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ABSTRACT Social contact networks and the way people interact with each other are the key factors that
impact on epidemics spreading. However, it is challenging to model the behavior of epidemics based on social
contact networks due to their high dynamics. Traditional models such as susceptible-infected-recovered (SIR)
model ignore the crowding or protection effect and thus has some unrealistic assumption. In this paper, we
consider the crowding or protection effect and develop a novel model called improved SIR model. Then, we
use both deterministic and stochastic models to characterize the dynamics of epidemics on social contact
networks. The results from both simulations and real data set conclude that the epidemics are more likely to
outbreak on social contact networkswith higher average degree.We also present some potential immunization
strategies, such as random set immunization, dominating set immunization, and high degree set immunization
to further prove the conclusion.

INDEX TERMS Epidemic modeling, social contact network, epidemic control, optimal strategies.

I. INTRODUCTION
Social networks are a social structure made up a set of social
actors, such as individuals or organizations, and the ‘‘ties’’
between them [1]. The ties can be either online interactions
or face-to-face interactions. Social contact networks are the
social networks made up of individuals and the interpersonal
contact between them. In this paper, we study the stochastic
epidemic models on social contact networks, in which the
links between persons are fact-to-face interactions whichmay
cause infections.

The modeling of the epidemics on social contact networks
has been studied in recent years. The standard Susceptible-
Infected-Recovered (SIR) model is widely used for its
simplification and usability. In SIR, individuals in
the network are labeled with three compartments:
Susceptible (S), Infected (I ) and Recovered (R) [2]. Each
individual belongs to one of the three compartments and can
transit from S to I or from I to R.

Studying the epidemic models helps people to know the
dynamics of epidemics on networks and help the decision

makers to mitigate the diseases when epidemic outbreaks.
The standard SIR model based on assumptions that the net-
works are homogenous which means all nodes have the
same linkage and the probability that there is a link between
any two nodes are equal. However, recent research works
have shown that the social contact networks have community
structure [3]–[5] in which nodes have different linkages and
nodes have more links within a cluster than that of between
communities. Thus, when there is a significant number of
infected individuals in a community, the effected contacts
(the contacts that transmit diseases) between susceptible and
infected individuals do not grow quickly. This phenomenon
is called ‘‘crowding’’ or ‘‘protection effect’’ [6]. Therefore,
the linear force of infection used in the standard SIR model
has limitation under the typical scenario.

To address this limitation, we proposed a novel ISIR
model to capture the dynamics of epidemics. In ISIR, the
infection rate (also called the transmission rate of diseases)
modeled as a function of the infected individuals considering
the ‘‘crowding’’ or ‘‘protection effect’’. In our ISIR model,
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at the early stage of the epidemics when the number of
infected individuals are small, the infection rate grows
quickly with the increase of number of infected individuals.
For the spread of diseases, the infection rate also grows slower
than a linear increase.

Further, the above SIR model can be used to analyze the
number of individuals in the three compartments. But, consid-
ering a real epidemic on a small community, it is reasonable
to assume the uncertainty or randomness of the final number
of infected individuals. For example, in a community with a
single epidemic source, the epidemic may never outbreak to
a significant number of individuals although the SIR model
would predict a significant number of infected individuals.
Therefore, we further proposed to use stochastic models to
estimate epidemic parameters. With the stochastic models,
we further examine the effectiveness of different immuniza-
tion strategies.

In this work, we study the stochastic epidemic models
on social contact networks. The real social contact
networks exhibit heterogeneous properties [7]–[9] rather than
the homogeneous properties on which the standard SIR
model is based. In social contact networks, there are some
nodes that have more links than the average. There nodes are
often called ‘‘hubs’’, and they are more likely to be infected
quickly when an epidemic outbreaks. The social contact
networks are considered to be scale-free networks [10], [11],
whose degree distribution follows a power law, at least
asymptotically. The Barabási-Albert (BA) model is usually
used to generate artificial social contact networks [12].
We studied the propagation of the epidemic diseases in BA
network and also evaluate some immunization strategies. It is
observed that the high-degree set immunization outperforms
random set immunization and dominating set immunization.
This result indicate the ‘‘hubs’’ has more impact on the spread
of epidemics.

