
IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Received 24 July 2014; revised 27 November 2014; accepted 16 December 2014.
Date of publication 23 December 2014; date of current version 26 February 2016.

Digital Object Identifier 10.1109/TETC.2014.2386137

Theoretical Limits of Helperless Stabilizers
for Physically Unclonable Constants

RICCARDO BERNARDINI AND ROBERTO RINALDO
Department of Electrical, Management and Mechanical Engineering, University of Udine, Udine 33100, Italy

CORRESPONDING AUTHOR: R. BERNARDINI (riccardo.bernardini@uniud.it)

ABSTRACT Physically unclonable constants (PUCs) have recently been proposed for private
ID generation. Because in most of the proposed PUC schemes the generated value is not stable (i.e., it can
change at different turn-ons), a postprocessing with a stabilizer is usually required. Most of the proposed
stabilizer schemes use auxiliary data (helper data) to overcome the inherent randomness of the generation
process. However, this complicates the structure of the scheme and poses additional security problems
(e.g., helper data can be vectors for attacks), so that there is some interest in stabilizers that do not use helpers
(helperless stabilizers). In this paper, we begin the study of the theoretical limits of helperless stabilizers.
We show three main results: 1) perfect stability is unachievable; 2) we can make as small as desired the
probability that a PUC has low stability; and 3) we can reliably recognize the bad devices at production time
and discard them. The proofs of the latter two results are constructive.

INDEX TERMS Security, physically unclonable functions, chip authentication, authentication protocol.

I. INTRODUCTION
The increasing requirements for security motivated a good
amount of research in the last years. A problem that is
currently analyzed is how to store a secret in a chip
so that even an attacker who is able to physically open
the chip and study it, cannot read the secret. This prob-
lem gave rise to the introduction of Physically Unclonable
Functions (PUFs) [1]–[7].

A Physically Unclonable Function (PUF) is a function
that (typically) maps binary words to binary words and
whose behavior depends on the uncontrollable fine details
of the integrated circuit (e.g., the dopant concentration in a
MOSFET). This sensitivity should make the PUF practically
impossible to reproduce, even for the original chip maker. In a
sense, a PUF is like a fingerprint. As each person has a unique
fingerprint, every chip has its own PUF; as the fingerprint
minutiae are the result of casual variation during the fetal
development, the PUF is the result of casual variation during
chip production. As fingerprints, the ideal PUF is at the same
time random and deterministic: random because it should be
impossible to predict the PUF of a given chip, deterministic
because a specific PUF should always give the same result
when queried with a given input. In other words, an ideal PUF
is a random oracle [8]–[10].

In the literature, PUFs are typically partitioned into
two classes, strong and weak PUFs. Strong PUFs [2], [3]
have a very large domain size (exponential with the required
silicon area) and they are typically proposed for Challenge
Response Pair (CRP) based chip authentication. Attacks to
strong PUFs aim typically to obtain a physical model of the
device to be simulated in software [3], [11], [12]. It is also
worth citing [13] that proposes a different definition that
add more constraints, such as the un-modelability for
strong PUFs.
Weak PUFs [4], [5], [14]–[19] have a limited domain size

that, in the extreme case, can reduce to the empty set, making
the PUF a constant function. We propose for the latter case
(the only one considered in this paper) the term Physically
Unclonable Constant (PUC). The typical usage of a PUC is to
provide the chip with a unique secret ID that can be used, for
example, to generate private cryptographic keys. If the ideal
PUF is a random oracle, the ideal PUC is a random constant:
at construction time a random value is selected and the same
value is returned every time the PUC is queried.

A major problem that both strong and weak PUFs must
solve is the fact that most of the proposed PUFs are not strictly
deterministic and their output to a given query can change.
When strong PUFs are used for authentication [7], [11] the

VOLUME 4, NO. 1, MARCH 2016

2168-6750 
 2014 IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. 73



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Bernardini and Rinaldo: Theoretical Limits of Helperless Stabilizers

problem is sometimes solved by accepting the response even
if the match is not perfect, but this also helps the attackers,
who will need to reproduce only a good approximation of
the PUF. For the sake of completeness, it should be pointed
out that the ‘‘approximate match’’ approach is not the only
one; see, for example, the protocol list in [20].

PUCs used for private key creation are even more delicate.
A single wrong bit in the key can make the whole system
useless. In order to make the PUC output more stable,
two-step schemes employing helpers based on error correct-
ing codes are usually proposed.

FIGURE 1. Example of helper-based PUF. (a) Enrollment, (b) Recovering X .

Example 1: Fig. 1 shows an example of stabilizer based
on the code offset secure sketch approach [21], [22]. In the
first step (enrollment, carried out only once, at the first
turn-on, Fig. 1(a)) the PUF outputX is used as noise to corrupt
a randomly chosen codewordC in order to obtain Y = X⊕C ,
which is saved in a Non Volatile Memory (NVM). In the
second step (carried out every time the chip is turned on,
Fig. 1(b)), the PUF is queried again and a possible ‘‘noisy’’
version of X , X̂ = X ⊕ E , is obtained. Here E is a random
noisy vector showing which bits of X changed from the
first query and it has, hopefully, low Hamming weight. X̂ is
XOR-edwith Y to obtain X̂⊕Y = C⊕E , fromwhichC andE
are computed via an error correction procedure. From E and
X̂ one obtains the original X .
Two drawbacks of helper-based stabilizers are the fact that

the helper could leak information or be used for attacking the
system (e.g, with a side-channel attack [23]–[25]) and that
helper NVM are often expensive since they require special
processes (different from the usual CMOS) for their
production [26].

Given the drawbacks of helper-based stabilizers, there is
some interest in developing helper-less stabilizers, that is,
stabilizers that do not require auxiliary data. Developing an
helper-less stabilizer is not trivial. For example, the direct
usage of error correction codes does not work since there
is no guarantee that the nominal output of the PUC will
be a codeword (that is why a helper is used in Fig. 1).
In order to understand if helper-less stabilization is fea-
sible and which kind of performance we can expect, in
this paper we determine some theoretical limits of helper-
less stabilizers and show that the helper-less approach has

the potential of providing good performance with limited
complexity.

A. STATE OF THE ART
Most of the stabilizers developed so far make use of helpers.
Among the most common proposed stabilizers one can
cite fuzzy extractors, usually based on error correction
codes [21], [22], stabilizer based on pattern matching [7],
and Index Based Syndrome stabilizers [27]. The only helper-
less stabilizer we are aware of is a brute-force exhaustive
search for the error pattern proposed in [28]. For the sake of
completeness, we observe that a preliminary version of this
work has been presented at ICASSP [29].

B. OUR CONTRIBUTION
This paper has three main results. First, we prove that global
stability is not achievable, that is, it is not possible to con-
struct an helper-less stabilizer that stabilizes every possible
device (see Theorem 1). The second result softens the first
negative result showing that, although global stability cannot
be achieved, one can achieve stability as good as desired
over a proper subset, large as desired, of the possible devices
(see Theorem 2). Finally, the third result shows that it is
possible to recognize (and discard) at construction time the
devices belonging to the ‘‘bad’’ subset (see Theorem 3),
achieving quasi-global stability.

The proofs of Theorem 2 and Theorem 3 are constructive.
Although the optimality of the procedures given in the proofs
is still an open question, the proofs suggest an approach that
is applicable in practical applications and whose complexity
can be considered an upper bound of the complexity required
by an helper-less stabilizer.

II. NOTATION
We recall here some of the less common notation used in this
paper.

A. SETS
If A and B are sets, we will use A \B for their difference, that
is, A\B := A∩Bc, we will use |A| for the cardinality of A and
we will use 2A for the set of all subsets of A. If A is a subset
ofR of finite cardinality, we will define its range range (A) as
the difference between its maximum and its minimum, that is
range (A) := maxA−minA.
If A is a metric space with distance d : A × A → R, we

will denote with Bc,r the closed ball with center c ∈ A and
radius r , that is Bc,r := {x ∈ A : d(x, c) ≤ r}. If A is
endowed with a topology1 [30] and B ⊆ A we will denote
with Int(B) the interior of B, with B its closure and with ∂B
its boundary B \ Int(B). Also, we will suppose B implicitly
endowedwith the subspace topology inherited fromA (that is,
C ⊆ B is open in B if C can be written as the intersection of
an open set of A with B, see also Appendix A) [30].

1Appendix A gives brief summary of the topology concepts used in this
paper.

74 VOLUME 4, NO. 1, MARCH 2016



Bernardini and Rinaldo: Theoretical Limits of Helperless Stabilizers

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

We will denote with R≥0 and R>0 the sets of, respectively,
non negative and positive reals.

B. RANDOM VARIABLES
We will write X ∼ N (m, σ 2) to denote that X is a Gaussian
random variable with mean m and variance σ 2. If A is a
finite set, we will write X ∼ U (A) to denote that X is
a random variable uniformly distributed on A. We will use
X ∼ B(N , p) for a binomial r.v. with N trials and success
probability p. We will sometimes commit a slight abuse of
notation by using N (m, σ 2), U (A) and B(N , p) as anony-
mous r.v.; for example, we could write P[N (0, 1) > 1] for
the probability that a zero mean, unit variance Gaussian r.v.
is greater than 1.

C. VECTORS
If A and B are matrices, we will denote the block matrix
obtained by placing A over B as [A ;B] (using a semi-colon
as separator) rather than the more cumbersome
[At ,Bt ]t or

[
A
B

]
. If v ∈ RK , we will denote its Euclidean

norm as ‖v‖.

D. NOMENCLATURE
Depending on the context, ‘‘PUC’’ canmean both the abstract
scheme (e.g., an electrical circuit) or a specific instance of
it. In the former case, the PUC is an abstract object, while
in the latter it is an actual physical object. This double use
can make discussion difficult and sometimes it can introduce
ambiguities. In order to avoid those difficulties, we will use
the expression PUC scheme to refer to the abstract scheme
and the expression PUC instance to refer to a specific
physical implementation.

