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ABSTRACT With the impressive development of wireless devices and growth of mobile users, telecom-
munication operators are thirsty for understanding the characteristics of mobile network behavior. Based
on the big data generated in the telecommunication networks, telecommunication operators are able to
obtain substantial insights using big data analysis and computing techniques. This paper introduces the
important aspects in this topic, including data set information, data analysis techniques, and two case
studies. We categorize the data set in the telecommunication networks into two types, user-oriented and
network-oriented, and discuss the potential application. Then, several important data analysis techniques are
summarized and reviewed, from temporal and spatial analysis to data mining and statistical test. Finally, we
present two case studies, using Erlang measurement and call detail record, respectively, to understand the
base station behavior. Interestingly, the night burst phenomenon of college students is revealed by comparing
the base stations location and real-world map, and we conclude that it is not proper to model the voice call
arrivals as Poisson process.

INDEX TERMS Wireless big data, mobile communication networks, traffic analysis, spatial-temporal
correlation.

I. INTRODUCTION
The world has witnessed the increasing popularity of mobile
devices, which have become essential for common people
in their daily life. Accordingly telecommunication operators
are facing the tremendous challenge to provide satisfactory
service to mobile users with varying QoS requirement,
including high volume media transmission, huge amount of
machine to machine (M2M) connectivity and etc. Wireless
transmission technologies, like massive MIMO and
cooperative communications, are being focused to deal
with such challenge. On the other hand, the wireless
network related techniques play even more significant role,
like network management, energy saving, super dense cell
deployment and etc.

The mobile communication networks have experienced
network-oriented, user-oriented stages, and now the

data-oriented stage is coming. So at this point, the hot
topics about the wireless big data related promising research
and applications are, How to understand the behavior of
wireless/mobile networks? What benefit can such under-
standing bring to improve the network performance? What
metrics and analysis tools are of vital importance to obtain
these understandings?
As amatter of fact, the data generated by such huge amount

of mobile devices has been verified to be of great social
and economical value, thus can be utilized as low-cost but
efficient tool in many aspects, such as mobile phone posi-
tioning for intelligent transportation systems [1], trajectory
mapping for disease control [2] and individual detection [3].
In order to support the increasing demand, it’s neces-
sary to study the insight that mobile big data shows to
us. Many studies have already pointed out that a good
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knowledge of spatial and temporal dynamics in mobile
networks can contribute to the understanding of subscriber
behaviors and mobile networks. To be more specific,
optimal pricing scheme, network and protocol design,
spectrum allocation and energy saving plan can be
promoted [4], so that mobile phone users are benefited with
better service.

With the aid of modern information technology,
collection and analysis of large-scale mobile communication
traffic becomes possible and convenient, thus bring forth
many empirical studies and significant outcomes. For
example, as to the traffic modelling topic, many works have
tried to answer the followingmost cared questions: what is the
proper model for traffic arrivals in mobile networks? Or is
there any long-range or short-range time-correlation of this
traffic?

Here we take the call arrival modeling as example.
In classic wired networks call arrival is modeled as Poisson
process, which stimulates tomodel the call arrivals in wireless
network also as Poisson process in previous works [5]–[8].
However unlike wired networks, correlation between users,
congestions due to limited number of wireless channels and
handover during calling will make call arrivals in cellular
network more difficult to be modeled. So, based on the wire-
less big data, researchers may present reliable explanation on
such kind of question.

Our contributions in this paper are three folds.
• We summarize the prevailing data analysis techniques
for mobile communication big data, discuss their
potential and possible usage or applications in mobile
networks.

• We are pioneering, if not first, to investigate the
traffic pattern and infer corresponding reason using
large-scale aggregated voice data. The ‘Night Burst’
temporal pattern is revealed by performing K-means
clustering and its reason is confirmed that they locate
around university campuses.

• We investigate the call arrival issue using CDR data, and
conclude that short-range call arrivals is independent, but
long-range time-correlation exists. In addition, we find
that it is improper to model the call arrivals in one hour
as Poisson distribution, for almost in any time there are
cases that the call arrivals fail the Chi-Square test for all
stations.

