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ABSTRACT Ubiquitous monitoring over wireless sensor networks (WSNs) is of increasing interest in
industrial cyber-physical systems (CPSs). Question of how to understand a situation of physical system by
estimating process parameters is largely unexplored. This paper is concerned with the distributed estimation
problem for industrial automation over relay-assisted WSNs. Different from most existing works on WSN
with homogeneous sensor nodes, the network considered in this paper consists of two types of nodes,
i.e., sensing nodes (SNs), which is capable of sensing and computing, and relay nodes (RNs), which is
only capable of simple data aggregation. We first adopt a Kalman filtering (KF) approach to estimate the
unknown physical parameters. In order to facilitate the decentralized implementation of the KF algorithm in
relay-assisted WSNs, a tree-based broadcasting strategy is provided for distributed sensor fusion. With the
fused information, the consensus-based estimation algorithms are proposed for SNs and RNs, respectively.
The proposed method is applied to estimate the slab temperature distribution in a hot rolling process
monitoring system, which is a typical industrial CPS. It is demonstrated that the introduction of RNs improves
temperature estimation efficiency and accuracy compared with the homogeneous WSN with SNs only.

INDEX TERMS Cyber-physical system, ubiquitous monitoring, wireless sensor network, relay, consensus,
estimation.

I. INTRODUCTION
Cyber-Physical Systems (CPS) refers to a new genera-
tion of complex systems integrating physical processes,
ubiquitous computation, efficient communication and
effective control. One of typical example of CPS is process
control system in industrial automation [1], [2]. Being able
to quickly and cost effectively monitor the system process is
essential for industrial automation. Whatever the specifics of
process monitored, all industrial systems share the critical
requirement, i.e. timely situation awareness with sens-
ing, data processing and communication. Wireless Sensor

Network (WSN) is one of the key technologies associated
with ubiquitous monitoring for CPSs. WSNs are formed
by small-sized, low cost, and wireless-communication
capable sensors, which have demonstrated a great poten-
tial for many practical applications in industrial automa-
tion. Specifically, by using industrial wireless technology,
a wealth of process data such as temperature, humidity,
pressure, viscosity and vibration intensity measurements
can be collected through sensing units and transferred for
operation and management [3]–[5]. Compared with tra-
ditional wired industrial monitoring and control systems,
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the collaborative nature of WSNs brings several advantages,
including self-organization, rapid deployment, flexibility, and
inherent intelligent-processing capability. Therefore, WSN
plays a vital role in creating a highly reliable and self-healing
industrial CPS that rapidly responds to real-time events with
appropriate actions [6], [7].

However, there exists a gap between the wealth of dis-
tributed information captured and the understanding of a
situation of physical systems. Distributed estimation over
WSN is a key process bridging this gap by locally carrying
out computation and transmitting only the required and/or
partially processed data. An important issue here is, how to
ensure the estimations of sensor nodes reach consensus and
converge to the true values of the physical parameters.

On the aspect of distributed consensus estimation,
Olfati-Saber first introduced the consensus strategy for the
distributed estimation problem [8]. Motivated by the consen-
sus strategy, alternative consensus-based distributed Kalman
filters are designed in [9] and [10]. The filters are composed
of two stages, i.e., the Kalman-like measurement update and
the estimate fusion using a consensus matrix. Moreover,
consensus-based estimation algorithms has been proposed
for process monitoring and control, see [11] and references
therein. In order to improve the autonomy estimation ability
of sensors, mobile WSNs is considered in [12] and [14].
However, the harsh industrial environment introduces several
challenging issues for mobile WSNs as summarized below:
1) Constrained by the limited physical size, industrial sensor
nodes have limited battery energy supply; 2) For the sake of
safety, sensors in industrial automation are usually required to
be deployed with proper locations to avoid the corrosive envi-
ronments, and strong humidity, vibrations, dirt and dust or
other improper conditions. These challenging issues limit the
applications of mobile WSNs in industrial automation. Thus,
an interesting question is how to design a virtual mobility
strategy for static WSNs to improve the autonomy estimation
ability. This paper provides an example.

On the other hand, most of the existing research focuses on
the homogeneous WSNs, i.e., all sensor nodes possess iden-
tical communication and computation capabilities, and their
roles in distributed estimation are homogeneous. Recently, it
is reported that the heterogeneity in the sensors’ roles can
improve the communication ability, prolong the network life-
time and increase the communication reliability [15], [16].
Question of how to improve the distributed estimation
capability of heterogeneous network is largely unexplored.
Recently, we consider a class of heterogeneous network
which consists of a large number of cheap and low-end nodes
only with the function of communication and simple data
aggregation, and a small number of high-quality sensors with
powerful functions of sensing, communication and computa-
tion. The estimation capability of this kind of heterogeneous
WSNs has been demonstrated in [17]–[19] to be enhanced
compared with the homogeneous WSNs.

