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ABSTRACT With the development of the cyber-physical systems (CPS), the security analysis of the
data therein becomes more and more important. Recently, due to the advantage of joint encryption and
compression for data transmission in CPS, the emerging compressed sensing (CS)-based cryptosystem has
attracted much attention, where security is of extreme importance. The existing methods only analyze the
security of the plaintext under the assumption that the key is absolutely safe. However, for sparse plaintext, the
prior sparsity knowledge of the plaintext could be exploited to partly retrieve the key, and then the plaintext,
from the ciphertext. So, the existing methods do not provide a satisfactory security analysis. In this paper, it
is conducted in the information theory frame, where the plaintext sparsity feature and the mutual information
of the ciphertext, key, and plaintext are involved. In addition, the perfect secrecy criteria (Shannon-sense and
Wyner-sense) are extended to measure the security. While the security level is given, the illegal access risk
is also discussed. It is shown that the CS-based cryptosystem achieves the extended Wyner-sense perfect
secrecy, but when the key is used repeatedly, both the plaintext and the key could be conditionally accessed.

INDEX TERMS Compressed sensing, CPS, security.

I. INTRODUCTION
Mutual communication is always a natural requirement of
human beings and no one wants to live in an information-
isolated island. Nowadays, with the development of the
network and computer technology, it becomes more and more
convenient for people to communicate with each other. The
fast developed network or cyber frame has greatly changed
our society, and the related work will change the world more
in future. As Guo et al mentioned in [1]: ‘‘research advances
in cyber-physical systems (CPS) promise to transform our
world with systems that will far exceed those of today in
terms of: effectiveness, adaptability, autonomicity, energy
efficiency, precision, reliability, safety, usability, scalability,
stability and user-centric applicability’’.

Regarding the data process in CPS, two items should be
considered particularly, one is the data size related to the effi-
ciency, the other is the safety related to the privacy. Currently,
the signals/data are often transmitted over some insecure

and bandwidth-constrained communication channels, and
it is appealing to encrypt and compress them. These two
issues have indeed attracted much attention from researchers
in different areas [2]–[4]. Traditionally, people use the
compression-encryption method which means compression
first and then encryption. This method brings the intuitive
simplicity to encryption after the redundant data is stripped
(by compression). However, it could compromise security
as the source signals may have been accessed illegally
before encryption (even before compression). To deal with
this security concern, the encryption-compression method is
developed, which first performs encryption and then compre-
ssion [4]–[6]. The drawback of the encryption-compression
method is its limited compression capability [3], [4].
Recently, the emerging compressed sensing (CS)-based

cryptosystem has attracted much attention, due to the fact
that it can address the issues of encryption and compres-
sion jointly [7]–[9]. In this cryptosystem, the key is made
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of a underdetermined mixing matrix, whose row number is
much less than column number [10]–[13]. Thus, when it is
utilized to encrypt the plaintext, the latter is compressed into
a block with smaller size at the same time. Furthermore, in
both encryption and decryption processes, one only needs
to carry out simple operations [14]–[16]. The computational
complexities of these operations are much less than that of
the current mainstreamRSA encryption scheme developed by
Rivest, Shamir and Adleman [17]. In addition, as far as the
ciphertext transmission/communication is concerned, since
the CS-based scheme can decrypt the whole plaintext from
parts (without order) of the received ciphertext packages, it
allows a high package loss rate in the corresponding com-
munication system. As a result, the CS-based cryptosystem
shows great potential to encryption and compression, plus the
subsequent ciphertext transmission.

For the CS-based cryptosystem, one question arises nat-
urally: how about its security? Just like what happened in
other encryption methods [18]–[21], the security analysis of
the CS-based cryptosystem has also attracted much atten-
tion [9], [10], [22]. However, the existing methods on security
analysis only explore the security of the plaintext by assuming
that the key is absolutely safe. Unfortunately, this assump-
tion might not hold if the plaintext is sparse,1 e.g., images
are sparse in general [24], [25]. In this case, it is possible
to exploit the prior sparsity knowledge of the plaintext to
extract some information of the key from the ciphertext.
This could make the cryptosystem suffer from the related-
key attack [26], which has already failed the well-known
wired equivalent privacy (WEP) protocol. Hence, current
security analysis methods do not give a reliable solution to the
CS-based cryptosystem.