In this paper we are going to consider systems made of a
PUC followed by a stabilizer. Note that the whole system,
seen from the outside, behaves as a PUC. This introduces an
ambiguity in the usage of the term PUC since it could refer
both to the whole system ‘‘PUC followed by the stabilizer’’ or
only to the ‘‘internal’’ PUC. In order to solve this ambiguity
we introduce two new terms: when we will want to refer
to the internal PUC we will talk about Raw PUC (RPUC),
while when we will want to refer to the whole system we will
talk about Stabilized PUC (SPUC). We reserve the term PUC
for those concepts that can be applied both to RPUCs and
SPUCs. (e.g., the reliability distribution function introduced
in Remark 4.4).

III. THE MODEL
In our model a SPUC is made of two major components: the
RPUC and the stabilizer.

A. THE RPUC
The RPUC is just a basic PUC, that is, a circuit whose behav-
ior is very sensitive to variations in physical characteristics
(e.g., dopant concentration). Every time the RPUC is queried,
it produces a raw output (belonging to a suitable set V ) that
is processed by the stabilizer to produce the SPUC output.

Remark 3.1: In most of the RPUCs proposed in the
literature, V is a finite set of symbols, usually bit strings,
i.e., V = {0, 1}N . The theory presented here, however, does
not require V to be finite and it can handle even the case of
RPUC with analog outputs, e.g., V = [0 V, 5 V].
In many cases the RPUC will be a collection of smaller

generators (e.g., an RPUC with V = {0, 1}N can be obtained
by implementingN single bit generators). In this case we will
call the smaller generators cells. If a cell produces a single bit
output, we will call it a binary cell. Binary cells are maybe
the most common examples of RPUC [5], [6], [16], [31].

As said in the introduction, the ideal PUC is a
random constant (i.e., a random oracle [8]–[10] with no
inputs): at construction time a random value is selected and
the same value is returned every time the PUC is queried.
However, most of the RPUC schemes proposed in the litera-
ture do not satisfy this requirement in the sense that, although
a single instance can produce the same value most of the
times, there is a non negligible probability that other values
will be produced. The duty of the stabilizer is to process the
RPUC output to convert it into a more stable SPUC output.
Example 2: It is worth to illustrate the concepts introduced

above in the concrete case of a RPUC based on uninitialized
Static RAM (SRAM) [5], [6], [31].

At turn-on an SRAM cell sets itself at random to one of
the two possible values (0 or 1). If the structure of the cell is
perfectly symmetric, both values are equiprobable; however,
since the random variations during manufacturing will make
the cell asymmetric, we expect that, for a single instance,
one of the values will be more probable than the
other [5], [6], [31]. It is intuitive (and it can be shown)
that a cell with a strong asymmetry will have a marked
preference for one of the two values, actually acting as a
random constant; if the cell is almost symmetric it will
have no preference and every query will be almost as a
coin toss.

A number that measures the stability of a given instance is,
for example, the probabilityQ of getting ‘‘1’’ as outcome: the
best cells haveQ ≈ 0 orQ ≈ 1. Note thatQ is itself a random
variable whose ‘‘experiment’’ is carried out at construction
time.

B. THE STABILIZER
As explained above, the duty of the stabilizer is to reduce
the run-time randomness of the RPUC in order to make the
behavior of the SPUCmore similar to a random constant. For-
mally, a stabilizer will be defined as a function S : V → I,
where I is a finite set representing the set of the possible
SPUC outputs. In the typical case we expect I = {0, 1}M ,
but this is not necessary for the theory given here, as long as
I is finite and |I| > 1.
Most of the stabilizers proposed in the literature require

some auxiliary value (an helper) usually generated at the first
turn-on [7], [21], [22], [27]. In this paper we are interested,
however, in helper-less stabilizers, that is, stabilizers that
do not require any auxiliary value. More precisely, we are

VOLUME 4, NO. 1, MARCH 2016 75



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Bernardini and Rinaldo: Theoretical Limits of Helperless Stabilizers

interested in finding out the theoretical limits to the stability
of a SPUC that employs a helper-less stabilizer.

C. WHAT ARE GOOD SPUCs MADE OF?
It is worth pointing out the two most important character-
istics that a SPUC should have: stability (or noiseless) and
uniformity (or maximum entropy). Informally, the stability of
a SPUC scheme is related to the fact that a given instance will
always produce the same output value every time it is queried,
while uniformity is related to the fact that the probability of
producing an instance whose preferred output is ‘1’ is equal
to the probability of producing an instance whose preferred
output is ‘0’.
Remark 3.2: A very informal example that clarifies the

concepts of stability and uniformity is the following. A binary
PUC scheme is like a bag full of coins, where the coins are
not necessarily well-balanced. The act of constructing a PUC
instance corresponds to extracting a coin at random from the
bag, while the act of quering the PUC instance corresponds to
throwing the coin. Note that the probability of getting ‘‘head’’
is a random variable since it depends on the result of the first
part of the experiment (extracting the coin from the bag).

A stable PUC scheme corresponds to a bag full of coins
that are maximally unbalanced, that is, every coin in the bag
always lands on the same side. A uniform scheme corre-
sponds to a bag having half coins that prefer ‘‘head’’ and half
coins that prefer ‘‘tail.’’

In this paper we are mostly interested in stability,
although even uniformity is considered (see, for
example, Section IV-A).

IV. MEASURING THE STABILITY OF A SPUC
In order to make precise the meaning of stability of a SPUC
it is necessary to introduce some concepts. First we give
a formal definition of an RPUC that takes into account its
double randomness nature.
Definition 1: A parametrized raw generator is a four-

tuple (V ,Q,V ,Q) where V is any set representing the raw
alphabet, V is a random variable assuming values in V ,Q is
the set of statistical parameters and Q is a random variable
assuming values in Q. We will assume that Q is endowed
with a topologyTQ such that for every event A ⊂ V the map

Q 3 q 7→ P[V ∈ A | Q = q] (1)

is continuous.
Remark 4.1: Definition 1 formalizes the idea of the

‘‘double randomness’’ in a RPUC. At construction time, a
value q ∈ Q is drawn; successively, at every turn-on, a
value of V is drawn according to the conditional probability
P[· | Q = q]. Note that no special property is required for
V andQ; requiring that the parameter setQ is endowed with
a topology TQ is a technicality necessary to talk about the
continuity of (1) and, in the following, about the connected-
ness of Q.
Example 3: It is worth giving few examples of models of

raw generators.

• In the case of a binary cell, the raw alphabet is
V = {0, 1} (the cell produces one bit) while, as
explained in Example 2, a natural choice for Q is the
probability that the cell produces ‘‘1’’, so that

P[V = 1 | Q = q] = q

P[V = 0 | Q = q] = 1− q (2)

Clearly, Q = [0, 1]. See Fig. 2(a).

FIGURE 2. Examples of parameter sets for some RPUC. (a) Parameter set for
a binary cell. (b) Parameter set for a pair of independent binary cells.
(c) Parameter set for an RPUC with a three-symbol alphabet {α, β, γ }.

• In the case of a RPUCmade of two independent (but not
necessarily identically distributed) cells, the raw alpha-
bet is V = {0, 1}2 = {00, 01, 10, 11}, while the
statistical parameter Q is a two-dimensional random
vector assuming values in the square Q = [0, 1]2. See
Fig. 2(b).

• In order to enrich the set of examples, we will also
consider the fictitious case of a RPUC with three
output symbols. In this case the alphabet is, for example,
V = {α, β, γ }, while the natural choice for Q is the
vector [Qα,Qβ ,Qγ ], where Qv is the probability of
outcome v ∈ V . Therefore

P[V = α | Q = [qα, qβ , qγ ]] = qα
P[V = β | Q = [qα, qβ , qγ ]] = qβ
P[V = γ | Q = [qα, qβ , qγ ]] = qγ (3)

and the parameter set Q is the two-dimensional simplex

Q = {[qα, qβ , qγ ] ∈ R3
≥0 : qβ + qα + qγ = 1} (4)

A convenient way to represent the parameter set (4) is
as an equilateral triangle where the symbol probabilities
can be read as barycentric coordinates. See Fig. 2(c).

Now we can refine the idea of stabilizer. More precisely,
Definition 2: If I is any finite set and G = (V ,Q,V ,Q)

is a parametrized generator, a stabilizer for G with output in
I is a measurable function S : V → I.

76 VOLUME 4, NO. 1, MARCH 2016



Bernardini and Rinaldo: Theoretical Limits of Helperless Stabilizers

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

For the sake of notational convenience we define, for
every A ⊆ I

Pq[A] := P[S (V ) ∈ A | Q = q] (5)

Moreover, if A = {i}, we will write Pq[i] rather than Pq[{i}].
In other words, Pq[i] is the probability of getting the output
symbol i when the statistical parameter Q is equal to q.

For a given SPUC instance with statistical parameter equal
to q ∈ Q, we will denote with

→

Pq (n), n = 1, . . . , |I|, the
n-th largest output probability. More precisely,

→

Pq (1) ≥
→

Pq (2) ≥ · · · ≥
→

Pq (|I|) (6)

and there is a bijection n 7→ in from {1, . . . ,L} to I such that
→

Pq (n) = Pq[in]. Note that
→

Pq (1) is the probability of the
most probable output symbol whenQ = q. It is convenient to
give a special name to the most probable output symbol for a
given q ∈ Q.
Definition 3: We will say that i ∈ I is a winner in q ∈ Q if

Pq[i] =
→

Pq (1) (7)

Moreover, we define the winning set of q, denoted as w(q),
as the set of winners in q, that is,

w(q) := {i ∈ I : Pq[i] =
→

Pq (1)} (8)

Remark 4.2: Note that although the winner is not neces-
sarily unique, all the winners share the same probability.

It is convenient also to have a name to refer to the set of
statistical parameters q that make a given output symbol i a
winner.
Definition 4: The winning region of i ∈ I is defined as

Wi := {q ∈ Q : Pq[i] =
→

Pq (1)} (9)

FIGURE 3. Partitioning of the parameter sets in winning regions for a
stabilizer with ternary input and binary output. The cross marks a tie point
where the stability cannot be larger than 1/2.

Example 4: Fig. 3 shows the division of the parameter set
Q in winning regions for the case of a stabilizer with input
alphabet V = {α, β, γ } and output alphabet I = {0, 1}. Note
that, as explained in Example 3, Q is represented in Fig. 3 as
an equilateral triangle.