Inspired by the aforementioned considerations, the relay
assisted WSN is investigated for distributed estimation in

industrial CPS. The network consists of two types of nodes,
i.e., sensing nodes (SNs) which are capable of sensing and
computing, and relay nodes (RNs) which are only capable of
simple data aggregation. A Kalman filtering (KF) approach
is first applied to estimate the unknown physical parameters.
A Tree-based broadcasting communication is provided for
distributed sensor fusion to facilitate the decentralized imple-
mentation of the KF in WSNs. Based on the fused infor-
mation, we propose consensus-based estimation algorithms
for SNs and RNs, respectively. To improve the autonomy
estimation ability, a dynamic duty-cycle scheduling mech-
anism is designed for SNs according to the estimate, such
that the network lifetime can be prolonged. Finally, we apply
the proposed method to the slab temperature estimation in
a hot rolling process. Simulation results demonstrate that
the introduction of RNs improves the temperature estimation
efficiency and accuracy compared with the homogeneous
WSN with SNs only.

The remainder of this paper is organized as follows.
Section II gives the problem formulation. In Section III, the
main results of distributed parameter estimation are presented
for two types of nodes in the network. An application of dis-
tributed estimation in hot rolling process monitoring is given
in Section IV, followed with the conclusion in Section V.

II. PROBLEM FORMULATION
Consider an industrial CPS with the following process
dynamics

q(k + 1) = F(k)q(k)+ ω(k), (1)

where q = [qT1 , q
T
2 , · · · , q

T
m]

T is the state vector of
the physical system (1) with qi = [q1,i, q2,i, · · · , qn,i]T ,
i = 1, 2, · · · ,m, andm and n are positive integers. Thematrix
F ∈ <mn×mn, and ω ∈ <mn is the disturbance assumed to be
zero-mean and white. The initial state of q, denoted as q0, is a
Gaussian random variable with the known mean E{q0} = q̄0
and positive definite covarianceE{(q0−q̄0)(q0−q̄0)T } = 50.
Table 1 shows the main notations used in this paper.

TABLE 1. Notations.

Consider the monitoring problem for the physical sys-
tem (1) by the means of parameter estimation in a relay
assisted WSN. The network is composed of N nodes

VOLUME 3, NO. 3, SEPTEMBER 2015 353



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Chen et al.: Ubiquitous Monitoring for Industrial CPSs

withM number of SNs capable of target parameter estimation
and N −M number of RNs capable of data aggregation only,
where N and M are positive integers and M < N . The
index sets of SNs and RNs in the network are denoted by
IS = {1, 2, · · · ,M} and IR = {M + 1,M + 2, · · · ,N },
respectively. For any SN i, it can sense the unknown physical
parameter vector q at its fixed location pi ∈ <2, and the
measurement zi ∈ < is given by

zi(k) = Hi(k)q(k)+ εi(k) (2)

where εi ∈ < is white Gaussian measurement noise,
Hi = 9(pi) = [(ψ (1))T , (ψ (2))T , · · · , (ψ (m))T ] is mea-
surement matrix, and ψ (j)

= [ψ1, j, ψ2, j, · · · , ψn, j]T ,
∀j = 1, · · · ,m are model basis functions related to the
location pi of SN i.
As for RNs, their role is to aggregate the data received

from neighboring nodes and relay the aggregation to
neighboring nodes. So they cannot measure the parame-
ters directly because they are not imbedded with sensing
modules. The reliable wireless communications between
nodes can only be ensured within a communication
range r ∈ <+.

For SNs and RNs, the communication topology is mod-
eled as a weighted directed graph G = {V, E,A}, where
V = IS∪IR = {1, 2, · · · ,N } is the vertex set indicating SNs
and RNs, E ⊂ V × V is the set of communication links over
which local information is exchanged, and A = [aij] is the
weight matrix associated with E . Since the graph is directed,
A may be asymmetric. Directed edge (i, j) ∈ E means that
the information flows from the vertex i to the vertex j. The set
Ni = {j ∈ V : (j, i) ∈ E, j 6= i} is the neighbor set of vertex i
in G. Graph G is connected if there is a path connecting every
pair of vertices.

Given the above physical dynamics model and network
model, the parameter estimation problem for CPSmonitoring
can now be stated as follows.
Problem (Distributed Estimation):Consider the distributed

estimation problem by the given relay assisted WSNs for the
physical system (1) to achieve the following two objectives:
• SNs can estimate the parameters based on a consensus
based estimation method in a distributed manner;

• Based on the estimate of SNs and aggregation informa-
tion of RNs, a dynamic duty-cycle scheduling mecha-
nism is to be designed for SNs such that they are of
autonomy estimation ability.

III. CONSENSUS BASED DISTRIBUTED ESTIMATION
OVER RELAY ASSISTED WSNs
In this section, we first present a standard Kalman
filter to estimate the unknown physical parameters. A dis-
tributed Tree-based broadcasting communication algorithm
and a consensus based distributed estimation method are
then designed. Furthermore, a dynamic duty-cycle schedul-
ing mechanism is designed to improve the estimation
capability.