The rest of this paper is organized as follows:
Section II introduces the category of user-oriented and
network-oriented, discuss popular and commonly used data
analysis techniques. Section III presents our work based on
Erlang measurement, including spatial and temporal analysis.
Section IV investigates the time correlation issue using the
CDR data. And conclusions are given in Section V.

II. DATA ANALYSIS TECHNIQUES
Because the telecommunication networks spread over large
geographical areas and serve huge amount of mobile users
in long time period, thus temporal and spatial analysis is

commonly used to find out the interesting patterns in the
time-space dimensions. And then statistical test and data
mining techniques also play important role in discussing the
rationality and validity. So in this section these topics will be
presented briefly.

A. USER-ORIENTED AND NETWORK-ORIENTED DATA
Basically, in the telecommunication networks the data source
can be categorized into user-oriented and network-oriented,
corresponding to two fundamental components, mobile
users/wireless devices who communicate with each other,
and network devices which provide the wireless coverage,
wireless transmission, positioning, data exchange and other
functionalities.
Everyone has her/his own living habits, like when to sleep,

where to live, whom to play with, therefore these habits
will definitely be reflected in her/his communication infor-
mation, since mobile phones have become part and parcel
of our life and an integral part for every individual. The
practical communication activities of mobile users include
voice calls, SMS, and other data traffic through all kinds
of Internet Applications, coined here as user-oriented data.
We note here that, despite of traditional mobile devices,
Machine Type Communication (MTC) devices will also
contribute even larger amount of data traffic in the coming
future. Communication networks also produce giant amount
of data when serving themobile users, like spectrummeasure-
ments [9], [10], device status report and etc, but this topic is
beyond this paper’s scope.
The most important user-oriented data is Call Detail

Record (CDR), whose typical sample is shown in Table 1.
Fine granularity study can rely on the detailed informa-
tion CDR data provides. Many researches that concerning
dynamic spectrum access and human dynamics are based on
CDR data. By analyzing large-scale CDR data, temporal and
spatial variation of primary usage can be characterized [11]
and calling patterns can be understood [12]. Other related
work includes [13]–[15].

TABLE 1. Data formats.

The voice traffic can also be aggregated, measured and
reported mostly by base stations, which is easy to process
and study due to its small amount. It’s proportional
to amount of people, thus revealing city dynamics is
possible. But detailed studies on aggregated voice traf-
fic are not that plentiful and relevant studies include hot
spots detection based on Erlang data [16] and traffic
analysis [17], [18].
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Mobile telephone traffic data [4], [18], [19] can be used
to characterize resource usage and subscriber behaviours
in mobile networks, and some basic knowledge of spatial
and temporal dynamics of data traffic has been
captured [4], [20], [21].

The network-oriented data source may be categorized
into KPI (Key Performance Indicator) measurement,
abnormal event report and traffic behavior information. The
KPI measurement include MO success rate, drop rate, call
setup delay, data link dropping rate and etc. The abnormal
event report will be activated when, for example, dropping
call, MO failure, poor coverage or weak coverage,
happens. The traffic behavior considers the information
like APP name, user ID, time, location, duration. From the
real time network-oriented data, the real status of mobile
communication networks can be clearly revealed and demon-
strated, although currently research work based these data
are not so many due to the data collection difficulties and
distribution obstacles.

B. TEMPORAL ANALYSIS
In temporal analysis, Allan Variance (AVAR), Modified
Allan Variance (MAVAR) and Detrended Fluctuation
Analysis (DFA) are important tools to analyze the time
series data collected in the telecommunication networks, for
example, to investigate the traffic dynamics.

1) AVAR AND MAVAR
Assume the one-sided power spectral density of a random
process x(t) can be modeled as

Sx(f ) =

{
hαf α, 0 < f < fh
0, f > fh

(1)

Where α and hα are parameters and fh is the upper
cut-off frequency. Such random processes are commonly
referred to as power-law noise. The value of α equals
-2(random walk frequency modulation), -1(flicker noise
frequency modulation, 0(white noise frequency modulation),
1(flicker noise phase modulation), 2(white noise phase
modulation) [22]. Since finite bandwidth and duration are
measured in the real-world, the model that α≥1 is common.
It is useful to evaluate the variance of the M-th
derivative of the process to address the problem such as
infinite variance and even nonstationarity resulted from
the value of a larger than 1. In particular, the Allan
Variance (AVAR) is evaluated on the 2nd difference of phase
samples.