Our major contribution in the paper can be summarized as
follow: 1) We proposed a novel ISIR deterministic epidemic
model which using a nonlinear force of infection considering
the ‘‘crowding’’ or ‘‘protection effect’’ to address the
limitation of standard SIR model where the linear fixed force
of infection used. Our model is able to present the fact that
the actual infect rates increase slower than the rates increase
linearly when there are a significant number of individuals in
the community are infected;

2) Unlike many existing studies, we employ both deter-
ministic and stochastic models to study the propagation of
epidemics on social contact networks with heterogeneous
properties. Our results show that the epidemics are more
likely to outbreak on the networks with more links among
nodes.

3) We examine our models using both simulation and
real data set. Especially, we evaluated four immuniza-
tion strategies on social contact networks. It is observed
that the high-degree set and critical set immunization
methods outperforms random immunization and dominating
set immunization strategies.

The rest of the paper is organized as follows. Section II
discusses related research works. Section III presents the
deterministic epidemic model. Section IV introduces the
stochastic epidemic models on social contact networks.
The numerical results are discussed in section V. Section VI
presents four immunization strategies, and we conclude the
paper in Section VI.

II. RELATED WORK
The standard SIR model has been widely studied since it was
proposed in 1927 [2]. Some similar models, i.e., SIS model,
SIRS and SEIR, also have been studied. The SEIR model
has an additional compartment which consists of exposed
individuals in the latent period [13]. These models make
the following assumptions: 1) susceptible individuals can get
infected from infected individuals via contacts; and 2) an
infected individual becomes immune after recovering from
the disease. According to these models, if the basic repro-
duction number R0 is less than λc, an epidemic threshold,
the epidemic would not outbreak on the network. Otherwise,
a significant number of individuals in the network will be
infected [14].

Due to the ‘‘crowding’’ or ‘‘protection effect’’, the force of
infection will not grow quickly with the increase of number
of infected individuals. [15], [16] propose a force of infection
model, which is βI2, in which β is contact rate and I is num-
ber of infected individuals. All symbols and notations used in
the paper are listed in Table 1. The authors use this model
to study the dynamic of epidemics. However, the model
shows the force of infection grows faster when the fraction
of infected individuals becomes big, which ignores the facts
of ‘‘crowding’’ or ‘‘protection effect’’. [6], [17] propose more
general force of infection models which also consider the
‘‘intervation affect’’. When the fraction of infected individ-
uals is large, some intervention policies may be placed, such
as closing restaurants and schools. In these models, the force
of infection is set to be αI2/(b+I2). However, it is difficult to
estimate the effect of these kinds of interventions, especially
when several intervention strategies are combined to use.
In this work, we proposed a nonlinear force of infection
in format of βI/(1 + αI ), to consider the ‘‘crowding’’ and
‘‘protection effect’’, which are ignored in existing models.

The deterministic epidemic model can predict the overall
infected individuals, but it is not able to provide the fluctu-
ation of the total infected nodes [14]. Even when R0 > λc,
the epidemic may disappear at the early stage of the spread
of epidemics. In contrast, the stochastic epidemic models are
able to capture the fluctuation of dynamics of epidemic on
real networks [18]. [14] studies the dynamics of epidemic
using a fixed probability of infection, but a node representing
a person with more infected neighbors are more likely to be
infected in reality. [19] uses a linear probability of infection.
However, the infection of a node from its infected neighbors
should be independent and identically distributed (i.i.d).
Therefore, in this paper, a q-influence model is used to
simulate the propagation of epidemics on social
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TABLE 1. Symbols and notations.

contact networks. The the fluctuations of the number of
infected individuals is demonstrated usingMonte Carlo (MC)
simulations.