A. STANDARD KALMAN FILTER
For SN i, given the past information Zi(k) = {zi(0), zi(1), . . . ,
zi(k)} by the measurements of the parameters up to time k , the
estimates of the state vector q are obtained as follows:

q̂i(k) = E{q(k) |Zi(k) },
q̄i(k) = E{q(k) |Zi(k − 1) }. (3)

Let ηi = q̂i−q and η̄i = q̄i−q be the estimate errors. Then,
the error covariance matrices associated with the estimates
q̂i and q̄i are respectively given by

Mi(k) = E{ηi(k)ηi(k)T },
Pi(k) = E{η̄i(k)η̄i(k)T }. (4)

With the definitions of (3) and (4), the following lemma
gives a detailed iteration process of Kalman filtering.
Lemma 1 (Kalman Filter [12], [21]): Consider the relay

assisted WSN with linear perception model (2) for the
unknown dynamic physical parameters (1). Let Ri and Q
denote the covariance matrices of εi and ω, respectively.
Assume that εi is uncorrelated. Suppose each SN computes
two central sums y =

∑M
i=1 H

T
i R
−1
i zi =

∑M
i=19

T (pi)R
−1
i zi

and S =
∑M

i=1 H
T
i R
−1
i Hi =

∑M
i=19

T (pi)R
−1
i 9(pi) and

applies the following local estimation iterations

Mi(k) = (P−1i (k)+ S(k))−1,

q̂i(k) = q̄i(k)+Mi(k)(y(k)− S(k)q̄i(k))

+

∑
j∈Ni

(q̄j(k)− q̄i(k)),

Pi(k + 1) = F(k)Mi(k)FT + Q(k),

q̄i(k + 1) = F(k)q̂i(k). (5)

Then, the state estimates of all SNs can converge to a
consensus, i.e., q̂1 = q̂2 = · · · = q̂M .
It is noted that Kalman filter design is a centralized

scheme since a fusion center is required to compute the sums
of y and S. However, the centralized scheme is not applicable
for WSNs due to its costly data transmission and energy lim-
itation. One possible solution for this problem is to approx-
imate the averages y and S, so that the distributed Kalman
filtering algorithm can be proposed. Inspired by this consid-
eration, we give ourmain results in Subsection 3.2 to compute
the averages y and S. After we obtain the estimation by SNs
and RNs, a dynamic duty-cycle scheduling mechanism is
designed in Subsection 3.3 to improve the estimation capa-
bility. Integrating the proposed consensus-based estimation
method and duty-cycle scheduling mechanism, we propose a
distributed Kalman filtering algorithm for the relay assisted
WSN as shown in Algorithm 1.

B. DISTRIBUTED TREE-BASED BROADCASTING
COMMUNICATION AND CONSENSUS-BASED
ESTIMATION ALGORITHM
Since each SN needs to estimate the sums of y and S, we
divide the estimation into two phases, i.e. PRE-ESTIMATION
and ESTIMATION phases. In the PRE-ESTIMATION phase,
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Algorithm 1 Distributed Kalman Filter Algorithm Over
Relay Assisted WSNs
1: Initialization: Pi = M50, q̄i = q0
2: while new data exists do
3: Estimate the sums of y(k) and S(k) by

consensus-based distributed algorithm, as provided
in Subsection 3.2

4: Estimate the state q using standard Kalman filter:
Mi(k) = (P−1i (k)+ S(k))−1

q̂i(k) = q̄i(k) + Mi(k)(y(k) − S(k)x̄i(k)) +∑
j∈Ni

(q̄j(k)− q̄i(k)),
5: Update the receding states:

Pi(k + 1)← FMi(k)FT + Q(k)
q̄i(k + 1)← Fq̂i(k)

6: Adopt a scheduling mechanism, as provided in Sub-
section 3.3

7: end while
8: Return q̂i(k)

y and S can be approximated through a distributed Tree-based
broadcasting communication. In order to attenuate the impact
of measurement noise on the estimate inWSNs [22], [23], we
present a consensus-based distributed estimation method in
the ESTIMATION phase.

FIGURE 1. Example of the tree construction in relay assisted
WSNs.

In the PRE-ESTIMATION phase, represent SN i’s contri-
bution (i.e., HT

i R
−1
i zi and HT

i R
−1
i Hi) for the sums of y and S

by the vector φi, which is correlated with Hi, Ri, and zi.
For simplicity, assume that SN 1 is the approximator of the
sums of y and S. In this paper, a tree topology (see Fig. 1)
is constructed by using the TreeCast Algorithm [24], [25].
Under the constructed tree, all leaf and intermediate nodes
make information fusion to transmit an approximate result of
y and S to SN 1. Subsequently, SN 1 broadcasts this result
to all nodes through direct or indirect ways. The Tree-based
broadcasting communication can be easily implemented by
Algorithm 2.
Remark 1: In the Tree-based broadcasting communica-

tion, any node i(i ∈ V/{1}) transmits the data only to its
neighbors. Thus, aside from the source node, all nodes form

Algorithm 2 Distributed Tree-Based Broadcasting
Communication
1: Initiation: φi = [HT

i R
−1
i zi,HT

i R
−1
i Hi] for SN i ∈ IS;

φi = 0 for RN i ∈ IR
2: while new date exists do
3: for all leaf nodes in tree do
4: Transmit φi to its neighbors
5: end for
6: for all intermediate nodes receiving φi from their

neighbors do
7: φj←− φj +

∑
j∈Ni

φi
8: Transmit φj to its parent
9: end for
10: end while
11: Output: φ1
12: SN 1 broadcasts ϕ = φ1/M to its children

a distributed communication system. For the source node,
we adopt a broadcast operation, where the source broadcasts
the message ϕ to its children. According to Zigbee or other
protocol specifications, this broadcast operation is technically
feasible, and the similar broadcast operation can be found
in Refs. [26] and [27].