In this paper, the security of the CS-based cryptosystem
is analyzed, similar to [4] and [20], under the ciphertext-
only attack. It is analyzed in the information theory frame,
where the entropy, the conditional entropy, the mutual
information (MI), and the conditional MI of the cipher-
text, key, and plaintext are considered, together with the
sparsity of the plaintext. Here the term ‘‘entropy’’ stands
for Shannon entropy. The existing perfect secrecy criteria
(Shannon-sense [27] and Wyner-sense [28]) are extended
to measure the security. We also investigate the possible
insecurity caused by the repeated use of the key. We show
that in this case, the key and the plaintext may be partly
accessed under some conditions by using the state-of-the-
art information processing technology such as blind source
separation (BSS) [29]–[32].

The remainder of the paper is organized as follows.
Section II introduces the CS-based encryption scheme
and the corresponding decryption method. The secu-
rity of current CS-based cryptosystem is analyzed in
Section III, together with the definitions of the extended

1A basic premise in the CS-based cryptosystem is that the plaintext is
sparse or has a sparse representation. Otherwise, the ciphertext cannot be
decrypted effectively.

perfect secrecy criteria. Finally, Section IV concludes the
paper.
The following notations are used throughout the paper:

x, xi Column vector, the ith element of x
X, xj, xij Matrix, the jth column of X, the (i, j)th

entry of X
XT , X−1 Transpose of X, inverse of X
fx, fx,y Probability density function (PDF) of x,

joint PDF of x and y
fx=y Probability of x = y
H (xi), H (x) Entropy of xi, joint entropy of the elements

in x
H (xi|yj) Conditional entropy of xi given yi
I (x; y) MI of x and y
I (x; y, z) MI of x and the combination of y, z
I (x; y|z) Conditional MI of x and y given z
< Real number set
0 Zero column vector (or matrix)

II. CS-BASED ENCRYPTION
The typical CS-based encryptionmodel is as follows [9], [22]:

x = As (1)

where x ∈ <m denotes the ciphertext or encrypted message,
A ∈ <m×n stands for the key matrix, s ∈ <n is the
plaintext or source message, and m, n denote the length of
the blocks of the ciphertext and the plaintext, respectively.
In the above CS-based encryption model, m is often much
smaller than n, and the plaintext s is sparse (meaning that its
values are close to zero at most time instants) or has a sparse
representation under some known basis matrix. Traditionally,
s is considered to be sparse with at most k nonzero elements
(k < m), i.e. k-sparse [15]. The key A is designed to satisfy a
k-order restricted isometry property, whichmeans there exists
a constant δk ∈ (0, 1) such that

(1− δk )‖s‖22 ≤ ‖As‖
2
2 ≤ (1+ δk )‖s‖22 (2)

holds for all k-sparse s [33]. In practice, the key A is often
constructed to be a matrix with independent entries to get an
optimal restricted isometry constant [34].
In the encryption procedure, s is encrypted into the

ciphertext x with the key A, by using a mixing or matrix
multiplication method. This process is quite simple and it
needs little computational cost. In the decryption procedure,
based on the received ciphertext x and the available keyA, the
plaintext s can be recovered through searching the sparsest
solution satisfying (1). This can be solved by using a number
of existing methods [14], [16]. For reference, the model of the
L1-norm based robust optimization method is given below:{

Minimize ‖s‖1
subject to x = As

(3)

where ‖s‖1 =
∑n

i=1 |si|. Since s is known to be k-sparse
in prior, the computational cost of solving (3) can approach
to kmn, nearly a linear complexity as k,m � n [16].
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This implies that the CS-based scheme is a very compet-
itive method for encryption. Besides, data compression is
also achieved during the encryption process as m is often
much smaller than n. In addition, since the whole plain-
text can be decrypted from parts of the ciphertext by using
the CS-based scheme, it allows a high package loss rate
in the corresponding communication system for ciphertext
transmission.