But Allan Variance has disadvantage in evaluating the
value of α especially when α≥1. Thus David W. Allan pro-
posed Modified Allan Variance as an improvement of AVAR
in 1981. It converges on all power-law noise types with α<5
and has superior robustness against non-stationarity in data
analyzed. Data offset and linear drift are canceled in MAVAR
results. In addition, it has more accurate estimation of α and
especially for 0≤α≤ 1, while AVAR fails.

MAVAR can be computed using the following
formulation [13].

Modσ 2
y (nτ ) =

∑N−3n+1
j=1 [

∑n+j−1
i=j (xi+2n − 2xi+n + xi)]2

2n4τ 2(N − 3n+ 1)
(2)

where n=1,2,. . . ,bN/3c, N represents the total number
of samples, xk denotes the number of new calls in the
k-th sample, and τ represents the the sampling period. And
observation interval T = (N − 1)τ .
If xk is the sample of x(t), the MAVAR formula turns to

obey a power-law of the observation interval τ (t=nτ ).

Modσ 2
y (t) ∼ Autu (3)

where u = −3−α [13]. So if a log-log plot of MAVAR looks
ideally as a line with its slope u∼=-3 and α∼=0, then x(t) is
power law noise and xk is uncorrelated.

2) DETRENDED FLUCTUATION ANALYSIS
Detrended fluctuation analysis (DFA) is a scaling analysis
method used to accurately detect the long-range correlations
embedded in a nonstationary time series, which was
proposed in 1994 [23]. The output of the method, the scaling
exponent α, can quantify the correlation properties of a time
series, while other traditional approaches fails. The DFA
method comprises the following steps:

i) Considering a time series u(i) (i=1,. . . ,N). N is the length
of the series. Integrating the time series and obtaining

y(k) =
k∑
i=1

[u(i)− 〈u〉] (4)

where <u> is the mean of the series.
ii) The integrated series y(k) is divided into

N/l non-overlapping boxes of equal length l.
iii) In each box, we use a polynomial function yl(k) of

order n that represents the trend of that box to fit y(k).
We denote the algorithm as DFA− n,
iv) y(k) is detrended by subtracting the local trend yl(k) in

each box and we obtain

Y (k) = y(k)− yl(k) (5)

v) For a given box size l, we calculate the root-mean-square
function for integrated and detrended series

F(l) =

√√√√ 1
N

N∑
k=1

[Y (k)]2 (6)

vi) The above computation is repeated for box size l, and
we can obtainF(l) as a function of l. The relationship between
F(l) and l can be represented as F(l) ∼ lα , α represents
the correlation properties of the signal which is in the range
from 0 to 1. α>0.5 means the time series is correlated, α =
0.5 means uncorrelated(white noise), and α<0.5 means anti-
correlated.
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C. SPATIAL ANALYSIS
In spatial econometrics or spatial statistics, a popularly used
method to study spatial autocorrelation of a geographical
feature is Moran’s Indicator [24], as defined below:

I =
N∑

i
∑

j wij

∑
i
∑

j wij(xi − x)(xj − x)∑
i(xi − x)2

(7)

where, xi denotes the value of variable {xi} in region i,
with x being the mean. N denotes the total number of
observations. wij measures the degree of influence between
xi and xj.
The value of Moran’s I ranges from -1 to 1. If variable {xi}

is independent in space, the expected value of Moran’s I is 0.
WhenMoran’s I is above 0, positive spatial correlation exists.
Otherwise, negative spatial correlations exists.

Global Moran’s I reveals the degree of spatial dependance
in the whole area concerned, but we also need to investigate
the local cases, to which, Local Indicators of Spatial
Association (LISA) can be used. Popularly used LISA are
local Moran’ I [25] and Moran scatter plot [26].