In the ESTIMATION phase, each sensor i receives an
approximation average of y and S from the approximator
node, denoted by ϕ̃i. Take the communication noise into
account, ϕ̃i is rewritten into

ϕ̃i(k) = ϕ + ϑi(k), ∀i ∈ IS , (6)

where ϕ is the accurate but unknown average of y and S, and
ϑi is white Gaussian noise. Let ϑ = [0, ϑT2 , · · · , ϑ

T
M ]T with

bounded covariance.
To reduce the effect of noise on the estimation,

a consensus-based distributed estimation method is designed
as follows.

For SN i (i ∈ IS ),

ζi(k + 1) = ζi(k)+ ερ(k)(ϕ̃i(k)− ζi(k))

+βρ(k)
∑

j∈Ni
aij(ζj(k)− ζi(k)), (7)

and for RN i (i ∈ IR),

ζi(k) =
∑

j∈Ni
γijζj(k), (8)

where ζi is the local estimation of ϕ, ρ ∈ <+ is the scale
governing the update rate of the information, ε, β ∈ <+ are
estimator gains, and γij ∈ <+ denotes the weight satisfying∑

j∈Ni
γij = 1. The coefficient aij = 1 if sensor i can receive

signal from node j, otherwise aij = 0.
It is worth to note that the estimation algorithms

in (7) and (8) for SNs and RNs are different and the esti-
mation approaches for homogeneous sensor network cannot
be used directly here. Thus, we use a graph transforma-
tion operation proposed in our previous works [17]–[19] to
rearrange (7) and (8). The graph transformation operation is
given as follows.
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Lemma 2 [19]: If the graph G is connected, the state of each
node in IR can be expressed as a convex combination of the
states of nodes in ĨS , i.e.,

ζi(k) =
∑

j∈ĨS
γ̃ijζj(k), ∀i ∈ IR, (9)

where ĨS = {j ∈ IS : ∃i ∈ IR, (j, i) ∈ E}. It is easily seen
that

∑
j∈ĨS γ̃ij = 1, 0 ≤ γ̃ij ≤ 1 if j ∈ ĨS ∩Ni, and otherwise

γ̃ij = 0.
Define the SN and RN neighbors of the sensor i as

N S
i = Ni ∩ IS and N R

i = Ni ∩ IR, respectively, where
Ni = N S

i ∪ N R
i . For SN i ∈ IS , rearranging (7) based on

Lemma 2, we have

ζi(k + 1)

= ζi(k)+ βρ(k)

∑
j∈N S

i

aij(ζj(k)− ζi(k))

+

∑
j∈ĨS\{i}

∑
k∈N R

i

aik γ̃kj(ζj(k)− ζi(k))


+ ζi(k)+ ερ(k)ϕ̃i(k)− ερ(k)ζi(k). (10)

In the following, we analyze the unbiasedness and consis-
tency of the estimation algorithm. Similar to the assumption
in [14], let ϕ and ϕ̃i for each ζi be scalars for simplicity in
notation, i.e., ϕ, ϕ̃i ∈ <. Then, we can rewrite (10) into a
compact form

ζ (k + 1) = 0(k)ζ (k)+ ερ(k)ϕ̃(k), (11)

where ζ = [ζ1, ζ2, · · · , ζM ]T , ϕ̃ = [ϕ̃1, ϕ̃2, · · · , ϕ̃M ]T ,
0(k) = I − ερ(k)I − βρ(k)L, L = [Lij] ∈ <M×M with
entries

Lij =


∑

j∈N S
i
aij +

∑
j∈N R

i

aij
∑

k∈ĨS\{i} γ̃jk , j = i,

−aij −
∑

k∈N R
i
aik γ̃kj, j 6= i.

With the notations, the following lemma is given.
Lemma 3 [19]: If the graph G is connected, then zero is a

simple eigenvalue of L and the corresponding left eigenvector
[ξ1, ξ2, · · · , ξM ]T is positive.

Define the error variable

ei(k) = ζi(k)− ϕ, ∀i ∈ IS . (12)

Based on Lemma 3, one has L1 = 0. Rearranging (11) and
noting that L1 = 0, we can rewrite (12) into the following
compact form

e(k + 1) = 0(k)e(k)+ ερ(k)ϑ(k), (13)

where e = [e1, e2, · · · , eM ]T and ϑ = [0, ϑ2, · · · , ϑM ]T .
Theorem 1 (Asymptotic Unbiasedness): If the directed

graph G is connected, and ρ(k) satisfies∑∞

k=1
ρ(k) = ∞,

∑∞

k=1
ρ2(k) <∞ (14)

then ζi(k) is asymptotically unbiased for i ∈ IS ,
i.e., limk→∞ E{ζi(k)} = 0, ∀ i ∈ IS .

