubin-Shiryaev
algorithm that looks at the CPU usage at the presence servers
in order to detect the attack.

Other work has looked at how signalling attacks can be
mitigated. A detailed review of signalling attacks in
3G networks is presented in [8], where the authors identify
the system design decisions that result in such attacks, and
convincingly argue that the design focus should move from
optimality to robustness and elasticity of mobile networks.
The methods that they propose to achieve this change are
randomization of the radio resource management (RRM)
and mobility management (MM) procedures, device-specific
adaptive state transitions based on profiles, and prioritiza-
tion of devices. Wu et al. [65] evaluate one such method,
the randomization of the RRM and MM procedures in
3G networks, and show that it can indeed mitigate
against certain attacks while acceptably degrading normal
performance. We are currently developing a signalling storm
detector and mitigator (SSDM) based on our investigation of
the signalling behaviour of UMTS networks under signalling
storms. Our SSDM adopts the device-specific adaptive state
transitions approach discussed in [8], and mitigates the storm
by adaptively controlling the state transitions of devices that
are identified to be misbehaving, and thus will impact normal
users less than network-wide solutions such as randomiza-
tion. The SSDM can be implemented as part of the admission
control mechanism in the RNC, or it can implemented on
the mobile devices, for example as part of a virtualization

solution designed to mitigate against a wide variety of device-
originating problems as proposed in [66].

The signalling attacks and storms discussed here are not
specific to UMTS and LTE networks, and WiMAX networks
are also vulnerable to such problems. Kolias et al. [67]
provide an in-depth review in this area. Such works high-
light the importance of analyzing and understanding the root
causes and the dynamic behaviour of signalling anomalies in
mobile networks as they evolve with emerging application
patterns and new network technologies. Recent work [68]
shows that this task is not trivial since the interactions
between the control plane and the user plane are more com-
plex than previously thought. Thus, further work is necessary
in this old but still emerging field in order to stay ahead of
changes in the mobile landscape.

IX. CONCLUSIONS AND FUTURE WORK
In this paper, we investigated the effect of signalling attacks
and storms in mobile networks, focusing on signalling
anomalies that exploit the radio resource control (RRC)
protocol in UMTS networks. We presented a Markov model
of the signalling behaviour of the UE and extended the model
for effects of congestion in the control plane. The analyti-
cal model provides an accurate representation of the RRC
signalling behaviour and allows us to reach quick analytical
results, but its parameters need to be carefully selected using
user traffic models built based on either real-life data or on
simulation results. Without being able to choose representa-
tive parameters for the mobile network under investigation
and the user plane behaviour of the UE, the results provided
by the mathematical model will necessarily be speculative.

In order to validate the mathematical model and to select
representative parameters, we developed a realistic simula-
tion model of the UMTS network, which is comprised of the
relevant user plane and control plane protocols represented
at various abstraction levels. The simulation model captures
the interactions between the network elements and protocols
in a UMTS network. We implemented the simulation model
in a distributed network simulator, and conducted simulation
experiments to evaluate the effect of signalling storms on the
signalling servers and the mobile devices.

Our analytical and simulation results show that RRC-based
signalling storms can cause significant problems in both the
control plane and the user plane in the network, and provide
insight into how such attacks and storms can be detected
and mitigated. While we have focused on UMTS networks
in this work, the RRC protocol is also employed in LTE
networks, and any RRC related anomalies would have a more
severe impact in LTE networks since they employ only two
RRC states (connected and idle), and the mitigating effect of
the long T3 timer used in the PCH state are non-existent in
LTE networks.

While this work has employed mathematical modelling
and simulation experiments to evaluate the effect of signalling
storms, it is important to validate these findings using data
from operational mobile networks. We are in the process of
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negotiating the release of data relevant to signalling storms
from our telecommunication partners, which is inevitably a
lengthy process due to legal and privacy issues. As future
work, we plan to use charging data records from mobile
subscribers to build user models, which will result in the
adjustment of the parameters of the mathematical model and
the development of new simulation models. We will also
conduct experiments on signalling storms on a small-scale
physical mobile network test-bed, and use these results to
design more realistic simulation experiments which can scale
up to larger networks.

Future work can exploit the insight gained in this paper for
the detection and mitigation of signalling attacks in mobile
networks. One aspect that requires attention is the identifica-
tion of possible locations, such as specific cells, where attacks
may originate, and methods related to search and smart traffic
routing may prove valuable in this context [69], [70]. Another
important aspect relates to identifying sets of representative
features for the detection of signalling attacks and storms,
and of the misbehaving UEs. An important consideration is to
prevent false positives as much as possible so as not to punish
normal heavy users. We will also develop system-wide
models based on queueing theory [71] that represent a sin-
gle user in a simple manner, to study mitigation methods
that involve randomization and adaptively introducing arti-
ficial delays in the state transitions of the UEs so that they
may automatically reduce the negative impact of attacks and
signalling storms.
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