In the specific case of Fig. 3, the stabilizer maps α to 0 and
both β and γ to 1. It follows that the winning region of 0 is
given by those q such that qα ≥ 1/2, that is, the points of the

triangles in Fig. 3 whose distance from the horizontal edge is
larger than 1/2.

A. NON-REDUNDANT STABILIZERS AND
BALANCED STABILIZERS
It is clear that the winner represents the most probable
outcome of the stabilizer. In this paper we will focus only
on non-redundant stabilizers, i.e., stabilizers such that
Wi 6= ∅ for every i ∈ I. In other words, with a non-redundant
stabilizer every symbol i has a chance to be a winner.

Note that the fact that a stabilizer is non-redundant depends
only on the map implemented by the stabilizer itself and
not on the statistical properties of Q. Note that
a non-redundant stabilizer can still have bad statistical
properties. As an extreme example, one can observe that the
stabilizer represented in Fig. 3 is clearly non redundant, but it
could happen that for a specific RPUC scheme
P[Q ∈ W0] = 0, so that when the stabilizer is used with
such an RPUC, only ‘‘1’’ can be a winner.

In order to take into account this kind of cases it is con-
venient to introduce the concept of unbalance of a stabilizer.
Let

Pwin(i) := P[w(Q) = {i}] (10)

denote the probability that i ∈ I is the only winner.
Example 5: Pwin(i) can be interpreted as the probability

of constructing a PUC instance whose preferred output is i.
For example, with reference to Remark 3.2, Pwin(Tail) is the
probability of extracting a coin that prefers to land on ‘‘tail.’’
Definition 5: The unbalance u of a stabilizer is defined as

the range of set {Pwin(i)}i∈I, that is,

u := range ({Pwin(i)}i∈I) = max
i∈I

Pwin(i)−min
i∈I

Pwin(i) (11)

A stabilizer with u = 0 will be said balanced or unbiased.
It is easy to verify that 0 ≤ u ≤ 1, that u = 0 if and

only if Pwin(i) = 1/|I| for all i ∈ I and u = 1 if and only
if Pwin(i) = 1, for some i ∈ I. It is clear that the unbalance
depends on the employed RPUC scheme via the distribution
of Q and that the unbalance of a good stabilizer will be small
and almost independent on the details of the distribution ofQ.
It is clear that we prefer balanced stabilizers since the output
will have maximum entropy.
Remark 4.3: Note that in (10) we write P[w(Q) = {i}] and

not P[w(Q) = i] because, according to (8), w(Q) is a set.
Also note that events w(Q) = {i} are not a partition of the
probability space since the subset ofQ that has more than one
winner (e.g., the dashed line in Fig. 3) is excluded. However,
in most cases of practical interest the excluded subset has zero
probability.

B. LOCAL AND GLOBAL STABILITY
Since we would like that the output of the stabilizer be always
the same at every turn-on, we would like the probability of
the winner being very close to 1. This suggests to define the
stability of a stabilizer as follows.

VOLUME 4, NO. 1, MARCH 2016 77



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Bernardini and Rinaldo: Theoretical Limits of Helperless Stabilizers

Definition 6: If q ∈ Q, we define ε(q), the local stability
in q, as the probability of a winner in q, that is,

ε(q) :=
→

Pq (1) (12)

The global stability η of a stabilizer is defined as the worst-
case stability, that is,

η := inf
q∈Q

ε(q). (13)

Remark 4.4: Another measure of quality of a SPUC
instance is given by its reliability R(q) defined as [16]

R(q) :=
→

Pq (1)−
→

Pq (2) (14)

Note that R(q) ∈ [0, 1] and that R(q) = 1 if and only if
→

Pq (1) = 1, that is, if and only if the PUC instance produces
always the same symbol, that is, it behaves as a random
constant. We will say in this case that the instance is perfectly

reliable. If instead R(q) = 0, it follows that
→

Pq (1) =
→

Pq (2)
which implies that there are at least two winners i, j ∈ I with
the same probability. In this case the behavior of the SPUC is
more similar to a coin toss and the SPUC is totally unreliable.
If functionR(q) in (14) is applied to random variableQ, one

obtains random variableRQ. The distributionFR ofRQ will be
called theReliability Distribution Function (RDF) of the PUC
scheme. In an ideal PUC scheme every instance is perfectly
reliable, so that the RDF is a step function centered in 1.

Finally, note that since

ε(q) ≥ R(q) ≥ 2ε(q)− 1 (15)

both stability and reliability can be considered two equivalent
measures of quality for stabilizers. In this paper we will
mainly refer to the stability ε(q).

C. THE INFLUENCE OF THE ENVIRONMENT
The behavior of the RPUC (and, therefore, of the
whole SPUC) can change as environment variables
(e.g., temperature, electromagnetic fields, aging effects)
change. From the viewpoint of our model, the effect of the
environment E can be represented as a change in the actual
value ofQ. The theory given here can be easily adapted to the
case of changing environment.

V. FIRST RESULT: PERFECT RELIABILITY
IS UNACHIEVABLE
Now we can give one of the main results of this paper.
Theorem 1: LetS : V → I be a non-redundant stabilizer

for the parametrized generator (V ,Q,V ,Q). Let η be the
global stability of S . If Q is connected and |I| > 1, then
η ≤ 1/2 and R(q) = 0 for some q ∈ Q.
The proof of Theorem 1 is quite technical and it is given

in Appendix C-A. It is possible, however, to give an intuitive
motivation.

With reference to Example 4 and Fig. 3, consider point q̂
marked with a cross in Fig. 3. Since q̂ lies on the boundary
between setsW0 andW1, we deduce that outputs value 0 and 1

have equal probability (that is, q̂ is a tie point) and this implies
that Pq̂[0] = Pq̂[1] = 1/2 which in turn implies ε(q̂) = 1/2
and R(q̂) = 0, proving Theorem 1 in this very special case.
Note that the cornerstone of the just outlined reasoning

is the existence of a tie point. The key part of the proof of
Theorem 1 is to show that a tie point always exists as soon as
Q is connected.
It is worth emphasizing the generality of Theorem 1. For

example, it holds independently on the nature of V that can
be, for example, discrete (e.g. {0, 1}N ) or continuous
(e.g., RN ). This means that Theorem 1 holds also, for
example, for ‘‘soft-decoding style’’ stabilizers.

Theorem 1 holds also if one does K > 1 queries to
the RPUC by turning it on and off K times [32]. Indeed,
in this case one can consider a ‘‘virtual’’ RPUC made of
K copies of the same RPUC. The virtual RPUC will produce
values in V K , it will have the same parameter set Q and
the probability density function of the new RPUC will be
obtained as the K -times product of the density of the original
RPUC. Since even the new RPUC has a connected parameter
set, Theorem 1 still applies.

The concept of global stability is clearly a very strong
one. Actually, it suffices a single value of q having ε(q)
small for making the whole global stability η small, even if
that ‘‘bad case’’ is very unlikely. This observation suggests
a weaker form of stability where we accept to ignore bad
cases, as long as they do not happen too often. This idea is
formalized in the concept of (η, δ)-stability introduced in the
next section.

VI. SECOND RESULT: (η, δ)-STABILITY IS ACHIEVABLE
Let us first define formally the concept of (η, δ)-stability.
Definition 7: Stabilizer S will be said to be

(η, δ)- stable if

Fε(η) = P [ε(Q) ≤ η] = P
[
Q ∈ ε−1([0, η])

]
≤ δ. (16)

The second important result that we are going to prove
is that it is possible to design an (η, δ)-stable stabilizer for
every choice of η < 1 and δ > 0; in other words, we can
make an SPUC as stable as desired over a portion as large
as desired of the parameter set. Of course, we expect that as
η gets larger and δ smaller, the corresponding stabilizer will
be more expensive.

The proof will be given for the case V ⊆ RN . (This is
a very weak hypothesis verified in every case of practical
interest.) Since V ⊆ RN , V is a N -dimensional random
vector. Let its k-th component, k = 1, . . . ,N , be denoted
with Vk and let the mean and variance of Vk be denoted as

mk (q) := E [Vk | Q = q] (17a)

σ 2
k (q) := E

[
(Vk − mk (q))2 | Q = q

]
(17b)

Of course, we will suppose that expected values (17) exist for
every k ∈ {1, . . . ,N } and q ∈ Q.
Let m : Q → RN be defined as mq := [m1(q), . . . ,

mN (q)]. Similarly, let 6 : Q → RN be the function defined

78 VOLUME 4, NO. 1, MARCH 2016



Bernardini and Rinaldo: Theoretical Limits of Helperless Stabilizers

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

as 6q := [σ1(q), . . . , σN (q)].2 Finally, we will denote with
M := Im(m) the set of possible mean vectors.
Theorem 2: With reference to the just introduced notation,

suppose functionm continuous and6 andm bounded (in the
sense that one can find 6max < ∞ and M < ∞ such that
6max ≥ ‖6q‖ and M ≥ ‖mq‖ for all q ∈ Q).
If it is possible to find a partition {Ui}i∈I ofM indexed by I

such that

P

[
mQ ∈

⋃
i∈I
∂Ui

]
= P

[
Q ∈ m−1(

⋃
i∈I
∂Ui)

]
= 0 (18)

then for every η < 1 and δ > 0 it is possible to find
an (η, δ)-stable stabilizer for (V ,Q,V ,Q). Moreover, the
unbalance of the stabilizer can be made as close as desired
to range ({P[mQ ∈ Ui]}i∈I).
Remark 6.1: It is worth commenting about the technical-

ities of the claim of Theorem 2. Condition (18) will be used
to show that one can find, for every δ > 0, a small ‘‘strip’’
around ∪i∂Ui so that the probability ofm belonging to such a
strip is smaller than δ. Note that condition (18) is very weak.
For example, if sets Ui are ‘‘non pathological’’ sets with an
N − 1-dimensional boundary (e.g., they are homeomorphic
images of a sphere) and the density of m is not singular,
then (18) is automatically satisfied.