Proof: Define2 = diag{ξ1, ξ2, · · · , ξM }, D =
√
2/β,

and ẽ(k) = De(k). This yields

ẽ(k + 1) = D0(k)e(k)+ ερ(k)ϑ(k). (15)

Taking expectation on both side of (15) and noting that
E{ϑ(k)} = 0, we obtain

E{ẽ(k + 1)} = D0(k)D−1E{ẽ(k)}. (16)

Continue the above recursion, and we see that for k > k0

E{ẽ(k)} =
∏k−1

s=k0
D0(s)D−1E{ẽ(k0)}, (17)

and therefore, for ∀ k > k0

‖E{ẽ(k)}‖ ≤
∏k−1

s=k0

∥∥∥D0(s)D−1∥∥∥ ‖E{ẽ(k0)}‖ . (18)

Defining E = εI +D(βL)D−1+D−1(βLT )D, we see that
E = εI+D−1(2L+LT2)D−1.We also define� = εI+βL,
�1 = D−1�TD2�D−1, Ê = εI + E, �2 = Ê − ρ(k)�1.
As D−1(εI )D = D(εI )D−1 = εI , then D−1�TD +
D�D−1 = 2εI +D−1(βLT )D+D(βL)D−1 = εI + E = Ê .
Because 0(k) = I − ρ(k)�, we have

D−10T (k)D20(k)D−1 = I − ρ(k)Ê + ρ2(k)�1

= I − ρ(k)�2. (19)

Note that2L+LT2 is positive definite, then E is positive
definite. Moreover, we also see that Ê is positive definite,
and �1 is positive semidefinite. Therefore, λmin(Ê/2) > 0
and λmax(�1) > 0. If (14) is satisfied, we can obtain
ρ(k)→ 0 as k → ∞. It now follows that: there exits k1
such that ρ(k)λmax(�1) ≤ λmin(Ê/2) for all k ≥ k1.
Specially, using Rayleigh-Ritz theorem [14], we obtain that
for k ≥ k1

λmin(Ê/2) ≤ λmin(�2) ≤ λmax(�2) ≤ λmax(Ê). (20)

In particular, (20) and the fact ρ(k) → 0 with k →∞
imply the existence of a scalar constant k2 > k1 such
that

ρ(k) ≤
1

λmax(Ê)
, ∀k ≥ k2. (21)

Furthermore, (19) and (20) imply∥∥∥D0(k)D−1∥∥∥2 = ∥∥∥D−10T (k)D20(k)D−1
∥∥∥

= 1− ρ(k)λmin(�2),∀k ≥ k2. (22)

Making k0 = k2 and submitting (22) to (18), we have

‖E{ẽ(k)}‖

≤

∏k−1

s=k0

√
1− ρ(k)λmin(�2) ‖E{ẽ(k0)}‖ . (23)
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It is clear that 1 ≥ ρ(k)λmin(�2) ≥ 0 from (20) and (21).
Therefore, ln(1 − ρ(k)λmin(�2)) ≤ −ρ(k)λmin(�2) holds.
Furthermore, (20) and (23) imply that for k ≥ k0

‖E{ẽ(k)}‖

≤ exp[− 1
2

k−1∏
s=k0

ρ(k)λmin(�2)] ‖E{ẽ(k0)}‖

≤ exp[− 1
2

k−1∏
s=k0

λmin(Ê/2)] ‖E{ẽ(k0)}‖
k−1∏
s=k0

ρ(k)

Note (14) and λmin(Ê/2) > 0, then we have
limk→∞ ‖E{ẽ(k)}‖ = limk→∞

∥∥√2/βE{e(k)}∥∥ = 0.
As

∥∥√2/βE{e(k)}∥∥ ≥ min1≤i≤M
√
ξi/β and ξi/β > 0.

Thus, we obtain ‖E{e(k)}‖ → 0 with k →∞.
Next, we analyze the consistency of the consensus-based

distributed estimation algorithm. The proof relies on a well
known Robbins-Siegmund Lemma on stochastic processes as
follows.
Lemma 4 [28]: Let {Fk}k ≥ 0 denote a sequence

of σ -algebras and V (k), µ(k), κ(k), and ~(k) denote
Fk -measurable nonnegative random variables such that for
all k ≥ 0, E{ V (k + 1)|Fk} exists and

E{ V (k + 1)|Fk} ≤ (1+ µ(k))V (k)+ κ(k)− ~(k) a.s.,

with
∑
∞

k=0 µ(k) < ∞ and
∑
∞

k=0 κ(k) < ∞ almost surely.
Then, there exists a nonnegative random variable κ∗ such that

P
{
limk→∞V (k) = κ∗

}
= 1, and

∑∞

k=0
~(k) <∞.

Theorem 2 (Consistency): If the directed graph G is
connected, and ρ(k) satisfies the conditions in (14),
then the estimator of each SN i is consistent, i.e.,
P {limk→∞ ζi(k) = ϕ} = 1, ∀i ∈ IS .