Local Moran’s I is the decomposition of global Moran’s I
into the contribution of each observation. It is defined as

Ii =
(xi − x)

∑
j wij(xj − x)

1
N

∑
j(xj − x)2

(8)

Local Moran’s I serves to assess the influence of individual
locations on the global statistic and to identify local
non-stationarity, which will be used in subsection III-C.

D. DATA MINING AND STATISTICAL TEST
1) THE K -MEANS CLUSTERING
The k-means is the most well-known and commonly used
clustering method in data mining.

Given a data set, D, which contains n objects, k-means
aims to partition the objects in D into k exclusive groups or
clusters. Objects within a cluster are similar to one another
(high intracluster similarity) and dissimilar to objects in other
clusters (low intercluster similarity) [27].

Partitioning quality is assessed with with-cluster sum
of squares (WCSS). In Euclidean space, the target is to
minimize:

argmin
s

k∑
i=1

∑
xj∈Si

‖ xj − µi ‖
2 (9)

where µi is the centroid of cluster Si, defined as the mean
value of the objects within the cluster.

The k-means is a heuristic algorithm, which can not guar-
antee to converge to the global optimum. The choice of initial
cluster centroid selection affect the results. Also, the proper
choice of cluster number, k , is an important factor of the
partitioning performance. The detailed process of k-means
algorithm is shown in Algorithm 1:

Algorithm 1 Standard k-Means Algorithm
Require: k: the number of clusters; D: a given data set.
Ensure: k clusters.
1: randomly select k objects from D as the initial cluster

centers;
2: repeat
3: Assignment Step:

assign each object to the cluster to which the object is
the most similar(least Euclidean distance between the
object and the cluster mean);

4: Update Step:
calculate the mean value of the objects in each cluster
to update the cluster means;

5: until no change;

2) KOLMOGOROV-SMIRNOV TEST
Kolmogorov-Smirnov (KS) test first applied by Kolmogorov
in 1933 is a nonparametric test that quantifies the distance
between the empirical distribution function of the sample
and the cumulative distribution function of the reference
distribution (one-sample KS test), or between the empirical
distribution function of two samples (two-sample KS test).
The KS test is based on the following test statistic [28]:

K = sup
x
|F(x)− S(x)| (10)

Where F(x) is the hypothesized cumulative distribution
function, S(x) is the empirical distribution function based on
the sampled data.
This maximum distance is then plugged into KS probabil-

ity function to calculate the probability value, which ranges
from 0 to 1. The lower the probability value is, the less likely
the two distributions are similar.

3) CHI-SQUARE TEST
Chi-square test is a nonparametric test that is commonly used
to 1) test whether there is a significant difference between
the expected frequencies and the observed frequencies or
not; 2) test the independence of two attributes; 3) test a null
hypothesis on a specific value of the population hypothe-
sis for single variance. The chi-square test is based on the
following test statistic:

χ2
=

∑ (O− E)2

E
(11)

That is, chi-square is the sum of the squared difference
between observed (O) and the expected (E) data, divided by
the expected data in all possible categories.

III. CASE STUDY I : ERLANG MEASUREMENT
In this section, we present one case study using Erlang
measurement data from the base stations, which try to find
some spatial and temporal characteristics in voice traffic.
We conduct analysis on the characteristics of traffic distri-
bution, distinguish the base stations and infer the differences
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among clusters. Through this study, spatial and temporal
characteristics of base stations have been revealed.

A. ERLANG MEASUREMENT DATA SET
In this section, we introduce the data set used in this paper,
including Erlang measurement, temporal feature, spatial
feature and data preprocess.

Our data set is provided by one telecommunication
operator, which is collected from the mobile communica-
tion networks in one Southern China city with more than
two million inhabitants. The Erlang measurement of only
voice traffic data is collected from the base stations, not
including the SMS or other data traffic. Totally, the traffic
data are collected on an hourly basis from over 750 cellular
base stations for continuous 18 days, from 2013-05-10 to
2013-05-27, in the temporal dimension. The maximum,
minimum and mean Erlang of the data set is 143.1833, 0 and
6.3321 respectively.