For the CS-based cryptosystem in (1), security is a primary
concern. Given that the security of the key is guaranteed, the
security of the plaintext can be analyzed using the methods
in [9], [10], and [22]. Yet, in the context of CS-based cryp-
tosystems, the plaintext is required to be sparse to ensure
effective decryption. Then an interesting question is whether
and how the sparsity feature of the plaintext affects the secu-
rity of the CS-based cryptosystem. This question will be
answered in Section III under the following assumptions:
A-1) The entries of A are statistically independent.
A-2) The elements of s have the same distribution.
A-3) The entries of A and the elements of s are statistically

independent.
The assumptions A-1) and A-2) are widely utilized
in the CS-based cryptosystem and its security analy-
sis [8], [22], [33], [34]. The assumption A-3) is common
and practical [4], [17].

III. SECURITY OF THE CS-BASED CRYPTOSYSTEM
We start from the (Shannon) entropy and theMI of the random
variables/vectors/matrices in information theory frame. The
entropy reflects the uncertainty of a random quantity. It is
always nonnegative and reaches zero if and only if the random
quantity becomes certain. Compared with the entropy, the
MI is often used to measure the extent of the correlation
between two random quantities and it is provided for the first
rigorous statistical treatment of secrecy by Shannon [27]. The
larger the MI is, the greater the correlation is. MI is also
nonnegative and becomes zero if and only if the associated
random quantities are statistically independent [4]. There is
intimate relationship between the entropy and MI, and this
relationship will be invoked for formulae derivation in this
section.

A. EXTENDED PERFECT SECRECY CRITERIA
Based on MI, the perfect secrecy criteria of Shannon-
sense [27] and Wyner-sense [28] are traditionally used to
measure the security. They all reflect the correlation of the
ciphertext and the plaintext, assuming that the key is always
absolutely secure. However, as we can see, the information
of the key is contained in the public ciphertext and thus
it is generally an active factor to the security of the cryp-
tosystem. If the key is cracked, the plaintext will be broken
inevitably. Even if only a little information of the key is
extracted, the consequence could be devastating. An impor-
tant example is that the WEP protocol has been broken by
the related-key attack, without knowing much information of
the key [26]. In the following, we extend the afore-mentioned

two criteria to measure the security of both the plaintext and
the key.
For a cryptosystem 8 with plaintext M, key T, and cipher-

text E, let

G(E,M,T) = I (E;M)+ I (E;T). (4)

Then, the extension of the Shannon-sense perfect secrecy is
defined as follows.
Definition 1: The cryptosystem 8 achieves the extended

Shannon-sense (ESS) perfect secrecy if

G(E,M,T) = 0. (5)

Notably, both the correlation of ciphertext-plaintext and that
of ciphertext-key are involved in the function G, denoted by
I (E;M) and I (E;T), respectively. Here, an example is given
to show what the cryptosystem 8 could be if it satisfies the
ESS perfect secrecy.
Example 1: For the Latin Square system in [27], let the

plaintext M take values Mi, i = 1, 2, . . . , n with equal prob-
ability, and it is encrypted by the key T which takes values
Ti, i = 1, 2, . . . , n with equal probability too. Denote the
corresponding ciphertext E to be Ei, i = 1, 2, . . . , n, which
are calculated by the following rule:

Ek = Ti
⊕

Mj (6)

where k = mod(i + j − 1, n) and
⊕

denotes the overlay of
two quantities. The system (6) forms a Latin Square and Fig. 1
gives an illustration for the case of n = 5 [27].

FIGURE 1. Latin Square cryptosystem.

