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ABSTRACT In this paper, we propose an expert selection system that learns online the best expert to assign
to each patient depending on the context of the patient. In general, the context can include an enormous
number and variety of information related to the patient’s health condition, age, gender, previous drug doses,
and so forth, but the most relevant information is embedded in only a few contexts. If these most relevant
contexts were known in advance, learning would be relatively simple but they are not. Moreover, the relevant
contexts may be different for different health conditions. To address these challenges, we develop a new class
of algorithms aimed at discovering the most relevant contexts and the best clinic and expert to use to make
a diagnosis given a patient’s contexts. We prove that as the number of patients grows, the proposed context-
adaptive algorithm will discover the optimal expert to select for patients with a specific context. Moreover,
the algorithm also provides confidence bounds on the diagnostic accuracy of the expert it selects, which can
be considered by the primary care physician before making the final decision. While our algorithm is general
and can be applied in numerous medical scenarios, we illustrate its functionality and performance by applying
it to a real-world breast cancer diagnosis data set. Finally, while the application we consider in this paper is
medical diagnosis, our proposed algorithm can be applied in other environments where expertise needs to be
discovered.

INDEX TERMS Semantic computing, context-adaptive learning, clinical decision support systems,
healthcare informatics, distributed multi-user learning, contextual bandits.

I. INTRODUCTION
One of the most important applications of semantic
computing [1] is healthcare informatics [2]. The devel-
opment of healthcare informatics tools and decision
support systems is vital, since recent studies show that stan-
dard clinical practice often fails to fit the patient [3]. The
landscape of healthcare is rapidly changing as the model for
reimbursement shifts from fee-for-service, which emphasizes
increasing volume, to pay-for-performance, which empha-
sizes improving quality of care and reducing costs [4].
Healthcare organizations are now tasked with developing
metrics for measuring quality in terms of outcomes, patient
experience, workflow efficiency, access, and organization.
The widespread adoption of electronic health records (EHRs)
to capture data routinely generated as part of standard of
care is yielding new opportunities to leverage such informa-
tion for quality improvement and evidence-based medicine.
Nevertheless, an ongoing challenge is how to effectively
apply this high-dimensional and unstructured dataset to

support clinical decision making (e.g., determining the
correct diagnosis) and improve resource management
(e.g., matching a patient with the clinician who best handled
‘‘similar’’ cases, while also considering the workload of
clinicians). This paper aims to optimize clinical workflows
by personalizing the match of (new patient) cases with the
appropriate diagnostic expertise whether a Clinical Decision
Support Systems (CDSS), a domain expert who specializes
in similar types of cases, or another institution. In current
clinical practice, patients are referred to experts in an
ad-hoc manner based on one or more of the following factors:
signs and symptoms of the patient, patient’s or primary care
physician’s preference, insurance plan, and availability of the
physician. This paper develops a framework and associated
methods and algorithms that uses semantic knowledge about
the patient to assess and recommend expertise with the goal
of optimizing the process for diagnosing a patient.

We assume that the diagnostic accuracy of an expert (either
human or CDSS) depends on the context of the patient for
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FIGURE 1. Operation of the proposed system for clinic i. In this example, the diagnostic decision for the patient with context xi (n) is made by a
human expert from clinic j. Then, after some time the true health state yi (n) of the patient is revealed. Based on this clinic i updates the diagnostic
accuracy of clinic j for that context, while clinic j updates the diagnostic accuracy of its expert f .