We will prove this result constructively. The basic idea
is a generalization of the stabilizer proposed in [32]. More
precisely, we first estimatemq by querying the RPUCK times
and computing the average of the raw outputs, successively
we ‘‘quantize’’ the computed estimate by using partition
{Ui}i∈I (see Algorithm 1). By a careful application of the
law of large numbers and hypothesis (18), it will be proved
that one can choose K large enough to make this stabilizer as
stable as desired.

Algorithm 1 The Algorithm Used to Prove Theorem 2
1 Query the RPUC K times; let vk be the outcome of V at
the k-th query;
/*K is decided at design time, see Lemma 5 */

2 Compute the average µ = (1/K )
∑K

k=1 vk
3 Output the symbol i ∈ I such that µ ∈ Ui.;
/*Note that i exists and it is unique since {Ui}i∈I is a
partition of M and µ ∈M . */

Remark 6.2: It is worth emphasizing that the main reason
for introducing Algorithm 1 is to prove the existence of arbi-
trarily good stabilizers. Although Algorithm 1 can be used in
practice, no claim is done about its optimality. Actually, the
problem of constructing the optimal helper-less stabilizer for
a given RPUC is still open.

The first step in proving that the stabilizer constructed
according to Algorithm 1 can be made (η, δ)-stable for a
suitable choice of K is to choose the subset of ‘‘bad’’ q, that

2Note that for the sake of notational convenience we denote the value
assumed by m and 6 in q as mq and 6q rather than the usual m(q)
and 6(q).

FIGURE 4. (a) Example of a partition of M and graphical representation of
the depth of a point. (b) Example of strip S1 for the partition in (a).

is, the subset of Q that will correspond to the devices with
stability less than η. Since Algorithm 1 quantizes average µ
using partition {Ui}i∈I, it is intuitive that the points belonging
to m−1(∪i∈I∂Ui) will be tie points and that the output of the
stabilizer will be more stable for those q far from ∪i∈I∂Ui.
This suggests the following approach: we choose as bad set a
‘‘strip’’ S1 of width1 (the exact meaning of ‘‘width’’ is given
later) around ∪i∈I∂Ui. The width 1 of the strip zone must
be small enough to make the probability of Q ∈ S1 smaller
than δ. For the RPUCwhose parameter does not belong to S1,
we proceed to find a K large enough to make the variance
of µ small enough to make the probability of crossing the
buffer zone smaller than 1− η.

In order to define precisely S1 and develop the outline of
work, we need the concept of depth of b ∈ M , which gives
a measure of how far b is from a boundary. For the sake of
notational convenience, if b ∈M , we will denote with ιb the
element of I such that b ∈ Uιb . In other words, ιb is the output
of the stabilizer when the average computed by Algorithm 1
is b.
Definition 8: Given b ∈M , its depth db is defined as

db := inf
x 6∈Int(Uιb )

‖x − b‖ (19)

Remark 6.3: Informally, db is the minimum distance that b
must ‘‘travel’’ to exit from its partition Uιb (see Fig. 4(a)).
The infimum is taken over the complement of Int(Uιb ) and
not ∂Uιb because if M is not connected, ∂Uιb could be
empty (see Fig. 5).

In order to make the following analysis easier, it is worth
giving some easy properties of the depth. The first property
is that we can replace the inf in (19) with a min.
Lemma 1: The inf in (19) is actually a min, that is, there

exists c ∈ (Int(Uιq ))
c such that

db = ‖c− b‖ (20)
Proof: Set (Int(Uιq ))

c is compact since it is closed
(being the complement of an open set) and bounded, since
it is a subset of bounded set M . Therefore, continuous map
(Int(Uιq ))

c
3 x 7→ ‖x − b‖ has a minimum. �

The second result, whose proof is reported in Appendix C,
claims that a point has null depth if and only if it is on a
boundary.

VOLUME 4, NO. 1, MARCH 2016 79



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Bernardini and Rinaldo: Theoretical Limits of Helperless Stabilizers

FIGURE 5. (a) Case of set M disconnected: Set U1 is a connected component, so its boundary is empty. The only boundary is the separation between U2 and U3,
shown with a dashed line. Note also that point x, although a ‘‘most external’’ point of U1, has non null depth since it does not belong to a boundary.
(b) and (c) Examples of strip S1 for the partition in (a) and two different values of 1.

Lemma 2: For every b ∈ M , db ≥ 0 and db = 0 if and
only if b ∈ ∂Uιb .

The third result, whose proof is reported in Appendix C, is
a kind of triangular inequality.
Lemma 3: For every a, b ∈M , ‖a− b‖ ≥ |da − db|.
By using the concept of depth, now we can give a formal

definition of the ‘‘buffer zone’’ S1.
Definition 9: For every x ≥ 0, define Sx ⊆M as

Sx := {b ∈M : db ≤ x} (21)

Example 6: Fig. 4(b) shows an example of S1 for the
partitioning of Fig. 4(a). Fig. 5(b) and Fig. 5(c) show two
different example of S1 for the partitioning of Fig. 5(a); note
that in Fig. 5(b), 1 is small enough that only the border
between U2 and U3 is involved.

The next step is to show that we can find a strip S1 thin
enough so that the probability of havingmQ ∈ S1 is as small
as desired.
Lemma 4: For every δ > 0 there is 1 > 0 such that

P[mQ ∈ S1] ≤ δ (22)

The proof, that exploits hypothesis (18), is reported
in Appendix C.

The second step toward the proof of Theorem 2 is to show
that it is always possible to find K such that ε(q) ≥ η as soon
as mq does not belong to the bad set S1.
Lemma 5: Let 1 > 0 and η < 1. If

K ≥
62

max

12(1− η)
(23)

then

mq 6∈ S1 ⇒ Pq[ιmq ] ≥ η (24)

The proof is given in Appendix C, and it uses the general-
ized Chebyshev’s inequality shown in Appendix B.
Remark 6.4: Note that if η > 1/2, (24) implies that no

output symbol can have probability larger than Pq[ιmq ], so
that Pq[ιmq ] = ε(q). Therefore, in this case, (24) can be read
as the fact that any q not belonging to the bad set has stability
at least equal to η.

Note also that if the distribution of Q changes because of
aging or enviromental variations, the right hand side of (23)
will be likely to change too, since 6max and1 depend on the
distribution of Q. If (23) is going to be used in a real design,
a possible approach is to consider the worst case and take

for K the maximum of (23), taken over all the environment
conditions.

Finally, note that the right hand side of (23) is likely to
be a ‘‘pessimistic’’ bound, since it is derived from
Chebyshev’s inequality. A less pessimistic bound can be
derived by approximating mq with a Gaussian variable.
Although such an approximation is likely to be good enough
for practical purposes, its use in a formal proof is not
straightforward.

Now, in order to prove Theorem 2, it suffices to put together
Lemma 4 and Lemma 5.
Proof of Theorem 2: In the proof we are going to suppose

without loss of generality η > 1/2. If this was not true we
can replace η with any value in (1/2, 1) since if η1 > η2 a
stabilizer that is (η1, δ)-stable is also (η2, δ)-stable.
Given δ > 0, use Lemma 4 to find 1 such that

P[mQ ∈ S1] < δ. Successively use 1 and η with Lemma 5
in order to find K such that (24) is satisfied. Note that since
η > 1/2, (24) implies

mq 6∈ S1 ⇒ ε(q) ≥ η (25)

Now we can verify that the proposed stabilizer is
(η, δ)-stable

P[ε(Q) < η] ≤ P[mq ∈ S1] Contrappositive of (25)

≤ δ 1 obtained via Lemma 4. (26)

�

VII. THIRD RESULT: FROM (η, δ)-STABILITY TO
QUASI-GLOBAL STABILITY
The discussion in Section VI about the construction of an
(η, δ)-stable stabilizer suggests a way to achieve global
stability, despite of Theorem 1. The idea is very simple: if we
were able to check at construction time which devices have a
value of q such thatmq ∈ S1, we could discard them, keeping
only the ones with stability larger than η.
Remark 7.1: Note that discarding the devices such that

mq ∈ S1 is equivalent to remove from Q the anti-
image m−1(S1) of S1. The remaining set is typically
disconnected, as claimed by the following property whose
proof is in Appendix C.
For every i ∈ I, let Vi := Ui ∩ Sc1. If m : Q → M is

continuous and there are at least two i, j ∈ I, i 6= j such that
Vi 6= ∅, Vj 6= ∅, then Q \m−1(S1) is not connected.

80 VOLUME 4, NO. 1, MARCH 2016



Bernardini and Rinaldo: Theoretical Limits of Helperless Stabilizers

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

The fact thatQ\m−1(S1) is disconnected is what allows us
to escape the claim of Theorem 1 and achieve global stability.
Note the condition that at least two sets Vi must be not empty;
if 1 is too large it could happen that only one Vi ‘‘survives’’
and that set could be connected. However, in this case the
stabilizer will output always the same symbol, so it is not of
practical interest.

A drawback of this idea is that the actual value of mq is
not known. The natural solution is to estimate it by using a
technique similar to Algorithm 1.

We will say that a device is unreliable if its statistical
parameter q is such that mq ∈ S1. Let UNREL denote the
event that a device is unreliable (that is, mq ∈ S1) and
UNREL the event a device is reliable (that is, mq 6∈ S1).
We will call any procedure designed to check if a device is

reliable or not a verifier. Let REJECT denote the event when
the device is declared unreliable and REJECT when a device
is declared reliable by a given verifier.

Any verifier can make two different types of misclassifica-
tion: (i) false negative, when an unreliable device is accepted
and (ii) false positive, when a reliable device is discarded.
Two natural indices of performance for a verifier are the
probabilities

P− := P[REJECT | UNREL]False negative rate (27a)

P+ := P[REJECT | UNREL]False positive rate (27b)

Note that P− represents the fraction on shipped RPUC that
are unreliable while P+ represents the fraction of reliable
RPUC that are discarded. Clearly, one wants to keep both
probabilities low.
Definition 10: We will say that a verifier is

(r−, r+)-reliable if P− ≤ r− and P+ ≤ r+.
Theorem 3: If P[dmQ = 1] = 0, then for every choice

of r− > 0 and r+ > 0 it is possible to find a verifier that
is (r−, r+)-reliable.