In this system, for all i ∈ 1, 2, . . . , n, we have the following
probabilities: 

fM=Mi =
1
n

fT=Ti =
1
n

fE=Ei =
1
n

. (7)
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Then, the entropy of E is

H (E) = log n (8)

and the conditional entropy of E given T is

H (E|T) =
n∑
i=1

fT=TiH (E|Ti)

=
1
n

n∑
i=1

H (E|Ti)

=
1
n
nH (M)

= log n. (9)

Similarly, the conditional entropy of E given M is

H (E|M) = log n. (10)

From (8)-(10), it yields{
I (E;M) = H (E)− H (E|M ) = 0

I (E;T) = H (E)− H (E|T ) = 0.
(11)

Therefore, G(E,M,T) equals zero and thus this Latin Square
system achieves ESS perfect secrecy.

It is worth noting that if M takes values without equal
probability, the conditional entropy of E given T will be
less than log n and thus I (E;T) > 0, although I (E;M) still
equals zero. Alternatively, even if the ciphertext E and the
plaintext M have already been mutually independent, E could
be still correlated with the key T. Regarding the CS-based
cryptosystem, the plaintext is sparse (for the sake of effective
decryption), implying that the probability of taking value zero
is greater than that of taking other values. Since the plaintext
does not take values with equal probability, the ciphertext
could be correlated with the key. As a result, one may extract
some information of the key from the ciphertext, and then
further access the plaintext. This leads to the motivation that
the key security should also be considered in the analysis of
the CS-based cryptosystem.

While MI provides a theoretical criterion for security eval-
uation of cryptosystems, its asymptotic notion has also been
explored for some particular applications. Here, we refer to
theWyner-sense perfect secrecy [28] developed byWyner for
wireless channel transmission. This criterion has been used
to measure the security of a compression-involved cryptosys-
tem [4], which is similar to the CS-based system concerned
in this paper. Since Wyner’s criterion considers only the MI
of the ciphertext and the plaintext, we extend it as follows.
Definition 2: The cryptosystem 8 has extended

Wyner-sense (EWS) perfect secrecy if

lim
n→∞

G(E,M,T)
n

= 0 (12)

where n denotes the length of the plaintext.
In the remainder of this section, the security of the

CS-based cryptosystem (1) will be analyzed under the ESS
and the EWS perfect secrecy criteria.

B. SECURITY ANALYSIS
Regarding the cryptosystem (1), the functionG can be rewrit-
ten as

G(x, s,A) = I (x; s)+ I (x;A) (13)

Based on G, the security will be analyzed in both one-time
padding and multi-time padding cases.

1) SECURITY IN THE CASE OF ONE-TIME PADDING
We first conduct security analysis in the scenario that the key
is used for only one time, i.e., one-time padding.We start from
the ESS criterion and have the following theorem.
Theorem 1: The cryptosystem (1) does not achieve ESS

perfect secrecy, i.e.,

G(x, s,A) > 0. (14)

As shown in [22], I (x; s) > 0. Considering that MI is always
nonnegative, we have I (x;A) ≥ 0. Then, it follows from (13)
that G(x, s,A) > 0, i.e., (14) holds.
The ESS criterion is very strong and it is generally not easy

for a cryptosystem to reach that security level. So, it is not sur-
prising that the CS-based cryptosystem in (1) does not satisfy
the ESS criterion.2 It is interesting to investigate whether the
CS-based cryptosystem (1) fulfills the EWS criterion which
is weaker than the ESS criterion. The result is given by the
following Theorem 2.
Theorem 2: The cryptosystem (1) achieves the EWS perfect

secrecy.
Proof: Recall that the plaintext is k(k < m)-sparse and

m is fixed in advance in the standard CS frame. This means
that there are at most k nonzero elements in s. Without loss of
generality, let sa = [s1, s2, . . . , sn−k ]T be a zero vector. Also,
we denote 

sb = [sn−k+1, sn−k+2, . . . , sn]T

Aa
= [a1, a2, . . . , an−k ]T

Ab
= [an−k+1, an−k+2, . . . , an]T .