Proof:Defining the error processV (e)=
∑
∞

k=0 ξi ‖ei‖/β,
we have V (e) = ẽT (k)ẽ(k). We also define the σ−algebras
Fk = σ {ϑ(0), ϑ(1), · · · , ϑ(k − 1)}. Then, ϑ(k) is indepen-
dent of Fk and E{ ϑ(k)|Fk} = E{ϑ(k)} = 0.
From (12) and (13), we take expectation conditioned on

Fk on both side of the expression of V (e(k + 1)). This yields

E{ V (e(k + 1))|Fk}

= eT (k)0T (k)D20(k)e(k)+ ε2ρ2(k)ϑT (k)ϑ(k)

= ẽT (k)D−10T (k)D20(k)D−1e(k)

+ ε2ρ2(k)ϑT (k)ϑ(k). (24)

Next, based on (19) and (24), we have

E{ V (e(k + 1))|Fk}

= V (e(k))− ρ(k)ẽT (k)Êe(k)

+ ρ2(k)ẽT (k)�1ẽ(k)+ε2ρ2(k)ϑT (k)ϑ(k). (25)

It is clear that Ê is positive definite, which implies

E{V (e(k + 1))|Fk}

≤ V (e(k))− ρ(k)λmin(Ê)V (e(k))

+ρ2(k)λmax(�1)V (e(k))+ε2ρ2(k)tr[ϑT (k)ϑ(k)].

Again defining µ(k) = ρ2(k)λmax(�1), κ(k) =

ε2ρ2(k)tr(ϑT (k)ϑ(k)) and ~(k) = ρ(k)λmin(Ê)V (e(k)),
we obtain that: µ(k), κ(k) and ~(k) are all nonnegative.
Suppose that (14) holds, and thenwe have

∑
∞

k=0 µ(k) <∞
and

∑
∞

k=0 κ(k) < ∞. Specially, applying Lemma 4 to V (e)
implies the existence of a random variables κ∗ ≥ 0 such that{

P {limk→∞ V (k) = κ∗} = 1∑
∞

k=0 ~(k) <∞.
(26)

Since λmin(Ê) > 0, we also have∑∞

k=0
ρ(k)V (e(k)) <∞. (27)

Suppose that there exists a subsequence {k1, k2, · · · } ⊂
{1, 2, · · · } such that

P {limk→∞ V (k) = 0} = 1. (28)

Assume otherwise that there is a constant κ̄∗ > 0 so that
P {C} ≥ κ̄∗, where C = {ϑ : lim infk→∞ V (e(k, ϑ)) ≥ 2κ̄∗}.
For any ϑ ∈ C,we can find a random variables k∗(κ̄∗, ϑ) ≥ 0
such that V (e(k, ϑ)) ≥ κ̄∗, whenever k ≥ k∗. Hence we
obtain ∑∞

k=0
ρ(k)V (e(k)) ≥ κ̄∗

∑∞

k=0
ρ(k) = ∞ (29)

which is in contradiction to (27). Thus, we have κ̄∗ = 0.
In addition, V (e) = eT (k)D2e(k) and D2 is positive definite,
therefore P {limk→∞ ζi(k) = ϕ} = 1 holds for ∀i ∈ IS .

C. DYNAMIC DUTY-CYCLE SCHEDULING MECHANISM
In this subsection, a dynamic duty-cycle scheduling mecha-
nism is proposed to improve the autonomy network estima-
tion ability. The main idea is to awaken the sleeping node
only when a virtual motion condition is satisfied, such that
the energy consumption can be reduced and network lifetime
is prolonged.

Assume that each SN can adjust its position. Construct
a motion mechanism for each SN to maximize its sensing
information. The sensing information is defined as a func-
tion of its current location pi, sensor uncertainty Ri, the set
of basis functions ψ of the environmental mode, and the
model uncertainty as represented in the covariance matrix Pi.
In addition, let A ∈ <2 denote the bounded motion region
monitored by relay assisted WSNs. Then, the quality of the
current parameters estimation is inversely related to the cost
function

Ji =
∫
A
9(r)Pi9T (r)dA, ∀i ∈ IS (30)

whereA denotes the region, r ∈ A, dA is a differential element
of A. The cost Ji is the integral of the variance of model over
the region of A.

With (30), we have the following gradient control law

fi = [f Xi , f
Y
i ]T = −

∂Ji
∂pi

= −

∫
A
9(r)

∂Pi
∂pi

9T (r)dA, ∀i ∈ IS (31)
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FIGURE 2. A schematic view of hot rolling production line.

where f Xi and f Yi denote the gradient control laws in different
directions.

Under the control law (31), each SN moves according to
the following dynamics

pi(k + 1) = pi(k + 1)+ Kfi, (32)

where K ∈ <+ is a scalar gain.
In the mentioned design process, it is assumed that each

SN can adjust its position. However, the sensors in industrial
CPS are normally static, i.e., they cannot adjust their posi-
tions. How to make a virtual motion control to improve the
estimation performance becomes a new problem. To solve
this problem, we can adopt a dynamic duty-cycle scheduling
mechanism shown in Algorithm 3, where µ# ∈ <

+ is a
decimal; I#

S is defined as the sleeping SN set; the awake SN
set is denoted as IS; for an arbitrary SN i ∈ IS , its sleeping
neighbors are defined as Bi = I#

S ∩Ni.