In addition, the precise location(longitude and latitude) of
each base station are also provided for spatial analysis. But for
privacy protection, we linearly translate the position of each
base station into a new coordinate system, thus the figures in
the following parts do not indicate real positions of these base
stations, although the relative positions of these base stations
remain unchanged, which will also show us real and intuitive
spatial patterns.

The base stations we use are mainly divided into two or
three sectors, and the measurement data is collected on each
individual sector. So we first sum the measurement of these
sectors of the same base station together, which is used as
the base station’s Erlang measurement for the analysis in this
paper.

Due to some unknown reasons, there exist about
4 percentage missing values in the collected data, among
which, totally 14 hours of data are eliminated, when more
than 50 base stations have void value. In addition, some base
stations still have missing values. So after cleaning these data,
finally there are 752 base stations and 418 hours remaining,
where maximum andmean of the data is 116.4358 and 5.9564
Erlang now.

B. DAILY PATTERN OF GSM BASE STATION’S TRAFFIC
In this section, we will present the daily patterns of
traffic, including temporal patterns clustering along with
corresponding spatial analysis.

1) CLUSTERING OF DAILY TRAFFIC PATTERNS
The base stations of mobile networks being deployed in the
same functional urban areas, like commercial center, research
institute, citizen housing and etc, may have similar daily
traffic patterns for weekday or weekend. So we first average
the 18 days’ traffic of each base station into daily 24 hours
duration, thus our work is how to cluster these 752 base
stations into several distinct and significant types.

K-means approach is utilized to automatically distin-
guish different daily patterns. But directly applying K-means

algorithm to traffic data will cause base stations of similar
traffic level to be clustered together while their contours may
be not very alike. Hence, we normalize the traffic of each base
station according to its maximum value. In K-means, how to
choose the proper value of parameter k still keeps an open
question. In this paper, gap statistic [29] is adopted to decide
the value of k , which is defined as:

Gap(k) =
1
B

B∑
b=1

log(Wkb)− log(Wk ) (12)

where Wkb denotes the within-dispersion measure of a ref-
erence null distribution data set, Wk denotes intra-cluster
dissimilarity. So the number of clusters is the smallest k that
satisfies:

Gap(k) ≥ Gap(k + 1)− sk+1 (13)

where sk+1 denotes the standard deviation of within-cluster
dispersions in reference data sets.

Through this test, the best value of k is determined to be 4.
So, byK-means approachwe distinguish the normalized daily
traffic patterns as 4 clusters, which is shown in figure 1.

FIGURE 1. Centroid pattern of each cluster. The numbers of base
stations belonging to cluster 1 to 4 are 35, 59, 369 and 289
respectively.

Cluster 2 shows typical pattern of non-housing estate,
which might be commercial office, industrial factory and etc,
because the traffic of base stations of this cluster exhibit two
traffic peaks in the working hours, but decrease sharply after
about 7pm. One more interesting finding is that, there are
only 39 base stations in this cluster, which implies that in this
southern China city, most areas are full of living inhabitants.
Cluster 3 and 4 stand for 369 and 289 base stations, respec-

tively, which demonstrate very typical patterns for residential
area, because both have a traffic peak at about 8pm and then
decrease sharply. From the amount of such kind base stations,
we can infer that most areas of this city contains residential
houses, or mixture with residential houses.
But cluster 1 is quite different, due to its special and

unique characteristics, although it just has 35 base stations.
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Two traffic peaks appear at about 1pm and 11pm, and the
traffic density of 11pm is quite higher than that of 1pm, so that
such phenomenon is coined as ‘Night Burst’. So in the next
section we will investigate the reason of this phenomenon and
discuss the spatial correlations of these base stations.

2) SPATIAL ANALYSIS OF TRAFFIC PATTERNS
The spatial locations of base stations in different clusters are
plotted in figure 2. Base stations in cluster 1 are confirmed to
mainly locate in three different parts, all in the neighbors of
university campuses, by comparing the GPS location of base
stations with real-world map. So the behavior of cluster 1
we believe may represent traffic distribution of students in
university campuses.We think the reason of this ‘Night Burst’
pattern is that, after finishing their study in the evening or
at noon, students begin to contact their parents, friends or
mates, but in themorning or the afternoon they rarely use their
mobile phones because of having courses.