(15)

Then, based on the matrix decomposition operation, (1) can
be rewritten as

x = As

= Aasa + Absb. (16)

Since k < m and the entries of A are independent, Ab is
full column rank. Thus, based on the Moore-Penrose matrix
inverse, sb can be calculated by

sb =
((

Ab
)T (

Ab
))−1 (

Ab
)T

(x− Aasa). (17)

Furthermore, based on the features of entropy function [35],
it holds that {

H (sa|s) = 0
H (s) ≤ H (sa)+ H

(
sb
) (18)

2An modified system with enhanced security is shown in [23].
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and

H
(
s|sa

)
= H

(
s, sa

)
− H

(
sa
)

= H
(
sa|s

)
+ H (s)− H

(
sa
)

= H (s)− H
(
sa
)

≤ H
(
sa
)
+ H

(
sb
)
− H

(
sa
)

= H
(
sb
)
. (19)

Let us consider the first item I (x; s) of G(x, s,A) given sa.
As shown in the assumption A-2), the elements of sb are
with the same distribution. Thus, they have the same entropy.
Notably, their joint entropy is no greater than the summation
of each entropy. Denoting the size of the space in which
each element takes values to be M (M is often finite, e.g., it
equals 256 in image source messages), their joint entropy has
the following relationship with M based on the well-known
maximum entropy property3:

H
(
sb
)
≤ H (sn−k+1)+ H (sn−k+2)+ · · · + H (sn)︸ ︷︷ ︸

k terms
≤ logM + logM + · · · + logM

= k logM. (20)

Then, we have

I (x; s|sa) = H (s|sa)− H (s|x, sa)

≤ H (s|sa)

≤ H
(
sb
)

≤ k logM. (21)

Now, we consider the second item I (x;A) of G(x, s,A)
given sa. Since A =

[
Aa,Ab], then based on the chain rule

of MI [35], [36], I (x;A|sa) can be written as

I (x;A|sa) = I
(
x;Aa,Ab

|sa
)

= I
(
x;Ab
|sa
)
+ I

(
x;Aa
|Ab, sa

)
= I

(
x;Ab
|sa
)
+ H

(
Aa
|Ab, sa

)
−H

(
Aa
|x,Ab, sa

)
. (22)

Due to the fact that Aa is independent of Ab and s is indepen-
dent of A from the assumptions A-1) and A-3), it yields

H
(
Aa
|Ab, s

)
= H

(
Aa
|s
)
− I

(
Aa
;Ab
|s
)

= H (Aa)− (H (Aa
|s)+ H (Ab

|s)

−H (Aa,Ab
|s))

= H (Aa)− H (Aa)− H (Ab)+ H (A|s)

= −H (Ab)+ H (A)

= −H (Ab)+ H (Aa)+ H (Ab)

= H (Aa). (23)

3The entropy of a random variable x reaches the maximum log |x| if and
only if x is uniformly distributed, where |x| denotes the size of the space in
which x takes values [35].

Specifically, we have

H
(
Aa
|Ab, sa

)
= H (Aa). (24)

In addition, in the case of sa = 0, it holds that x is equal
to Absb. Clearly, x is certain if Ab and sb are given, but it
is generally not reversible without additional condition. Thus
we obtain

H
(
Aa
|x,Ab, sa

)
= H

(
Aa
|Absb,Ab, sa

)
≥ H

(
Aa
|Ab, sb,Ab, sa

)
= H (Aa

|Ab, sb, sa)

= H (Aa
|Ab, s)

= H (Aa). (25)

Substituting (24) and (25) into (22), it follows

I (x;A|sa) ≤ I
(
x;Ab
|sa
)
+ H (Aa)− H (Aa)

= I
(
x;Ab
|sa
)