The proof of Theorem 3 is constructive since it shows
the existence of the desired verifier by showing how to con-
struct one. The algorithm used in the proof of Theorem 3 is
Algorithm 2 which is parametrized by the two parameters
D > 1 and N that are to be decided at design time. In the
proof it is shown that one can find D and N such that the ver-
ifier represented by Algorithm 2 has the desired performance.

Algorithm 2 Proposed Verifier
1 Query the RPUC N times; let vk be the outcome of V of

the k-th query;
/* N is decided at design time and it can differ from K*/

2 Compute the average ω = (1/N )
∑N

k=1 vk ;
3 If ω ∈ SD declare the device unreliable, otherwise declare

it reliable;
/* D is selected at design time. In every case of practical
interest it will be D > 1*/

The proof is not difficult, but quite long, and is given
in Appendix C-B. However, it is possible to give an informal

FIGURE 6. Graphical representation of reliable/unreliable devices and strips
S1 and SD. Device r is a reliable device whose false positive probability can
be made as small as possible; devices s and t are reliable devices whose false
positive probability cannot be made arbitrarily small; device u is an unreliable
device whose false positive probability can be made arbitrarily small.

description of the ideas behind the proof of Theorem 3. Fig. 6
shows the forbidden band S1, the band SD and mq for three
reliable devices (labeled r, s and t) and an unreliable one
(labeled u). The average ω computed by Algorithm 2 can be
approximated with a Gaussian variable with mean equal to
mq and variance proportional to 1/N . The variance of ω in
the cases of the three devices are symbolically shown as little
circles around the points representing the three devices. One
can think the circles as some kind of ‘‘effective support’’ of
the density of ω.
From Fig. 6 it is clear how one can make P− (that is, the

probability of accepting u) as small as desired: it suffices
to choose N large enough so that every element of S1 has
its effective support inside SD. Note that this can be done,
whatever the value of D, as long as D > 1.
The procedure to make P+ small is not so direct. While

it is clear that by choosing N large enough one can make the
probability of discarding r as small as desired, we expect that
devices like the one marked with swill always have approxi-
mately a 50% chance of being discarded, independently onN .
Moreover, devices like t, belonging to the ‘‘belt’’ SD\S1,
have a probability larger than 50% of being discarded (and
that probability increases with N ). Because of this, the only
way to keep P+ under control is by making the belt SD\S1
thin enough tomake that the probability of a device belonging
to SD\S1 small as desired.

VIII. EXAMPLES OF STABILIZER DESIGNS
In order to give some intuition about the results given above,
we are going to show an example about how to specialize
them to the case where RPUC (V ,Q,V ,Q) is just a binary
cell. The same procedure can be easily adapted to others
RPUC. Remember that if the RPUC is a binary cell, then
V = {0, 1} ⊂ R, the statistical parameter Q is equal to the
probability of getting ‘‘1’’ and the parameter set is the interval
Q = [0, 1]. Note thatm ∈ [0, 1] =M 6= V and that, in this
very particular case, mq = q. The stabilizer will output a
single bit, so I = {0, 1}.

A. THE (η, δ)-STABILITY APPROACH
First we show how to construct a (η, δ)-stable stabilizer.
As shown above, the first step is choosing a partition of M ,

VOLUME 4, NO. 1, MARCH 2016 81



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Bernardini and Rinaldo: Theoretical Limits of Helperless Stabilizers

possibly one with small range (so that the final stabilizer will
be balanced). The most natural partition is

M = [0, 1] =[0, 1/2]︸ ︷︷ ︸
U0

∪ (1/2, 1]︸ ︷︷ ︸
U1

(28)

This partition results also to be balanced as soon as the density
of Q is symmetric around 1/2, as it happens, for example,
with SRAMs [6]. It will be clear that with this specific
setup, the constructive proof given before reduces itself to
the stabilizer proposed in [32]. This is not surprising since,
as said before, the proof is just a wide generalization of the
approach of [32].

More into details, the idea is to query the cell instance
K times in order to get an estimate Q̂ of mq = q and output
‘‘0’’ if Q̂ ∈ U0 or ‘‘1’’ if Q̂ ∈ U1. Intuitively, if K is large
enough, the estimate Q̂ will be good so that if q is far enough
from 1/2, the value of Q̂ will always belong to the same set
and the reliability of the stabilizer will be large. However, as
q gets closer to 1/2 the probability of getting the ‘‘wrong’’
output increases and the reliability decreases. At q = 1/2 we
will always have a tie point, independently on K , therefore
ε(1/2) = 1/2 and R(1/2) = 0. Remember that, according
to Theorem 1, tie points like this are unavoidable and this
prevents achieving global stability.

The next step in the design of (η, δ)-stable stabilizer is
choosing the width 1 of the ‘‘forbidden strip’’ S1. In the
specific case at hand the border of sets Ui is the single point
q = 1/2, so that the forbidden strip is a segment around 1/2,
namely S1 = 1/2 + [−1,1]. According to the procedure
of Section VI, 1 must be chosen small enough so that the
probability of Q ∈ S1 is not larger than δ. Since we expect
1 small, we can approximate P[Q ∈ S1] with 21fQ(1/2) and
obtain

1 =
δ

2fQ(1/2)
(29)

Equation (29) shows that if fQ(1/2) is small (e.g.., if fQ is
concentrated around 0 and 1), we can use, for the same δ, a
larger forbidden zone S1 around 1/2. This will reflect itself
in a smaller value of K .
Remark 8.1: In order to gain concreteness, it is worth spe-

cializing (29) to a real case.Wewill refer to the case of SRAM
RPUC since its statistical description is derived in [6]. More
precisely, in [6] it is shown that the density fQ and distribution
FQ are

fQ(x; λ) =
λ · φ(λ8−1(x))
φ(8−1(x))

(30a)

FQ(x; λ) = 8(λ8−1(x)) (30b)

where λ is a parameter, and φ and 8 are, respectively, the
probability density function and distribution of N (0, 1).3

The parameter λ changes the shape of the density, smaller
values of λ lower the part around x = 1/2 and make fq

3Functions (30) has been obtained from the ones in [6] with the
substitutions λ1 = λ and λ2 = 0.

FIGURE 7. Examples of density fq(x;λ) for some values of λ.

more concentrated around 0 and 1. See Fig. 7 for few exam-
ples. In [6] the value λ = 0.065 provides a good model
for experimental measurements. Since fq(1/2; λ) = λ, (29)
specializes to

1 = δ/(2λ) ≈ 7.7 · δ (31)

Finally, it is worth mentioning that the Gaussian-based model
used here for SRAM turns out to be very accurate for other
PUFs as well [33], and therefore the considerationsmade here
can be repeated in a wider context.

The last step is choosing K so that the stability ε(q) is at
least η for those q that do not belong to the forbidden strip S1,
that is,

q 6∈ S1 ⇒ ε(q) ≥ η (32)

It is clear that the most critical case is when q is on the border
of S1, that is, q = 1/2 ± 1. Therefore, if we choose K so
that ε(1/2±1) ≥ η, condition (32) will be automatically
satisfied.

Equation (23) in Lemma 5 shows a possible choice for K .
Actually, (23) is a very pessimistic estimate since it uses
the generalized Chebyshev’s inequality (see Appendix B)
that provides a pessimistic bound. Since, in the very specific
case at hand, Q̂ can be approximated as a Gaussian random
variable N (q, q(1− q)/K ), one can exploit this approxima-
tion to get an approximate, but more realistic value of K .
By exploiting the Gaussian approximation, it is not difficult
to deduce

ε(q) ≈ 8
(
√
K
|q− 1/2|
√
q(1− q)

)
(33)

From (33) it is easy to obtain a constraint for K that grants
that the stabilizer is (η, δ)-stable

K ≥
⌈(

1
412 − 1

)(
8−1(η)

)2⌉
=

⌈[(
fQ(1/2)
δ

)2

− 1

](
8−1(η)

)2⌉
(34)

Remark 8.2: Note that (34) shows the three main
‘‘ingredients’’ of the stabilizer: the required performance

82 VOLUME 4, NO. 1, MARCH 2016



Bernardini and Rinaldo: Theoretical Limits of Helperless Stabilizers

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

(represented by δ and η) and the behavior of the RPUC
(represented by fQ(1/2)). Note also that K grows quadrati-
cally with fQ(1/2).
Example 7: Fig. 8(a) shows ε(q) for a stabilizer

(0.99, 0.005)-stable for an RPUC based on an SRAM whose
statistical parameter q is distributed according to (30a) with
λ = 0.05. The number of required iterations is K = 536 and
1 ≈ δ/(2λ) = 0.05. The horizontal dashed line in the top plot
corresponds to a stability equal to η = 0.99; the probability
that ε(q) is lower than η is the probability that q belongs to
the shadowed area in the bottom plot of Fig. 8(a).

FIGURE 8. Stability vs. q of a (0.99,0.005)-stable stabilizer for (a) λ = 0.05
and (b) λ = 0.01.

The required number of queries is very sensitive to the
value of λ. For example, if it was λ = 0.01 a stabilizer with
the same performance would require 1 = 0.25 and K = 17.
See Fig. 8(b).

FIGURE 9. (a) Example of partition that allows to extract two bits from a single
binary cell, together with the density fq of q associated with the specific case
of SRAM [6]. Note that the probability of getting ‘‘00’’ or ‘‘11’’ is larger than the
probability of getting ‘‘01’’ or ‘‘10,’’ so that the outcomes are not equiprobable.
(b) Different partitioning that gives rise to equiprobable outputs.

1) GETTING 2 BITS FROM A SINGLE BINARY CELL
Note that Theorem 2 poses no restriction on the cardinality of
the partition, so that one can splitM = [0, 1] into four pieces
and label them with bit pairs ‘‘00,’’ ‘‘01,’’ ‘‘10’’ and ‘‘11.’’
Fig. 9 shows an example where the four sets have been chosen
of equal size, together with a possible S1. Note, however that
the resulting stabilizer is not balanced since the pairs ‘‘00’’
and ‘‘11’’ are more probable. A different, balanced partition
is shown in Fig. 9(b). Note, however, that while in the single
bit case one has a balanced stabilizer as soon as the density
is symmetric, in this case a change in the parameter λ could
cause an unbalance in the stabilizer.