FIGURE 2. Real-World Position Recognition for All Base Stations
in Four Clusters.

There are mainly 4 parts that base stations in cluster 2
locate at, but among them no direct relationship has been
found. We can only infer that these parts to be official areas
because the traffic is high only in working hours, and further
verification will be our future work.

Finally, base stations of cluster 3 and 4 spread over the
whole city, which deal with the communication requirement
of major citizens.

C. SPATIAL AUTOCORRELATION ANALYSIS
In this part we will present the spatial autocorrelation analysis
to investigate the spatial connection among the base station
traffic distribution.

The question we are trying to answer is, how the spatial
correlation forms? Thus we use local Moran’s I, which is

introduced in section III-C, to further study the local spatial
correlation. We choose the data at one certain hour to plot the
local Moran’s I, which can help us get further insight visually.
In figure 3(a), we can see that there are four dense regions

of base stations. In these regions, base stations of positive
correlation are in themajority. The fact of interest is that in the
positive correlation concentrated region, there are still some
negative correlation base stations. So we choose the largest
dense part for further study. Also, we compare the local spatial
correlation shown in the figure 3(b), with the traffic density
of this region at the same time(figure 3(c)).
From direct comparison, we can see that these positive

correlation base stations are of the same low level traffic as
their neighbors, while negative correlation base stations are
mainly the ones of high level. We see that, around 6 am,
the volume of voice traffic of most base stations is
basically small, while there are a few base stations that have
larger traffic. Thus, positive correlation exists among many
proximate base stations, which will lead to larger global
spatial correlation.
The fact that different correlations exist among base

stations of different traffic volume gives us an idea that
those ‘abnormal’ base stations that are different from their
neighbors can be distinguished with spatial correlation detec-
tion. In cellular optimization, a direct purpose is to balance
the loads of base stations, especially base stations nearby.
The situation that one base station has high load while its
neighbors are of small traffic brings inefficiency and resource
wasting. The above study gives us an implication that local
Moran’s I may be a powerful tool to depict the imbal-
ance and further used for cellular optimization and resource
planning.

IV. CASE STUDY II : CALL DETAIL RECORD
In this section, we re-consider the time-correlation issue of
call arrivals, using CDR data of large-scale base stations from
a dense population district in one large northern China city,
based on our previous work [30]. We first verify the long-
range in (24 hours) time-correlation of call arrivals but find
call arrivals in a minute is uncorrelated to the number of call
arrivals in another minute in short-term. Second, we find the
time-correlation of call arrivals is influenced by time and the
location of stations.
There are several empirical studies on real GSM tele-

phone traffic data attempting to modelling call arrivals in a
cell. The answered call holding time and inter-arrival time
were found to be modeled as lognormal-3 function [31].
Both [13] and [14] used MAVAR to analyse the time corre-
lation of call arrivals of a base station over a day with τ=1s,
and concluded that the number of call arrivals in a second is
uncorrelated in short-range(about 500s). Then in long time
period (24 hours) the number of call arrivals are confirmed to
be uncorrelated [14] while [13] believed that non-negligible
time-correlation may be found on long intervals. In [15], its
dataset was collected from hundreds of cell stations con-
tained voice call information over three weeks, and verified
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FIGURE 3. Local Moran’s I at one certain hour and Zoom-in of
one dense area. (a) Local spatial correlation of base stations.
(b) Local Zoom-in. (c) Traffic Density of Local Zoom-in.

call arrivals can be modeled as Poisson process by using
Maximum Likelihood Estimate (MLE) exponential fits for
actual distribution of inter-call arrival time.