= H
(
Ab
|sa
)
− H

(
Ab
|x, sa

)
. (26)

As we know, there are km entries in Ab, and they are not
only independent mutually but also independent of sa. Let
C be the maximum size of the spaces in which each entry
takes values,4 then based on the maximum entropy property,
we have

H
(
Ab
|sa
)
= H

(
Ab
)

=

m∑
i=1

n∑
j=n−k+1

H
(
aij
)

≤

m∑
i=1

logC + logC + · · · + logC︸ ︷︷ ︸
k terms


= km logC . (27)

Since

H (Ab
|x, sa) ≥ 0 (28)

substituting (27) and (28) into (26) gives

I (x;A|sa) ≤ km logC − H (Ab
|x, sa)

≤ km logC . (29)

From (21) and (29), it holds that

I (x; s|sa)+ I (x;A|sa) ≤ k logM + km logC . (30)

Considering the prior knowledge that sa = 0, then one can
conclude that

lim
n→∞

G(x, s,A)
n

≤ lim
n→∞

k logM + km logC
n

= 0. (31)

4Similar to [4], C is considered to be finite here.
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Note that MI is always nonnegative. Therefore, G(x, s,A)/n
is always nonnegative, and thus it approaches zero with the
increase of n. This completes the proof. �
From Theorems 1 and Theorem 2, we can see that if the

key is used for only one time (i.e., one-time padding), the
cryptosystem (1) achieves the EWS perfect secrecy, although
fails to reach the stronger ESS perfect secrecy.

2) SECURITY IN THE CASE OF MULTI-TIME PADDING
It is known that using the key for many times may lead to
insecurity [20]. So, it is important to analyze the security of
the cryptosystem (1) in the situation of multi-time padding,
where the key is used repeatedly. Regarding also the cipher-
only attack, we have the following theorem.
Theorem 3: If the key is used repeatedly for N times,

where N ≥ n and the plaintexts are independent, then the
cryptosystem (1) does not achieve EWS perfect secrecy.

Proof: In the case that the key is used repeatedly for N
times, the ciphertexts form a matrix with N columns, as well
as the plaintexts. Denote them to beX and S, respectively. For
the convenience of derivation, ∀i ∈ 1, 2, . . . ,N , let Xi and Si
be the matrices composed of the first i columns of X and S,
respectively. That is{

Xi = [x1, x2, . . . , xi]
Si = [s1, s2, . . . , si]

(32)

where xi and si denote the ith ciphertext and plaintext, respec-
tively. An equivalent form of (32) is{

Xi = [Xi−1, xi]
Si = [Si−1, si].

(33)

Then, considering the MI of XN and SN , we have

I (XN ;SN ) = I (XN ;SN−1, sN )

= I (XN ; sN )+ I (XN ;SN−1|sN )

= I (sN ;XN )+ I (SN−1;XN |sN )

= I (sN ;XN−1, xN )+ I (SN−1;XN |sN )

= I (sN ; xN )+ I (sN ;XN−1|xN )

+I (SN−1;XN |sN ). (34)

Since the conditional MI is always nonnegative, it follows

I (sN ;XN−1|xN ) ≥ 0. (35)

From (34) and (35), it results in

I (XN ;SN ) ≥ I (sN ; xN )+ I (SN−1;XN |sN )

= I (sN ; xN )+ I (SN−1;XN−1, xN |sN )

= I (sN ; xN )+ I (SN−1;XN−1|sN )

+I (SN−1; xN |XN−1, sN ). (36)

With the same reason that the conditional MI is nonnegative,
we have

I (SN−1; xN |XN−1, sN ) ≥ 0. (37)

It yields from (37) and (36) that

I (XN ;SN ) ≥ I (sN ; xN )+ I (SN−1;XN−1|sN ). (38)

Considering the second item of the right side in (38),
three random quantities are involved. Regarding the ‘‘MI’’ of
three random quantities x, y and z, one has the following
formulae5 [36]: I (x; y; z) = I (x; y)− I (x; y|z)

I (x; y; z) = I (x; z)− I (x; z|y)
I (x; y; z) = I (y; z)− I (y; z|x).