Algorithm 3 Dynamic Duty-Cycle Scheduling Mechanism
1: Initialization: Awake SN i with its position pi(k + 1)
2: while new data exists do
3: Update the virtual position pi(k + 1)
4: if minj∈Bi

∥∥pi − pj∥∥ ≤ µ# then
5: SN i and j turn into sleeping and awake modes,

respectively
6: else
7: Keeps in an existing state
8: end if
9: end while

IV. APPLICATION TO SLAB TEMPERATURE
ESTIMATION IN HOT ROLLING PROCESS MONITORING
In this section, the proposed distributed estimation approach
is applied to estimate the slab temperature distribution in
the monitoring for a hot rolling process which is a typical
industrial CPS. The process consists of several stages to cast
steel slabs into pieces, as shown in Fig. 2. During this process
of roughing mill, the temperature plays an important role
in the product quality. In fact, not only the calculation of
the rolling force but also the metallurgical and mechanical
properties of the products are critically influenced by the slab
temperature [29]–[31]. Consequently, a precise estimation of
the temperature distribution in the roughing mill contributes
a lot to the quality of the final products.

Neglecting the variation of temperature in the transverse
direction, the governing equation of heat transfer in the slab
can be expressed as [29], [32]

∂x(b, t)
∂t

=
λ

ρc
∂x(b, t)
∂b2

(33)

where x(b, t) is the temperature of slab at time t ,
b ∈ [−h/2, h/2] is the coordinate along the thickness h,
ρ(b), c(b) and λ(b) are the density, specific heat capacity and
thermal conductivity of slab, respectively.

During rough rolling process, the heat loss on slab is
mainly divided into two phases: 1) air cooling, and 2) water
cooling. In this paper, we focus on the temperature modeling
in air cooling phase. Then the boundary conditions for (33)
are given by

λ
∂x(b, t)
∂b

∣∣∣∣
b=h/2

= −σ0ε(x4(h/2, t)− x4∞),

λ
∂x(b, t)
∂b

∣∣∣∣
b=−h/2

= −σ0ε(x4(−h/2, t)− x4∞),

where σ0 is the Stefan-Boltzmann constant, ε is the slab
emissivity dependent on the temperature, and x∞ is the envi-
ronment temperature.

FIGURE 3. The division of the rolled piece.

In practice, it is necessary to discretize the continuous
model (33). To reduce the computational complexity, we
divide the slab into µ(µ ≥ 1) strips. For each strip
s (1 ≤ s ≤ µ), the length and thickness are divided into µs
and ν lattices, respectively. Then µsν grids can be obtained,
as shown in Fig. 3. In each strip s, the grid, whose thickness
and length numbers are i and j respectively, is labeled as xsi, j.
Assuming that the time step is 1t, we obtain the following
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discretized model

xsi, j(k + 1) = xsi, j(k)+
1tλsi, j

1b2ρsi, jc
s
i, j

× (xsi+1, j(k)− 2xsi, j(k)+ x
s
i−1, j(k)), (34)

while at the surface

xsν, j(k + 1) = xsν, j(k)+
21tλsν, j

1b2ρsν, jc
s
ν, j

× [xsν−1, j(k)− xsν, j(k)

−
1bσ0ε
λsν, j

((xsν, j(k))
4
− x4∞)],

xs1, j(k + 1) = xs1, j(k)+
21tλs1, j

1b2ρs1, jc
s
1, j

×[xs2, j(k)−x
s
1, j(k)−

1zσ0ε
λs1, j

((xs1, j(k))
4
−x4∞)].

Define xs = [(xs(1))T , (xs(2))T , · · · , (xs(µs))T ]T , where
xs(j) = [xs1, j, x

s
2, j, · · · , x

s
ν, j]

T , ∀j = 1, 2, · · · , µs.
Stacking (34) into the following form

xs(k + 1) = A(k)xs(k)− u(k), (35)

with

Q =



−2 2 0 · · · 0

1 2 1
. . .

...

0
. . .

. . .
. . . 0

...
. . . 1 2 1

0 · · · 0 2 −2


,

Pj =

 β(xs1, j)((xs1, j(k))4 − x4∞)0
β(xsν, j)((x

s
ν, j(k))

4
− x4∞)

,
whereA = I+diag{D1Q, · · · ,DµsQ}, u = [PT1 , · · · ,P

T
µs
]T ,

Dj = diag{α(xs1, j(k), · · · , α(x
s
ν, j(k))}, and α(xs1, j(k) =

1tλsν, j/(1b
2ρsi, jc

s
i, j), β(x

s
p, j) = 1tσ0ε/(1bρsp∗, jc

s
p, j),

p∗ = 1, · · · , ν, j = 1, 2, · · · , µs.
With the discrete model (35), we can easily obtain the

internal temperatures of slab if the surface temperatures are
all known. How to get the precise surface temperature distri-
bution of slab? Obviously, increasing the number of sensors
is not economical because slab is usually very long. To solve
this problem, we model the temperature distribution of slab
by using the measurements of limited number of sensors and
relays. By this way, the surface temperature of slab can be
estimated. For each section s (1 ≤ s ≤ µ), we divide the
length and thickness into m and n subsystems respectively,
where m < µs and n < ν. Then, mn grids can be obtained.
Show each grid’s temperature by the variable qsi, j, where the
thickness and length numbers are i and j, respectively. Mean-
while, a model Gaussian radial basis function is constructed

for the dynamics of qsi, j

ψ s
i, j(p) = exp

−
∥∥∥p− csi, j∥∥∥2

b2∗

,
where p ∈ <2 is the position, b∗ ∈ < is the scalar parameter
that defines the width for the radial unit, and csi, j ∈ <

2 is the
central location of qsi, j.