A. INFORMATION OF CDR
The 30 days(in June 2013) voice CDR data set of 10,000
specific users we use in this paper was collected from one
GSM mobile communication operator, which was randomly
sampled from those who satisfy following two constraints:
(1) Aggregated call duration > 100 minutes; (2) Their phone
number registered in one specific high-tech industrial district.
There are totally 2838 base stations, but we just choose
4 stations, represented as station A, B, C and D, with highest
cell loads and users for further investigation, whose detailed
basic information is shown in table 2. We note that the
CDRdata, like calling number, is preprocessed to keep anony-
mous due to privacy protection.

TABLE 2. Basic information of the chosen four cell stations.

B. TIME-CORRELATION OF CALL ARRIVALS
In this section, the time-correlation analysis of call arrivals is
presented, including both long-range and short-range cases.

1) TIME-CORRELATION OF CALL ARRIVALS
The time-correlation plot of call arrivals based on MAVAR is
shown in figure 4, where xk represents the number of calls in
the k-th minute of the 30 days. Because the results are similar
in all 30 days (maximum deviation of a is 0.18) for all four
stations, so we choose just one day (16-JUN-2013)’s result
for discussion.
MAVAR is almost perfectly linear(in the log-log plot)

for nτ up to 50 minutes, with slop u ∼= -3.0

FIGURE 4. MAVAR of call arrivals of base station A, B, C and D
(T=24h, N=1440, τ=1min, Date:16-JUN-2013).
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corresponding a ∼= 0.0, which indicates power spectral
density of call arrivals is equal to white noise’s power spectral
density and means that in short term the number of call
arrivals in a minute is independent. When nτ > 50, MAVAR
deviates from the straight line, which implies long-range
time-correlation of the call arrivals.

The above discussion only considers time-correlation of
call arrivals in granularity of one minute, and we then model
call arrivals as Poisson process in short-term, which means
the call arrivals is uncorrelated in any granularity.

2) SHORT-RANGE DEPENDENCY
One hour interval is chosen for discussion because the
number of call arrivals in a minute is uncorrelated in short-
term(about 50 minutes) through the observation of figure 4.

MAVAR of the sequence of call arrivals over one second
slots of one hour for four base stations during 10:00-10:59
AMon 14-JUN-2013 is plotted in figure 5. The log-log plot of
MAVAR of station A, B and D are found to be ideally straight
lines with slopes u ∼= 3.0 for all time intervals, which con-
firms the non-correlation, but station C behaves differently,
showing that when time interval> 800s, the time-correlation
seems not true. Similar findings have been obtained in other
one hour time when the time interval > 800s, thus the time-
correlation seems not true for all base stations. We then take
chi-square test and fitting with Poisson distribution for further
verification.

FIGURE 5. MAVAR of call arrivals on 10:00-10:59 AM of four base
stations(T=1h, N=3600, τ=1s, Date:14-JUN-2013). The curves of
black,red,green and blue represent station A, B, C, D
respectively with u1=-3.00, u2=−2.98, u3=−3,02 and u4=−3.01.

Table 3 presents the mean, variance, variance-mean ratio
and the value of chi-square test of call arrivals over one
minute slots in the same hour for these four base sta-
tions, where the chi-square test is used to ascertain the fit-
ting degree between the empirical distribution of the call
arrivals and the Poisson distribution with same mean, where
Chi-square test < 0.05 indicates that the distribution of
call arrivals should not be modeled as Poisson distribution.

TABLE 3. Mean, Variance and χ2-Test(to same-mean poisson
distribution) of the number of new calls over 1 minute slots
of 1 hour from 10:00 to 10:59 for 4 stations on 14-JUN-2013.

Three stations A, B, D all pass the chi-square test, but C does
not, because its chi-square test is too small and its variance-
mean ratio is too large.
So we can conclude here that the call arrivals of

station A, B, D can be modeled as Poisson process on
10:00-10:59 14-JUN-2013, while station C can not.
Similar results hold true in other time intervals for these
four stations(just the base stations which can not be modeled
as possion process may be other base stations not base
station C), which means although in most one hour interval
the call arrivals can be modeled as Poisson process, it is NOT
true for all cases.

C. CHI-SQUARE TEST FITTING
In the last section, we confirm that, in specific hour, call
arrivals of station A, B and D satisfy Poisson process, but
station C does not. So we take further and comprehensive test
for all hours in this section.