2) THE CASE OF TERNARY CELLS
In order to emphasize the generality of the results given
here, it is worth to consider briefly an example with a two-
dimensional non-separable parameter set. Fig. 10 shows the
parameter setQ for a ternary cell, together with a partitioning
of Q in four sets that will allow to extract two-bit words from
the ternary cell. The forbidden band S1 is shown too.

FIGURE 10. Example of partition associated with stabilizer that produces
two bits from a ternary RPUC.

In this case the stabilizer would query the RPUC K times
and compute the relative frequencies of the three symbols.
The vector of the computed frequencies will correspond to a
point of the triangle in Fig. 10 and the output of the stabilizer
will be the binary word associated with the corresponding
set Uij. The determination of 1 and K from δ and η can be
done similarly to the binary cell case.

B. THE QUASI-GLOBAL STABILITY APPROACH
As shown in Example 7, depending on the characteristic of
the RPUC and the reliability required to the stabilizer, the
number of queries to the RPUC can be quite large. An alterna-
tive approach that requires a smaller number of queries is the
approach described in Section VII, that is, testing the cells
at the first turn-on and disabling those that are not reliable
enough. This approach has the drawback that it requires a
surplus of cells in order to get a working device even with
some cells disabled.

A possible approach to implementing this solution is as
follows. Design parameters are: the number of queries K
that we are willing to do at run-time, the desired minimal
stability η, the ID size L in bits and the the probability Pdisc
of discarding a device because too many cells are unreliable
(so that the yield is 1 − Pdisc). Note that in this case there
is no parameter δ since we are considering the quasi-global
stability case of Section VII. Our goal is to find the num-
ber of additional cells G and the parameters N and D used
in Algorithm 2.

The first step is to determine the value of1. In the current
case 1 is not determined by δ, but by the fact that we are
willing to query the device at most K times. This implies that
a reliable cell is a cell whose q is far enough from 1/2 so
that both q and its estimate Q̂ (obtained averaging K results)
will belong to the same set Ui with large probability.
A suitable value of 1 can be easily obtained by
inverting (34).

VOLUME 4, NO. 1, MARCH 2016 83



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Bernardini and Rinaldo: Theoretical Limits of Helperless Stabilizers

From the knowledge of1we can determine the probability
that a single cell is unreliable

p = P[UNREL] =
∫ 1/2+1

1/2−1
fQ(x)dx ≈ 21fQ(1/2) (35)

where the approximation is valid if 1 is small.
In order to determine the number of surplus cells G,

observe that a device is discarded if more thanG out of L+G
cells are unreliable and that the probability of this event must
be smaller than Pdisc. Since the number of unreliable cells is
a binomial r.v. with L + G trials and success probability p
in (35) it follows that G must satisfy

P[B(L + G, p) > G] ≤ Pdisc (36)

The law of large numbers implies that the left hand of (36)
goes to zero when G goes to infinity, so a value of G that
satisfies (36) exists and it can be found numerically.
Remark 8.3: Note that also with this approach the cost

(in this case in terms of surplus cells) depends mainly on
the behavior of fQ around 1/2: if fQ is small around 1/2,
probability (35) is small and the number of required surplus
cells G is small as well. The opposite reasoning holds for
fQ(1/2) large.

IX. CONCLUSIONS
In this paper, we analyzed the theoretical limits of helper-less
stabilizers. We proved three major results: (i) perfect global
stability is unachievable, however (ii) we canmake as small as
desired the probability of a device with bad stability and (iii)
quasi-global stability can be achieved by recognizing, with
arbitrary reliability, the bad devices at production time and
discarding them. The proofs of the second and third result
are given in a constructive way. Future research direction will
explore theminimum complexity that an helper-less stabilizer
requires to guarantee a given performance.

APPENDIX A
BASIC SUMMARY OF TOPOLOGY
In order to make the results in this paper as general as
possible, we use some notions of topology. In order to
improve the paper accessibility, in this section we give a brief
recall of few basic notions of topology. It is not our intention
to write a tutorial, for a more detailed exposition the reader is
referred to one of the many books available (e.g., [30]).

The basic idea in topology is to extend concepts like
open/closed sets, compactness, limits, continuity, and so on,
to a setting much more general than the usual RN .

The cornerstone concept in topology is the idea of open
set. While in RN a set S is said to be open if every point
x ∈ S has a neighborhood contained in S, in a general
topological context one defines the open sets S by specifying
their collection.

More precisely, if S is any set, a topologyTS for S is a class
of subsets of S (the open sets of S) that satisfies the following
properties: (i) both ∅ and S are open (i.e., they belong to TS ,)
(ii) the arbitrary (even non-numerable) union of open sets

is open and (iii) the finite intersection of open sets is open.
Note that the usual definition of open sets of RN satisfies
those conditions. A set with a topology is usually called a
topological space [30].
A known result in real analysis is that the complement of

an open set is closed, in topology this results is used as a
definition, so that a set A ⊆ S is closed if its complement
belongs to TS . Concepts like interior, closure and border are
readily derived from the concepts of open and closed set.

If R ⊆ S and TS is a topology for S, one can define the
subspace topology TR for R by taking the intersection of R
with all the elements of S, that is,

TR = {A ∩ R : A ∈ TS} (37)

Subspace topologies can be surprising at first. For example,
if S = R and R = [0, 1], the set [0, 1/2) is open in R (but not
in S!) since it is the intersection of R with (for example)
(−1, 1/2) which is open in S.
The generalization of the idea of open set allows us to

generalize the idea of continuous function. If S and X are
two topological spaces, a function f : S → X is said to be
continuous if the anti-image of any set open in X is open in S,
that is, if A ∈ TX ⇒ f −1(A) ∈ TS . It is easy to check that
this definition reduces itself to the usual notion of continuity
when working in RN .

Finally, we will need the concept of connected set. A set S
is said to be connected if it cannot be written as S = A ∪ B
where A and B are disjoint non-empty open sets. An equiva-
lent definition is that S is connected if the only subsets of S
that are both open and closed in S are ∅ and S itself.4 This
definition is slightly weaker than themore common definition
of connectedness that requires that there is a path between
any pair of points of S (path connectedness). A set can be
connected without being path connected, see, [30] for some
examples.

APPENDIX B
GENERALIZED CHEBYSHEV’S INEQUALITIES
Lemma 6: Let V be a set with a distance d : V ×V → R

and let V be a random variable assuming values in V . For
every ε > 0, v0 ∈ V and k ∈ N the following inequality
holds

P[d(V , v0) ≥ ε] = P[V 6∈ Bv0,ε] ≤
E
[
d(V , v0)k

]
εk

(38)

whereBv0,ε denotes the ball of center v0 and radius ε.
Proof: The proof is similar to the proof of Chebyshev’s

inequality. Define, for notational convenience, B = Bc
v0,ε .

Let χB be the characteristic function5 of B and observe that

∀x ∈ V χB(x) ≤ dk (x, v0)/εk (39)

4For example, interval S = (0, 1) is open in R, but it is both open and
close in its subspace topology.

5χB(x) = 1 if x ∈ B and χB(x) = 0 otherwise.

84 VOLUME 4, NO. 1, MARCH 2016



Bernardini and Rinaldo: Theoretical Limits of Helperless Stabilizers

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

By taking expectations of both sides of (39) and remembering
P[V 6∈ Bv0,ε] = P[V ∈ B] = E [χB(V )] the thesis follows.

�
Corollary 1: Let V = RN and let ‖·‖ : V → R be the

Euclidean norm. Let V be a random variable assuming values
in V and let m = [m1, . . . ,mN ] and 6 = [σ1, . . . , σN ] be
the vectors with the means and the standard deviations of the
components of V . The following inequality holds

P[‖X −m‖ ≥ ε] ≤
‖6‖2

ε2
=

∑N
i=1 σ

2
i

ε2
(40)

Proof: Use Lemma 6 with v0 = m, d(x, y) = ‖x − y‖,
k = 2 and observe that E

[
d(X ,m)2

]
/ε2 = ‖6‖2/ε2. �

APPENDIX C
PROOFS

Proof of Lemma 2: The fact that db ≥ 0 is obvious. It
remains to prove that db = 0 if and only if b ∈ ∂Uιb . One
implication (If b ∈ ∂Uιb then db = 0) follows at once from
∂Uιb ⊂ (Int(Uιb ))

c; in order to prove the other one, we will
prove the contrappositive, that is, if b 6∈ ∂Uιb , then db > 0.
If b belongs to the interior of Uιb there is, by definition of
interior, r > 0 such that Bb,r ⊆ Int(Uιb

) and this implies
db ≥ r > 0. �

Proof of Lemma 3: Suppose first that Uιa 6= Uιb , that
is, a and b belong to different components. Since
‖a− b‖ ≥ infx 6∈Int(Uιa ) ‖a− x‖ = A ≥ A − B, the thesis is
true ifUιa 6= Uιb . Suppose nowUιa = Uιb and let c 6∈ Int(Uιb )
such that ‖b− c‖ = db = B. If ‖a− b‖ < A− B, then

‖a− c‖ ≤ ‖a− b‖ + ‖b− c‖ < (A− B)+ B = A (41)

Note also that

da = min
x 6∈Int(Uιa )

‖a− x‖ ≤ ‖a− c‖ (42)

Equations (41) and (42) imply da < A and this is
impossible. �

Proof of Lemma 4: LetH denote the real-valued random
variable defined as H := dmQ and observe that
P[mQ ∈ S1] = P[dmQ ≤ 1] = Fh(1), where Fh is the
distribution of H . Note that Fh(0) = 0 since

Fh(0)=P[mQ ∈ S0] = P[dmQ = 0]=P[mQ ∈ ∪i∈I∂Ui] = 0

where Lemma 2 and hypothesis (18) have been used. Fh is
a distribution, so it is right-continuous and for every δ there
is 1+ such that x ∈ (0,1+) ⇒ δ > Fh(x) − Fh(0) =
Fh(x) = P[mQ ∈ S1+ ]. Any 1 < 1+ satisfies
constraint (22). �

Proof of Lemma 5: In order to prove Lemma 5 we
need to find a lower bound for Pq[ιmq ]. Observe that if
‖µ−mq‖ < dmq , then the stabilizer will produce the output
symbol ιmq , since by Definition 8, ‖µ−mq‖ < dmq implies
µ ∈ Uιmq . It follows that

P
[
I = ιmq | Q = q

]
≥ 1− P[‖µ−mq‖ ≥ dmq ] (43)

The last probability is something that we can upper bound
by using the extended version of the Chebyshev’s inequality

given in Lemma 6 and Corollary 1. Suppose q is such that
mq 6∈ S1. By applying Corollary 1 to the last term of (43),
one obtains

P[‖µ−mq‖ ≥ dmq ] ≤
1
K
‖6q‖

2

12 ≤
1
K
62

max

12 (44)

By using (44) in (43) one obtains P[I = ιq | Q = q] ≥

1 − 1
K
62
max
12 . Any K ≥

62
max

12(1−η)
satisfies constraint

P[I = ιq | Q = q] ≥ η. �
Proof of Property 7.1: Since m is continuous, it suf-

fices to show that Sc1 = M \ S1 is not connected since
m(Q \ m−1(S1)) = M \ S1 and the continuous image of
a connected set is necessarily connected. Since

M ∩ Sc1=
⋃
n∈I

Vn = Vi ∪

⋃
n 6=i,j

Vn

 ∪ Vj
 = Vi ∪ U (45)

if we prove that every set Vn is open it will follow
that M ∩ Sc1 is the union of the non-empty and disjoint open
sets Vi and U ⊇ Vj, showing that M ∩ Sc1 is not connected.
In order to show that Vn is open we are going to show that

Vn = Un ∩ Sc1 = Int(Un) ∩ Sc1 (46)

by observing that Un = Int(Un) ∪ B with B ⊆ ∂Un ⊂ S1,
where the latter inclusion descends from the fact that x ∈ ∂Un
implies dx = 0 which in turn implies x ∈ S1. It follows that
Un∩Sc1 = (B∪ Int(Un))∩Sc1 = (B∩Sc1)∪ (Int(Un)∩S

c
1) =

Int(Un) ∩ Sc1. �

A. PROOF OF THEOREM 1
Remember notation Pq[A] = P[S (V ) ∈ A | Q = q],
simplified to Pq[i] when A = {i}. In order to prove Theorem 1
we will prove the existence of tie points by showing that there
are at least two non-disjoint winning regions.
Given i, j ∈ I, let function di,j : Q→ R be defined as

di,j(q) := Pq[i]− Pq[j] (47)

Lemma 7: For every i, j ∈ I, function di,j is continuous.
Proof: By hypothesis, for every event A, map q 7→

Pq[A] is continuous (see Definition 1). �
Lemma 8: For every i ∈ I, the winning region can be

expressed as

Wi = {q ∈ Q : di,j(q) ≥ 0 ∀j ∈ I} (48)

Set Wi is closed in Q and its interior Int(Wi) is

Int(Wi) = {q ∈ Q : di,j(q) > 0 ∀j ∈ I} (49)

Proof: Equation (48) follows from definition (9) and (47).
Set Wi is sclosed since, according to (48), Wi =⋂

j 6=i d
−1
i,j (R≥0) and every term of the intersection is closed,

being the inverse image of the closed set R≥0. Finally, (49)
follows by observing that the right hand side of (49) is the
inverse image of RN

>0. �
A fact that will be exploited in the proof is that the collec-

tion of the winning sets Wi is almost a partition of Q.

VOLUME 4, NO. 1, MARCH 2016 85



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Bernardini and Rinaldo: Theoretical Limits of Helperless Stabilizers

Lemma 9: The following equalities hold

Q = ∪i∈IWi (50a)

i 6= j ⇒ Wi ∩ Int(Wj) = ∅, i, j ∈ I (50b)

Proof: In order to prove (50a), consider q ∈ Q, let
i ∈ w(q) and observe that q ∈ Ww(i), therefore q belongs to the
right hand side of (50a), so Q ⊆

⋃
i∈I Wi. Since, obviously,

Wi ⊆ Q for every i ∈ I, (50a) follows.
In order to prove (50b) observe that if one could find

q ∈ Wi∩Int(Wj), then it would bePq[i] ≥ Pq[j] (since q ∈ Wi)
and Pq[j] > Pq[i] (since q ∈ Int(Wj)), which is absurd. �
Lemma 10: If Q is connected, |I| > 1 and every Wi, i ∈ I

is not empty, then there are at least two output symbols i, j ∈ I,
i 6= j, such that their winning regions are not disjoint, that is,
Wi ∩Wj 6= ∅.

Proof: We will show the contrappositive: if regions Wi
are disjoint, then Q is not connected. Let i be any element of
I and define set Ri =

⋃
j∈I\{i}Wj. Observe that Ri ∪Wi = Q

because of (50a) and that Ri ∩Wi = ∅ because all the Wi are
disjoint. Since Ri and Wi are closed, Q is disconnected.

Finally we can prove Theorem 1
Proof of Theorem 1: Since by hypothesisQ is connected

and the conditioner is not redundant, there are at least two
output symbols i, j ∈ I, i 6= j, such that their winning regions
are not disjoint.

Let q ∈ Wi ∩ Wj. Since q ∈ Wi we know that
ε(q) = Pq[i] ≥ Pq[j]; but also, since q ∈ Wj we know that
ε(q) = Pq[j] ≥ Pq[i]. It follows that

ε(q) = Pq[j] = Pq[i] (51)

that is, q is a tie point. Equation (51) implies ε(q) ≤ 1/2
which in turn implies η = infq∈Q ε(q) ≤ 1/2. �

B. PROOF OF THEOREM 3
1) BOUNDING THE FALSE NEGATIVE RATE
Observe that

P[ω 6∈ SD |mQ ∈ S1] =

∫
m−1(S1)

P[ω 6∈ SD |Q = q] fQ(q) dq∫
m−1(S1)

fQ(q) dq

≤ max
q∈m−1(S1)

P[ω 6∈ SD | Q = q] (52)

Therefore, it suffices to show that P[ω 6∈ SD | Q = q] can
be upper bounded with a bound that can be made as small as
desired.
Lemma 11: Let r− > 0 and D > 1. If N ≥

N0 :=
⌈
62

max/[r−(D−1)2]
⌉
then ∀q ∈ m−1(S1), P[ω 6∈

SD | Q = q] < r−.
Proof of Lemma 11: Let q such that dmq ≤ 1 and

observe that

P[ω 6∈ SD | Q = q] = P[dω > D | Q = q]
≤ P[‖ω −mq‖ > D− dmq | Q = q]
≤ P[‖ω −mq‖ > D−1 | Q = q]

≤
‖6q‖

2/N
(D−1)2

≤
62

max

N (D−1)2

where Lemma 3 has been exploited. �

2) BOUNDING THE FALSE POSITIVE RATE
Let B = S2D−1 \ S1 and C = Sc1 \ B = Sc2D−1 and observe
that

P+ = P[ω ∈ SD | mQ ∈ Sc1] =
P[ω ∈ SD,mQ ∈ Sc1]

P[mQ ∈ Sc1]

=
P[ω ∈ SD,mQ ∈ B]

P[mQ ∈ Sc1]
+
P[ω ∈ SD,mQ ∈ C]

P[mQ ∈ Sc1]

≤
P[mQ ∈ B]
P[mQ ∈ Sc1]

+
P[ω ∈ SD,mQ ∈ C]

P[mQ ∈ Sc1]
≤ P[mQ ∈ B | mQ ∈ Sc1]

+P[ω ∈ SD | mQ ∈ C]C,B ⊆ Sc1
≤ P[mQ ∈ B | mQ ∈ Sc1]+ sup

q∈m−1(C)
P[ω ∈ SD | Q=q]

(53)

It suffices to show that both addends in the last part of (53)
can be made small as desired. This is shown in Lemma 12
and Lemma 13.
Lemma 12: If P[dmQ = 1] = 0, then for every u > 0 it is

possible to find D > 1 such that

P[mQ ∈ B | mQ ∈ Sc1] < u (54)

Proof: Let H := dmQ −1 and observe that

P[mQ ∈ B | mQ ∈ Sc1] = P[H ≤ 2D | H > 0] = FH (2D)

(55)

whereFH denotes the distribution ofH conditioned byH > 0.
Note that FH (x) = 0 for x < 0 and FH (0) = 0 since

FH (0) = P[H ≤ 0 | H ≥ 0] = P[H = 0] = P[dmQ = 1]

(56)

and the last probability is zero by hypothesis. Since FH is
a distribution, it is right continuous so for every u > 0 it is
possible to find v > 0 such that FH (v)−FH (0) = FH (v) < u.
Choosing D = v/2 proves the claim. �
Lemma 13: Let D > 1 and u > 0. If N ≥ N1 :=⌈
62
max/[N (D−1)2]

⌉
, then ∀q ∈ m−1(C), P[ω ∈ SD | Q =

q] < u which implies supq∈m−1(C) P[ω ∈ SD | Q = q] < u
Proof: Let q ∈ C , that is, dmq ≥ 2D−1. Observe that

P[ω ∈ SD | Q = q] = P[dω ≤ D | Q = q]

≤ P[‖ω −mq‖ ≥ dmq − D | Q = q]

≤ P[‖ω −mq‖ ≥ D−1 | Q = q]

≤
‖6q‖

2

N (D−1)2
≤

62
max

N (D−1)2

�
Proof of Theorem 3: Split r+ as r+ = ra+ + rb+, r

a
+,

rb+ > 0 (for example, ra+ = rb+ = r+/2). Using Lemma 12
find D > 1 such that P[mQ ∈ B | mQ ∈ Sc1] < ra+;
successively, use Lemma 13 to find the minimum N1 such
that supq∈m−1(C) P[ω ∈ SD | Q = q] < rb+. Finally, use
Lemma 11 to find N0 and choose N = max(N0,N1) to get
the desired verifier. �

86 VOLUME 4, NO. 1, MARCH 2016



Bernardini and Rinaldo: Theoretical Limits of Helperless Stabilizers

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

REFERENCES
[1] B. Gassend, D. Clarke,M. van Dijk, and S. Devadas, ‘‘Silicon physical ran-

dom functions,’’ in Proc. 9th ACM Conf. Comput. Commun. Secur. (CCS),
New York, NY, USA, 2002, pp. 148–160.