The social contact networks are considered to be
scale-free networks [10], [11]. A social contact networks
generator, named BA generator, is widely used to generate
artificial social networks as the generated network satisfies
the statistics of the real social contact networks. The random
immunization of the network has been studied in [14]. Awide
variety of epidemic control strategies have been proposed
and evaluated by kinds of frameworks. An enhancing risk
communication method has been proposed to increase the
probability of successful control of diseases [20]. An opti-
mized resource allocation algorithm is proposed in the control
of epidemics under fixed budget is designed in [21]. The
authors in [22] have designed a framework for modeling
infectious diseases and optimizing control strategies. In [23],
the authors proposed to optimize the stabilization of disease
control efficiency. The authors in [24] proposed a frame-
work to evaluate the effectiveness of random and targeted
epidemic interventions for spatially separated patches in
meta-population models. In [25], a convex framework is
proposed to find cost-optimal distribution of vaccination
resources when different levels of vaccination are allowed.
However, these strategies are not cost-effective.

To find a better immunization strategy, we study the
dominating set immunization. However, it is NP-hard to find
the minimal k-dominating set of a network when k ≥ 2 [26].
The way to find a small size of k-dominating set is presented
in [27]. The high-degree nodes immunization is studied
in [28] and [29]. In this work, we compare the performance
of the four immunization strategies, and demonstrate that
the high-degree immunization is the best one of the four
immunization strategies, which also prove the fact that the
high degree node usually has high impact on the epidemic
spread.

III. THE DETERMINISTIC MODELS OF EPIDEMIC
ON SOCIAL CONTACT NETWORKS
A. THE STANDARD SIR MODEL
The SIR model is created by
W.O. Kermack and A.G. McKendrick in 1927 [2]. In the
SIR model, a fixed population is represented by only
three compartments: Susceptible, S(t); Infected, I (t); and
Recovered, R(t). S(t) denotes the number of individuals
that are not yet infected but susceptible to the diseases at
time t; I (t) is used to represent the number of individuals
who have been infected with the diseases at time t . Those
infected individuals are capable of spreading the diseases to
the susceptible individuals. R(t) is the compartment used for
people who have recovered from the disease by time t . The
recovered people are not able to be infected again or spread
the disease to others.

FIGURE 1. The flow of the standard SIR model.

In the above SIR model, many of the details about the
progression of infections are neglected, i.e., the differences in
response between individuals. But it has been widely studied
for its simplification and effectiveness. Fig. 1 shows the flow
of the standard SIR model [2]. The standard SIR model
can be presented mathematically by the following nonlinear
Ordinary Differential Equations (ODE):

dS
dt
= −βS

dI
dt
= βS − γ I

dR
dt
= γ I (1)

in which S(t) + I (t) + R(t) = N , N is the number of individ-
uals in the community. β is the contact rate. γ represents the
mean recovery rate. The following are the assumptions used
to generate the ODEs:
1) It is assumed that the number of community is fixed. The

births and deaths are therefore ignored.
2) It is assumed that the population are fully fixed, and each

individual has a small but equal probability of contacting
with any others.

3) Each individual in the population is considered to have
equal probability of spreading the disease, β. Therefore,
an infected individuals makes contact and transmit the
disease with βN individuals per unit time.

4) The population leaving a susceptible set are consid-
ered as equal to the number of individuals entering an
infected set, which means that an individual is not able
to recover from the disease immediately after being
infected with the disease.

The force of infection λ, is the rate of susceptible indi-
viduals getting infected, and the new infection is λI/N .
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According to the ODEs, an infected individual makes contact
with βN others per unit time, and the fraction of contacts
by an infected individual with a susceptible one is S/N .
Therefore the new infected individual in unit time per
infective is βN (S/N ), then the rate of new infections is
βN (S/N )I = βSI . Thus, the force of infection λ is

λ = β
I
N

(2)

We can derive the following equations by dividing the first
ODE by the third in equation (1), separating and integrating
the variables:

S(t) = S(0)e−R0(R(t)−R(0)) (3)

and when t →∞, we can get

R∞ = 1− S(0)e−R0(R∞−R(0)) (4)

in which R0 is denoted as a basic reproduction number and
R0 = Nβ/γ .
For the standard SIR model, there is an epidemic

threshold λc [30], [31]. If the basic reproduction ratio R0 is
larger than 1/S(0), the disease will spread and infect a finite
fraction of the population. On the other hand, if R0 ≤ 1/S(0),
only a small fraction of population will be infected. Thus the
threshold for the standard SIR model is

λc =
1

S(0)
(5)

B. THE IMPROVED SIR MODEL
In the standard SIR model, the community is assumed to
be fully fixed and each individual has the equal probability
(i.e., homogeneous nature) to contact with any others.
However, many studies show that the social contact net-
works are heterogeneous instead of homogeneous [18], [32].
In social contact networks, the contact numbers per
unit time are reduced by the ‘‘crowding effect’’ or
‘‘protection measures’’. This means that the force of infection
should include the adaptation of individuals to the infection
risk. In this work, we proposed an improved SIRmodel called
ISIR, in which the infection rate is not a fixed value, but a
function of number of infected individuals λ = β(I ). Thenwe
have the following nonlinear ODEs to describe the proposed
ISIR model:

dS
dt
= −λ(I )S

dI
dt
= λ(I )S − γ I

dR
dt
= γ I (6)

in which S(t) + I (t) + R(t) = N , N is the number of
individuals in the community. The force of infection λ(I ) can
be represented as f (I )I , and

f (I ) =
β

1+ αI
(7)

where β is contact rate, α is a parameter describing the level
of ‘‘crowding effect’’ or ‘‘protection measures’’. Fig. 2 shows
an example of the nonlinear force of infection with parame-
ters α = β = 20. Fig. 3 shows an example of solution of
ODEs in equation (6).

FIGURE 2. Nonlinear force of infection.

FIGURE 3. Solution of ODEs of ISIR model.

For the standard SIR model, there is an epidemic
threshold λc, as shown in equation (5). In order to
see the threshold in the proposed ISIR model, first we
derive the basis reproduction ration R0, which can be
represented as

R0 =
f (0)N
γ

(8)

By equation (7), we can get f (0) = β. Then we can
prove that the epidemic threshold of proposed ISIR is the
same as that of standard SIR model. Next, we will use dif-
ferent parameters to solve ODEs in equation (6) to see how
they affect the spread of the epidemics. Fig. 4 and Fig. 5
show the total infected individuals as a function of β.
In Fig. 4, γ is fixed to be 0.1, and in Fig. 5, α is fixed to
be 0.0001.

From Fig. 4 and Fig. 5, we can observed that the epi-
demic spread to a significant number of individuals only
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FIGURE 4. Total infected individuals as a function of λ.

FIGURE 5. Total infected individuals as a function of β.

FIGURE 6. Total infected individuals as a function of γ .

when Nβ ≥ γ , which means that R0 = Nβ/γ ≥

S(0)−1 = 1. The results validate the epidemic thresh-
old of the proposed ISIR model. Fig. 6 shows the total
infected individuals as a function of γ when β is fixed to
be 0.0003.

IV. THE STOCHASTIC MODELS OF EPIDEMICS ON
SOCIAL CONTACT NETWORKS
A. SOCIAL CONTACT NETWORKS: SCALE-FREE
NETWORKS
Many networks are considered to be scale-free networks,
including World Wide Web links, biological networks, and
social networks. The research [10], [11] has shown that the
social contact networks are also scale-free networks.

A scale-free network is a network whose degree distribu-
tion follows a power law distribution, at least asymptotically.
Therefore, in social contact networks, the fraction P(k) of
nodes in the network having k connections to other nodes
goes for large values of k as

P(k) ∼ k−ν (9)

where ν is a parameter whose value is typically in the range
2 < ν < 3, although occasionally it may lie outside these
bounds.