1) DISTRIBUTION OF CHI-SQUARE TEST
Figure 6 illustrates the distribution of the chi-square test
results of four stations for 27 days(10,11,12 JUN 2013 are
ignored, because they are holidays so that call loads of
four stations in these days are relatively small, which may
influence the accuracy of chi-square test.) from 9:00-18:59,
which brings us a thorough understanding and two important
findings.

FIGURE 6. the probability of the value of chi-square test of four
stations for 27 days from 9:00-18:59.

Firstly, all these four stations have a relatively high rate
(A:41, B:16, C:39, D:32) that decline the chi-square test with
90% confidence level, which means that the distribution of
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call arrivals in those specific hour interval can NOT be mod-
eled as Poisson distribution. Our finding is not consistent with
previous conclusion of call arrivals of base stations being able
to bemodeled as Poisson process, so that brings forward some
insight on the traffic modeling issues in telecommunication
networks.

Secondly, the decline rate of four stations vary, where
station B is much smaller than that of other three stations.
Because station B is located in a research institute while the
other three stations are in commercial buildings, as previously
depicted in table 2, so the variety of call arrivals of station B
is more flatter. But, how the time-correlation of call arrivals is
influenced by the location or properties of base stations needs
further investigation.

2) TIME PERIODS FAILING THE CHI-SQUARE TEST
The characteristic of time periods that fail the chi-square test
is also important. Figure 7 depicts the number of days where
chi-square test value is smaller than 0.1 in an hour interval
from 9:00-18:59 for four stations. We notice, on one hand,
almost in any time there are cases that the call arrivals fail
the chi-square test for all stations. But on the other hand, the
number of days where chi-square test value is smaller than 0.1
is different in different time periods. First, the largest number
of days where the chi-square test value is smaller than 0.1 for
station A, C, D are at 18PM, 16PM, 17PM, corresponding
to the time where the call arrivals begin to decline steeply
respectively. Second, the pass rate of chi-square test in the
afternoon from 12:00-15:59 is better for these four stations.
This implies that the characteristic of call arrivals is changing
over time. So it is improper to model the call arrivals in 1 hour
as Poisson distribution in any time. In the future work, we
should try to answer how to predict call arrival precisely.

FIGURE 7. the number of days where chi-square test value is
smaller than 0.1 in an hour interval for 27 days from 9:00-18:59
for four stations.

V. CONCLUSION
This paper concentrates on the data analysis issue in the
telecommunication networks, covering the data set catego-
rization, commonly used data analysis techniques and two
general case studies using Erlang measurement and CDR.

In addition, our work presents several interesting findings
about base station behavior.
To be specific, we accomplish the spatial-temporal analysis

to the GSM base station traffic of a city in Southern
China, and comprehensively investigate the traffic pattern and
spatial correlation, which brings some insight for future
possible work. K-means method is adopted to help
understand different patterns of base stations and finds that,
different from common people, college students’ special
activity pattern, coined here as ‘Night Burst’, has been
revealed through traffic of base stations near university
campuses, based on spatial-temporal analysis. In spatial
correlation part, we give our thinking and possible reason
through the study of local Moran’s I in the spatial dimension
and find that local Moran’s I can be a tool to discover
‘abnormal’ stations in a region.
As to the CDR data, we have analyzed the characteristics of

the call arrivals based on real call detail records of large-scale
GSM base stations in Beijing over 30 days usingMAVAR and
chi-square test. First, The preliminary observation reported
in this paper shows that the call arrival patterns vary over
time and the location of stations. Second, the number of
call arrivals in a minute has been found uncorrelated in
short-range but time-correlation exist in long-range because
of the violent fluctuation of the call arrivals in the long-
term(24 hours). Third, the call arrivals can be modeled as
Poisson process in most cases, but the characteristic of call
arrivals changes over time and space, so it is improper to
model the call arrivals in one hour as Poisson distribution.
Our work is a first step for such data analysis in mobile

communication networks, and our observations have poten-
tial applications, such as cellular optimization, resource plan-
ning and etc.
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