[2] D. Lim, J. W. Lee, B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas,
‘‘Extracting secret keys from integrated circuits,’’ IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 13, no. 10, pp. 1200–1205, Oct. 2005.

[3] D. Lim, ‘‘Extracting secret keys from integrated circuits,’’ M.S. thesis,
Dept. Elect. Eng. Comput. Sci., Massachusetts Inst. Technol., Cambridge,
MA, USA, May 2004.

[4] G. E. Suh and S. Devadas, ‘‘Physical unclonable functions for device
authentication and secret key generation,’’ inProc. 44th ACM/IEEEDesign
Autom. Conf. (DAC), Jun. 2007, pp. 9–14.

[5] D. E. Holcomb, W. P. Burleson, and K. Fu, ‘‘Initial SRAM state as a
fingerprint and source of true random numbers for RFID tags,’’ in Proc.
Conf. RFID Secur., 2007.

[6] R. Maes, P. Tuyls, and I. Verbauwhede, ‘‘A soft decision helper data
algorithm for SRAM PUFs,’’ in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun./Jul. 2009, pp. 2101–2105.

[7] Z. Paral and S. Devadas, ‘‘Reliable and efficient PUF-based key generation
using pattern matching,’’ in Proc. IEEE Int. Symp. Hardw.-Oriented Secur.
Trust (HOST), Jun. 2011, pp. 128–133.

[8] O. Goldreich, S. Goldwasser, and S. Micali, ‘‘How to construct random
functions,’’ J. ACM, vol. 33, no. 4, pp. 792–807, Aug. 1986.

[9] M. Bellare and P. Rogaway, ‘‘Random oracles are practical: A paradigm for
designing efficient protocols,’’ in Proc. 1st ACM Conf. Comput. Commun.
Secur. (CCS), New York, NY, USA, 1993, pp. 62–73.

[10] A. Yaglom. (2011). Random Function. [Online]. Available:
http://www.encyclopediaofmath.org/index.php?title=Random_function&
oldid=13830

[11] J. Delvaux and I. Verbauwhede, ‘‘Fault injection modeling attacks on
65nm arbiter and RO sum PUFs via environmental changes,’’ International
Association for Cryptologic Res., Tech. Rep. 2013/619, 2013. [Online].
Available: http://eprint.iacr.org/

[12] D. Merli, D. Schuster, F. Stumpf, and G. Sigl, ‘‘Semi-invasive EM attack
on FPGA RO PUFs and countermeasures,’’ in Proc. Workshop Embedded
Syst. Secur. (WESS), New York, NY, USA, 2011, pp. 2:1–2:9.

[13] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, ‘‘FPGA intrinsic
PUFs and their use for IP protection,’’ in Proc. Cryptograph. Hardw.
Embedded Syst. (CHES), Sep. 2007, pp. 63–80.

[14] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, ‘‘Physical one-way
functions,’’ Science, vol. 297, no. 5589, pp. 2026–2030, Sep. 2002.

[15] R. Maes and I. Verbauwhede, ‘‘Physically unclonable functions: A study
on the state of the art and future research directions,’’ in Proc. Towards
Hardw.-Intrinsic Secur.-Found. Pract., 2010, pp. 3–37.

[16] R. Bernardini and R. Rinaldo, ‘‘A simple and reliable cell for single
bit physically unclonable constants,’’ in Proc. Austrochip, Graz, Austria,
Oct. 2014, pp. 1–6.

[17] Y. Su, J. Holleman, and B. Otis, ‘‘A 1.6pJ/bit 96% stable chip-ID gener-
ating circuit using process variations,’’ in IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, San Francisco, CA, USA, Feb. 2007,
pp. 406–611.

[18] N. Beckmann and M. Potkonjak, ‘‘Hardware-based public-key cryptog-
raphy with public physically unclonable functions,’’ in Proc. 11th Int.
Workshop Inf. Hiding (IH), Darmstadt, Germany, Jun. 2009, pp. 206–220.

[19] M. Potkonjak, S. Meguerdichian, A. Nahapetian, and S. Wei, ‘‘Differential
public physically unclonable functions: Architecture and applications,’’ in
Proc. 48th ACM/EDAC/IEEEDesign Autom. Conf. (DAC), San Diego, CA,
USA, Jun. 2011, pp. 242–247.

[20] J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede, ‘‘Secure
lightweight entity authentication with strong PUFs: Mission impossible?’’
in Proc. 16th Int. Workshop Cryptograph. Hardw. Embedded Syst. (CHES),
Busan, Korea, Sep. 2014, pp. 451–475.

[21] Y. Dodis, L. Reyzin, and A. Smith, ‘‘Fuzzy extractors: How to gener-
ate strong keys from biometrics and other noisy data,’’ in Advances in
Cryptology (Lecture Notes in Computer Science), vol. 3027, C. Cachin
and J. L. Camenisch, Eds. Berlin, Germany: Springer-Verlag, 2004,
pp. 523–540.

[22] B. Škorić and N. de Vreede, ‘‘The spammed code offset method,’’ Inter-
national Association for Cryptologic Res., Tech. Rep. 2013/527, 2013.
[Online]. Available: http://eprint.iacr.org/

[23] J. Delvaux and I. Verbauwhede, ‘‘Attacking PUF-based pattern matching
key generators via helper data manipulation,’’ International Association

for Cryptologic Res., Tech. Rep. 2013/566, 2013. [Online]. Available:
http://eprint.iacr.org/

[24] J. Delvaux and I. Verbauwhede, ‘‘Key-recovery attacks on various RO PUF
constructions via helper data manipulation,’’ in Proc. Design, Autom. Test
Eur. Conf. Exhibit. (DATE), Dresden, Germany, Mar. 2014, pp. 1–6.

[25] D. Merli, D. Schuster, F. Stumpf, and G. Sigl, ‘‘Side-channel analysis
of PUFs and fuzzy extractors,’’ in Proc. 4th Int. Conf. Trust Trustworthy
Comput. (TRUST), Pittsburgh, PA, USA, Jun. 2011, pp. 33–47.

[26] P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni, Eds., Flash Memories.
Norwell, MA, USA: Kluwer, 1999.

[27] M.-D. Yu and S. Devadas, ‘‘Secure and robust error correction for physical
unclonable functions,’’ IEEE Des. Test Comput., vol. 27, no. 1, pp. 48–65,
Jan./Feb. 2010.

[28] E. Öztürk, G. Hammouri, and B. Sunar, ‘‘Towards robust low cost authenti-
cation for pervasive devices,’’ in Proc. 6th Annu. IEEE Int. Conf. Pervasive
Comput. Commun. (PerCom), Hong Kong, Mar. 2008, pp. 170–178.

[29] R. Bernardini and R. Rinaldo, ‘‘Helper-less physically unclonable func-
tions and chip authentication,’’ inProc. ICASSP, Florence, Italy,May 2014,
pp. 8193–8197.

[30] J. R. Munkres, Topology: A First Course. Englewood Cliffs, NJ, USA:
Prentice-Hall, 1974.

[31] B. Zhang, A. Arapostathis, S. Nassif, and M. Orshansky, ‘‘Analytical
modeling of SRAM dynamic stability,’’ in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), Nov. 2006, pp. 315–322.

[32] F. Armknecht, R. Maes, A.-R. Sadeghi, B. Sunar, and P. Tuyls,
‘‘Memory leakage-resilient encryption based on physically unclonable
functions,’’ in Proc. 15th Int. Conf. Theory Appl. Cryptol. Inf. Secur. Adv.
Cryptol. (ASIACRYPT), Tokyo, Japan, Dec. 2009, pp. 685–702.

[33] R. Maes, ‘‘An accurate probabilistic reliability model for silicon PUFs,’’ in
Proc. 15th Int. Workshop Cryptograph. Hardw. Embedded Syst. (CHES),
Santa Barbara, CA, USA, Aug. 2013, pp. 73–89.

RICCARDO BERNARDINI was born in
Genova, Italy, in 1964. He received the
Laurea degree in electronics engineering from
the University of Padua, Padua, Italy, in 1990,
and the Ph.D. degree in filterbanks from
AT&T Bell Labs, Murray Hill, NJ, USA, with
Prof. Jelena Kovačević. From 1996 to 1997, he
was with the École Polytechnique Fédérale de
Lausanne, Lausanne, Switzerland, as a Post-
Doctoral Fellow with Prof. Martin Vetterli. He is

currently an Aggregate Professor with the Dipartimento di Ingegneria Elet-
trica, Gestionale e Meccanica, University of Udine, Udine, Italy. He worked
in the areas of multidimensional signal processing, wavelets, filter banks,
multimedia coding, robust transmission, bioengineering, chaotic systems,
peer-to-peer streaming, and some security-related areas, such as random
number generation, physical unclonable functions, and embedding random
permutations on chips. He has been involved in tenths of projects, from
regional ones up to European-level ones, sometimes as a Partner and
Principal Investigator/Coordinator.

ROBERTO RINALDO received the Laurea
degree in electronics engineering from the Uni-
versity of Padua, Padua, Italy, in 1987, the M.S.
degree from the University of California at Berke-
ley, Berkeley, CA, USA, in 1992, and the Ph.D.
degree in electrical engineering from the Univer-
sity of Padua. In 1992, he joined the Dipartimento
di Elettronica e Informatica, University of Padova.
Since 2001, he has been an Associate Professor
with the Dipartimento di Ingegneria Elettrica,

Gestionale eMeccanica, University of Udine, Udine, Italy, where he has been
a Full Professor with the Dipartimento di Ingegneria Elettrica, Gestionale
e Meccanica since 2003. He is currently the Director of the Dipartimento
di Ingegneria Elettrica, Gestionale e Meccanica. He has authored approx-
imately 100 publications, most of which in the IEEE journals and confer-
ences. His interests are in the field of multidimensional signal processing,
video signal coding, fractal theory, random number generation, and physi-
cally unclonable functions.

VOLUME 4, NO. 1, MARCH 2016 87