The above formula implies that the network has infinite
size. However, the real social networks consist of finite indi-
viduals. For example, the size a social contact networks in
a school or a city has a upper limit. The authors in [33]
introduce power law with cut-off. Though real social contact
networks are actually made up by a finite number of individ-
uals which is far from the thermodynamic limit, their degree
distribution can bemodeled by a power-lawwith cut-off. This
infinite population introduces a maximum connectivity kc,
depending on N , which has the effect of restoring a bound
in the connectivity fluctuations. In this work, we use the
following equation to analyze the degree distribution of the
social contact networks.

P(k) ∼ k−ν f (k/kc) (10)

where the function f (x) decreases fast for x > 1. The cut-off
kc is used to present the constraints limiting the addition of
new links in an otherwise infinite networks.

The Barabási-Albert (BA) graph was proposed in [12] as a
model of growing networks. Paper [31] also described and
used the BA algorithm. In BA algorithm, the successively
added nodes establish links with higher probability pointing
to already highly connected nodes. Therefore, the generated
social contact networks are constructed using the following
algorithm:
1) The algorithm starts from a small number of m0 of

nodes;
2) At each step when adding a new node, the algorithm

adds m links connecting the new node to an old node i
with a probability.

The probability the new node has a link to connect an old
node i is

pi =
ki∑
j kj

(11)

where ki is the degree of node i and the sum is over all
pre-existing nodes j.
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After iterating this algorithm for a sufficient number of
times, we can add the amount of nodesN as we want to. Then
social contact networks we simulated consists of N nodes
with connectivity distribution P(k) ∼ k−3 and average con-
nectivity 〈k〉 = 2m. The average connectivity, defined by the
average node degree, play a major role on these networks.

TABLE 2. Infection models.

B. EPIDEMIC PROPAGATION ON
SCALE-FREE NETWORKS
Table 2 shows three infection models. In the first one, a node
will be infected with a fixed probability q if it has at least one
infected neighbor, which means that a node with one infected
neighbor has the same probability to be infected with a node
has n, n > 1 infected neighbors. To consider the hierarchical
infection probability, we can use the second infection model,
which shows a linear probability of infections. In the second
model, a node with more infected neighbors is more likely to
be infected, and the infected probability is proportional to the
number of infected neighbors. We use the q-influence model
to show the fact that the infection probability increases faster
than a linear infection. In q-influence model, the probability
that a susceptible node will be infected by one of its infected
neighbors is q, and the infections from all its infected neigh-
bors are independent. So if a susceptible node has n infected
nodes at time t , the probability that it will be infected at the
next time by its n infected neighbors is

p = 1− (1− q)n (12)

Fig. 7 shows an example of the q-influencemodel, in which
the central node A has five neighbors and two out of them are
infected nodes. According to equation (12), the probability
that node A will be infected by its infected neighbors is
p = 1 − (1 − q)2. When q = 0.5, then the probability that
node A will be infected is equal to 0.75. In the following of
this paper, the q-influence model is utilized to simulate the
propagation of the epidemics on social contact networks.

FIGURE 7. An example of q-influence model.

V. NUMERICAL RESULTS
In this section, we will simulate epidemics on both artificial
social contact networks and real social contact networks. The
artificial social networks are generated by BA generator [12],
and the data for real social contact networks are download
from the SocioPatterns datasets [34].

A. EPIDEMICS ON BA NETWORKS
We simulate the spread of epidemics on artificial social
contact networks generated using BA models with different
parameters. We consider the BA network size N = 103,
and thus the average degree of nodes in hte network with
m = 1 and m = 6, are 〈k〉 = 2 and 〈k〉 = 6, respectively.
Figure 8 shows the degree distribution of the two artificial
social contact networks generate by BA models with m = 1
and m = 3.

FIGURE 8. The degree distribution of the artificial social contact
networks generate by BA models m = 1 and m = 3.

We study the effects of q in the spreading of epidemics on
BA networks. We set q = {0.09, 0.1, 0.11} and γ = 0.1.
We have run 1000 times of simulations for each pair of
parameters to avoid the disappearance of epidemics at the
early stage. The distributions of the epidemic size for each
pair of (q, γ ) on networks with m = 1 and m = 3 are shown
in Figure 9 and Figure 10, respectively.