(39)

Then it follows from the formulae in (39) that

I (SN−1;XN−1; sN )

= I (SN−1; sN )− I (SN−1; sN |XN−1) (40)

and

I (SN−1;XN−1; sN )

= I (SN−1;XN−1)− I (SN−1;XN−1|sN ). (41)

Besides, since the plaintexts are mutually independent, then
sN is independent of SN−1. This means that

I (SN−1; sN ) = 0. (42)

Meanwhile, due to the nonnegativity of the conditional MI,
we have

I (SN−1; sN |XN−1) ≥ 0. (43)

As a result, one can conclude from (40)-(43) that

I (SN−1;XN−1|sN ) ≥ I (SN−1;XN−1). (44)

Substituting (44) into (38), we obtain

I (XN ;SN ) ≥ I (sN ; xN )+ I (SN−1;XN−1)

= I (xN ; sN )+ I (XN−1;SN−1). (45)

From the viewpoint of recursion, it holds from (45) that

I (XN−1;SN−1) ≥ I (xN−1; sN−1)+ I (XN−2;SN−2). (46)

Moreover, ∀i ∈ {1, 2, . . . ,N − 2}, we have

I (XN−i;SN−i) ≥ I (xN−i; sN−i)+ I (XN−i−1;SN−i−1). (47)

Furthermore, it is easy to see from (32) that there is only
one column in X1, as well as in S1. That is to say, X1 and S1
degenerate to x1 and s1, respectively, which leads to

I (X1;S1) = I (x1; s1). (48)

Similarly, we have

I (X;S) = I (XN ;SN ). (49)

5It is worth noting that the ‘‘MI’’ of three random quantities fails to satisfy
the nonnegativity. However, the MI viewpoint is still utilized here for the
convenience of formula derivation.
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Based on (45)-(49), one can obtain

I (X;S) = I (XN ;SN )
≥ I (xN ; sN )+ I (XN−1;SN−1)
≥ I (xN ; sN )+ I (xN−1; sN−1)
+ I (XN−2;SN−2)

...

≥ I (xN ; sN )+ I (xN−1; sN−1)
+ · · · + I (x2; s2)+ I (X1;S1)

= I (xN ; sN )+ I (xN−1; sN−1)
+ · · · + I (x2; s2)+ I (x1; s1)

=

N∑
i=1

I (xi; si). (50)

From the Lemma in [22], one can see that each cipher-
text is not independent of the corresponding plaintext, i.e.,
∀i, ∃δ > 0, which results in

I (xi; si) ≥ δ. (51)

Then, if N ≥ n, it follows from (50) and (51) that

lim
n→∞

G(X,S,A)
n

= lim
n→∞

I (X;S)+ I (X;A)
n

≥ lim
n→∞

I (X;S)
n

≥ lim
n→∞

N∑
i=1

I (xi; si)

n

≥ lim
n→∞

Nδ
n

≥ δ

> 0. (52)

Eq. (52) means that the cryptosystem (1) does not achieve the
EWS perfect secrecy any more if the key is used no less than
n times. This completes the proof. �

Comparing Theorem 2 and Theorem 3, it is clear that the
security level of the cryptosystem (1) is lowered after the
key is used repeatedly. This is consistent with the existing
results [20]. However, it does not mean that the plaintext or
key can be necessarily wiretapped or cracked in the multi-
time padding case. This raises an interesting question: how
does the multi-time padding scheme affect the security of
the cryptosystem (1) (against ciphertext-only attack)?Wewill
answer this question from the viewpoint of the BSS problem.