FIGURE 4. Schematic illustration of the WSNs deployed at the
entrance of the roughing mill.

The relay assisted WSNs are deployed over the top surface
of the steel slab, as shown by Fig. 4. Next, we use the
proposed estimation approach in Section III to estimate qs.
The parameters are set as follows: σ0 = 5.67×10−8W/m2K4,

1b = 1/3m, ε = 0.85, λ = 40W/mK, x∞ = 60+ 273K.
The hot steel slab studied in the simulation is h = 3m

in thickness and l = 4m in length for each subsystem
respectively. The other parameters are given as follows:
ρ(k) = 0.6/(k + 1), µs = 12, ν = 9, m = 4, n = 3,
µ# = 0.01m, and F = I12. The 12 basis functions are
used to describe the temperature parameters, with a stan-
dard deviation 5.5. The centers of the Gaussians are on
the 4 × 3 rectangle grids in the modeled region. The relay
assisted WSNs are composed of awake 11 sensors including
8 SNs and 3 RNs. The sensor j can communicate with sensor
i if r ≤ 0.6. All disturbances are white Gaussian noises.

The initial values of the temperature estimate qs are
assumed to the zero. The initial position in length direction for
these 8 SNs are designed as: 0.3m, 0.5m, 1.2m, 1.6m, 2.1m,
2.5m, 3.3m and 3.8m. Correspondingly, the measurements
are given as: (320 + 273)K, (300 + 273)K, (280 + 273)K,
(270+ 273)K, (330+ 273)K, (240+ 273)K, (350+ 273)K,
and (230 + 273)K, respectively. With Algorithm 1, we can
get a consensus estimation of the 12 temperature parameters,
as shown in Fig. 5. With these measurements, we estimate
the temperature distribution in the direction of thickness. The
estimated temperature distribution is illustrated in Fig. 6.
To show more clearly, we use isotherm in Fig. 7 to show the
temperature distribution of slab in the direction of thickness.

Finally, we compare the proposed distributed consensus-
based estimation (which is denoted by DCE) algorithm with
its homogeneous counterpart, i.e. distributed algorithm (7)
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FIGURE 5. The estimated temperature parameters with
Algorithm 1.

FIGURE 6. Temperature distribution of slab in the direction of
thickness.

FIGURE 7. Isotherm illustration of the temperature distribution.

with all 11 sensors being SNs (which is denoted by HDCE).
We only use the first row and the first column of the matrix ϕ
to evaluate the performance, and the other entries of ϕ have
the similar comparison results. Thus, the mean squared error
(MSE) is defined as e1×1MSE (k) =

1
M

∑M
i=1

∥∥ζ 1×1i − ϕ1×1
∥∥2.

FIGURE 8. Comparison result of the DCE algorithm with its
homogeneous counterpart HDCE.

The comparison result is shown in Fig. 8. It is observed that
although there are RNs, the performance of the DCE algo-
rithm is better than the homogeneous algorithm HDCE. This
reveals that in the presence of asymmetric communication for
ubiquitous monitoring, more measurements may not lead to
more accurate estimates, especially when there are root SNs.
In fact, the variances of the estimation error of the unobserved
variables increase at the root SNs.

V. CONCLUSION
The increasing applications of WSNs witness the fact that
the cooperative effort of sensor and actuator nodes can pro-
vide powerful support for ubiquitous monitoring in industrial
cyber-physical systems. In this paper, we have investigated
the distributed parameter estimation problem for process
monitoring over relay assisted WSNs composed of different
kinds of SNs and RNs, where SNs take more responsibility of
estimation and noise attenuating of the measurements, while
RNs only play the role of data relaying and aggregation.
For such a network, a Kalman filtering approach is first
proposed to estimate the model parameters. Then, both a
Tree-based broadcasting communication mechanism is pre-
sented to assist the fusion of global variables in the Kalman
filter. Thus a distributed consensus-based estimation method
is designed, such that the standard Kalman filter can be
implemented in the distributive manner. Moreover, a dynamic
duty-cycle scheduling mechanism is designed to get the vir-
tual motion control of static sensors and relays. Therefore,
the information perception capability is enhanced and esti-
mation performance is improved. The proposed method has
been applied to estimate the slab temperature in hot rolling
process monitoring. It has been shown that the temperature
distribution in the direction of thickness can be estimated
effectively only with the measurement on the top surface of
slab. Simulation results are given to validate the effectiveness
of the proposed method.

In our future work, the virtual motion control of nodes can
be designed to further expedite the information fusion such
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that the network-wide estimation capability can be enhanced
with the cooperation of RNs and SNs.
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