From figure 9 we can find when q is small, the epidemic
size is small. With the increase of q, it is more likely that all
the nodes in the network are infected or have been recovered
from the disease. Figure 10 shows the same trend with the
increase of q, but it should be noted that the epidemic size
is larger when m = 3 than that of m = 1. That is because
the epidemics are more likely to outbreak on networks with
high average degree which means that individuals have more
interactions with each other.

B. EPIDEMICS ON REAL SOCIAL CONTACT NETWORKS
In the above, we study the spread of epidemics on
artificial social contact networks. Next, we will investigate
the spread of epidemics on real social contact networks.
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FIGURE 9. Distribution of the epidemic size from 1000 simulations with q = 0.09 (a), q = 0.1 (b), q = 0.11 (c), γ = 0.1 and m = 1.

FIGURE 10. Distribution of the epidemic size from 1000 simulations with q = 0.09 (a), q = 0.1 (b), q = 0.11 (c), γ = 0.1 and m = 3.

Here we use a social contact networks dataset named
‘‘Primary school-cumulative networks (PS)’’. The dataset
comprises two weighted networks of face-to-face proximity
between students and teachers [35]. A daily contact network
is provided with nodes representing individuals and edges
representing the face-to-face interactions. There exists a edge
between two individuals if at least one face-to-face interac-
tion between them is recorded.

We select one day from the dataset, October 2nd, 2009, set
q = {0.1, 0.11} and γ = 0.1, and then randomly select a node
to be epidemic source to spread the epidemic disease on the
PS network. We run 1000 times simulations and the results
are shown in Fig. 11 and 12.

From Fig. 11 and Fig. 12, it is observed that the epidemic
is more likely to spread to the whole PS network compared to
that on BA network with the same parameters. This is because
the average degree of the PS network is much higher than that
of BA network generated above.

VI. IMMUNIZATION STRATEGIES
In this section, we use the proposed models to examine the
immunization methods to control the epidemics on social
contact networks. We study four epidemic control meth-
ods, random set (RS) immunization, dominating set (DS)
immunization, high-degree set (HS) immunization, and
critical node set immunization (CS). The performance of
these strategies are also compared.

FIGURE 11. Distribution of the final size from 1000 simulations
with q = γ = 0.1.

According to equation (7) and equation (8), for the network
with a single epidemic source S(0) = 1, the threshold of the
ISIR model is

λc =
Nβ
γ
. (13)

The RS method means that nodes are randomly selected
from the network and immunized. If ηN nodes are randomly
selected from the network and are immunized, the effective
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FIGURE 12. Distribution of the final size from 1000 simulations
with q = 0.11 and γ = 0.1.

contact rate β ′ is β ′ = (1 − η)β. It follows the reproduction
number after a fraction of η has been immunized to be

R′0 =
(1− η)β

γ
. (14)

Next, we introduce the DS immunization method. A dom-
inating set for a network is a subset of nodes such that every
other nodes in the network is adjacent to at least one node in it.
For a k-Dominating Set (k-DS), each node in the network
is either in the k-DS or can reach to one node in k-DS via
at most k hops. Here we study the performance of k-DS
immunization method for epidemic control on social contact
networks. The construction of algorithm k-DS used in this
paper are presented in [27]. Here, k = 1, 2, 3 are used in
the simulation. Then, we study the performance of epidemic
control using HS immunization method. In HS method, we
first sort all the nodes in the network according to their
degrees, and then immunize a fraction of η nodes from the
highest degree node to the lowest degree node.