BSS is a technology which can recover the mixing matrix
and the sources to some extent (depending on the properties
of the mixing matrix and the sources) from the measured
mixtures only [37], [38]. As we know, in the multi-time
padding case, the cryptosystem (1) will become a linear
mixing model of BSS, where the ciphertexts, the key, and the
plaintexts correspond to the mixtures, the mixing matrix, and
the sources, respectively. Then, some methods in BSS may
be invoked to crack the key and the plaintexts, such as the
sparse BSS methods [30], [39]. Regarding this, we have the
following theorem.

Theorem 4: Given that the key is used repeatedly for
N times in the cryptosystem (1). If the plaintexts are mutually
independent, then with the increase of N , parts of the key and
the plaintexts can be illegally accessed with probability 1.

Proof: Based on (1), the multi-time padding model is
constructed as following:

X = AS (53)

where X is an m × N matrix composed of the ciphertexts
column by column, A denotes the same key in (1), and S is a
n × N matrix composed of N plaintexts column by column.
We can show that A and S have the following properties:
c1) any square m× m submatrix of A is nonsingular;
c2) each column of S has at most m− 1 nonzero elements;
c3) S is sufficiently rich which is defined in [30].
Firstly, from the assumption A-1), it is obvious that the

entries of A are independent. Then, any m columns of A are
linearly independent. This implies that any m× m submatrix
in A is nonsingular.
Secondly, in the CS-based cryptosystem, the plaintext

should be k-sparse with k < m for effective decryption.
Therefore, in order to correctly decrypt the whole S in (53),
each column of S should be k-sparse. That is, each column
of S has at most m− 1 nonzero elements.
Thirdly, based on the assumption A-2) and the condition

that plaintexts aremutually independent, one can see that with
the increase of N , it is with probability 1 that there exists in S
a n×m submatrix whose first n−m+1 rows are zero and the
remaining m− 1 rows satisfy the Haar condition.6 Similarly,
for any index set φ with elements number n − m + 1, where
φ ⊂ {1, 2, . . . , n}, it is with probability 1 that there exists a
n×m submatrix whose rows within index set φ are zero and
the remaining m − 1 rows satisfy the Haar condition. Note
that for any n × m matrix B, if there exists an (m − 1) × m
matrix satisfying the Haar condition, then any m−1 columns
of B are linearly independent. Thus, based on the definition
in [30], S is sufficiently rich.
Given the above three properties of A and S, it results

from [30, Th. 1], in conjunction with its proof, that A and S
can be recovered (up to permutation and scaling) from the
ciphertexts X by using a BSS technology. Since the columns
of A are often normalized in advance in CS, there remains
only permutation. Thus, with the increase of N , it is with
probability 1 that all parts of the key can be accessed/obtained
illegally (as well as the parts of the plaintexts), although their
orders are unknown. This completes the proof. �
Compared with Theorem 3 showing that the CS-based

encryption scheme with multi-time padding is insecure in
theory, Theorem 4 and its proof further show some practical
risks arising from the newly developed BSS technology.

IV. CONCLUSION
In this paper, the security of the standard CS-based
cryptosystem is analyzed in the information theory frame,

6An m × n matrix satisfies the Haar condition if any m columns of the
matrix are linearly independent [38].
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which is important for data processing in the fast developed
CPS. Specifically, the features of the MI and the entropy of
random quantities are involved. From the proposed extended
perfect secrecy criteria based onMI, it is proved that the EWS
criterion is achieved by the CS-based encryption scheme, but
the stronger ESS criterion cannot be achieved. It is also shown
that in the multi-time padding case, where the key is used
repeatedly, the security of the cryptosystem will fall below
the EWS perfect secrecy level if the quantity of the used
time is no less than that of the block length of the plaintext.
Regarding the multi-time padding case, it is further proved
that under some conditions, the key and the plaintext can
be cracked partly by using modern information processing
technology based on BSS (knowing only the ciphertexts).
This means that there may exist some kind of insecurity when
the usage of the key turns from one-time padding to multi-
time padding, although permutation remains in the recovered
parts. A possible solution could be utilizing the random key
series, instead of the repeated usage of one fixed key.
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