We also study the performance of critical node set (CS)
immunization strategy on our ISIR model. A critical node
set is identified from the network by unequal graph
partitioning (UGP) [36]. The CS immunization works by
immunizing the critical node set to prevent the spreading
of the diseases on the networks when epidemic outbreaks.
The basic idea of UGP is to identify a subset of nodes
that can disconnect the network and decompose it to a set
of sub-networks when these nodes are removed. Thus the
number of infected individuals will be less than the size of
the largest sub-network. The algorithm of the critical node
identification in UGP is as follows: 1) Get the connected
component G’ from the graph G, which represents a social
contact network; 2) Randomly assign nodes in G’ to two
clusters G1 and G2; 3) Move all nodes in G1 that connect
to nodes in G2 and nodes in G2 that connect to nodes in G1
to cluster G3; 4) Randomly swap nodes in G3 with nodes
in G1 or G2; a swap is accepted only if the size of G3
is reduced after the swapping and it does not bring in the

connections between G1 and G2. Otherwise, the swap is
dropped. 5) Repeat step 4 until no further swap can reduce
the size of G3. Then the set of G3 is called a critical
node set. 6) Run the above steps iteratively on the
sub-networks G1 and G2 until the sizes of all the
sub-networks are smaller than a predefined value. The overall
critical node set is the union of all critical node sets.
Therefore, though this algorithm, the epidemics will be
limited to spread in a sub-network if there is only one
epidemic source and the number of infected individuals will
be less that the size of the largest sub-network.

Finally, we compare the performance of the above four
immunization strategies on both real and artificial social net-
works. We first use the BA algorithm to generate two social
contact networks with N = 2000, m = 2, k = 2 and
N = 2000, m = 4, k = 2, respectively. Then we apply each
immunization method on these two networks. The results are
shown in Fig. 13 and Fig. 14 shows the performance of four
immunization strategies. It is observed that HS method is an
effective strategy that outperforms k-DS and DS although our

FIGURE 13. Performance of different immunization methods on
BA network with N = 2000, m = 2 and k = 2.

FIGURE 14. Performance of different immunization methods on
BA network with N = 2000, m = 4 and k = 2.

VOLUME 3, NO. 3, SEPTEMBER 2015 417



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Zhang et al.: Modeling Epidemics Spreading on Social Contact Networks

CS immunizationmethod [36] achieves the best performance.
The effectiveness of the CS method benefits from grouping
high degree nodes for the immunization. Both HS and CS
demonstrate that a node with high degree has the significant
impact on the spread of epidemic disease and the epidemics
are more likely to outbreak on social contact networks with
higher average degree.

FIGURE 15. Performance of different immunization methods on
primary school-cumulative networks (PS).

We use real data set of the primary school-cumulative
networks (PS), a real social networks, to evaluate the perfor-
mance of these immunization strategies. As shown in Fig. 15,
both the CS and HS immunization methods can achieve the
better performance than DS and k-DS methods mentioned
above. The results are consistent with our studies on the BA
contact social network. They not only validate the accuracy of
our proposed models, but also further prove the significance
of the high degree nodes for the epidemic spreading.

VII. CONCLUSION
In this paper, we proposed novel ISIR epidemic models with
nonlinear forces of infection to characterize the epidemic
spread on social contact networks with the consideration
of the ‘‘crowding’’ or ‘‘protection effect’’. We employed a
stochastic model, q-influence model to simulate the propaga-
tion of epidemics on social contact networks. We examine the
effectiveness of our models for epidemics spreading on both
simulated and real social contact networks. The results on
both networks are consistent with each other. In addition, four
immunization strategies for epidemic control are evaluated
using our proposed models, which demonstrate the fact that
the epidemics are more likely to outbreak on social contact
networks with higher average degree.

Our ISIR model can be used to analyze the epidemic
dynamic, predict the spreading of epidemics, and optimize
the control strategies on social contact networks, i.e., the
Severe acute respiratory syndrome (SARS) in 2003 and the
flu pandemic (H1N1) in 2009. It helps the decision makers to
optimize the epidemic control strategies by estimating their
performance in simulations.

Our work has built up a foundation for potentially effective
epidemic control strategies based on real time collected social
contact networks. Though this work is targeted at the spread
of epidemics, the methods presented here could be applied
for other applications such as the spread of rumors or ideas
through social contact networks.
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