which the decision is made. This context is all the informa-
tion pertaining to the patient under consideration that can
be utilized in the decision making process. For instance,
in breast cancer diagnosis context includes patient profile,
breast density, assessment history, characteristics of the oppo-
site breast, modalities, etc., or in general, electronic medical
records can be used as the context [5]. Since the context of
a patient has many dimensions, learning the diagnostic accu-
racy of an expert suffers from the curse of dimensionality.
The methodology we propose in this paper learns the most
relevant context(s) pertinent to the current health condition of
the patient and uses it/them to estimate the level of expertise
exhibited by the expert. The level of expertise is defined
based on the accuracy of their diagnostic. Moreover, different
clinics have healthcare professionals with different expertise
and some of these clinics may have access to CDSSs from
different manufacturers and of different types while some
others just rely on human experts. In our proposed system,
these clinics can cooperate with each other to improve diag-
nostic accuracy by learning the contextual specializations of
the other clinics (see Fig. 1). For instance, a rural clinic may
have only a primary care physician (PCP), a registered nurse
and equipment, but no specialist or CDSSs andmay be able to
request information from a more established hospital which
implements multiple CDSSs and has several experienced
human experts. Hence, based on the context of the patient,
each clinic learns (i) whether it should rely on its own experts
or request another clinic to make diagnostic decisions, and
(ii) if it relies on its own experts, which expert it should assign
the task of deciding the diagnostic, such that the reward (gain)
obtained by selecting that particular expert is maximized. The
reward for a particular diagnostic decision can be defined as
the diagnostic accuracy minus the incurred cost (e.g. delay,
money, etc.). Our proposed system learns online, meaning

that its expert selection strategy is updated every time after the
true health state of a patient is revealed. (Note that at times the
true health state is not revealed immediately.) Based on this
feedback, the expertise, i.e., the diagnostic accuracy, of the
chosen expert is updated.

We model this problem as a distributed context-adaptive
online learning problem. Each clinic decides on what diag-
nostic action to take based on the history of its own patient
arrivals, patient arrivals to other clinics that requested a diag-
nostic action from the current clinic, and the success rate
of each diagnostic action. In this way, each clinic is able to
identify which experts make accurate decisions for patients
with specific contexts.

The main contributions of the methods and algorithms
presented in this paper are: (i) organizing the clinical data for
each patient in terms of semantic contexts; (ii) discovering
the most relevant context or set of patient contexts that are
useful for assessing an expert; (iii) having the ability to
provide confidence estimates on the accuracy of the selected
diagnostic made by the experts; (iv) having the ability to
select the ‘‘optimal’’ expert (a CDSS, a domain expert etc.)
among one or multiple institutions, where ‘‘optimality’’ is
defined by considering both the diagnosis accuracy and the
experts’ costs (workload, money charged, etc.).

The remainder of the paper is organized as follows.
In Section II, we describe the related work. In Section III,
we formalize the problem, and in Section IV, we present
the proposed distributed, context-adaptive online algorithm
which learns the best expert for diagnosing a patient based
on his/her contextual information. In Section V, we discuss
some extensions of our formalism. In Section VI, we illus-
trate the proposed system using a real-world breast cancer
diagnostic data. Finally, the concluding remarks are given
in Section VII.
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TABLE 1. Comparison with related work in data mining and learning.

II. RELATED WORK
We categorize the related work into two key areas: work
related to semantic computing, and work related to data
mining and online learning.

A. SEMANTIC COMPUTING
Semantic computing focuses on computing based on seman-
tics (‘‘context’’, ‘‘meaning’’, ‘‘intention’’) and it addresses
all types of resources including data, document, tool, device,
process and people [1]. Within the area of semantic com-
puting, rule-based reasoning systems [6], [7] have emerged
which deploy a database of the facts that are known about
the problem currently being solved, and a decision engine
which combines rules with the data to produce predictions.
In these systems the decision rule is developed by a group
of human experts, and rules are updated over time based
on their effectiveness. Our proposed methodology fits within
the class of semantic-based reasoning systems. However, in
contrast to the existing work, we consider multiple experts,
each adopting its own decision rule. Moreover, how well a
specific decision rule (diagnostic) performs when applied to
a patient, characterized by a specific context, is not known
a priori. Hence, in this work we are interested in developing a
rigorous and efficient methodology for learning how to select
the expert adopting the best decision rule (diagnostic) for each
patient.

B. DATA MINING AND LEARNING
Most of the prior work in online stream mining provides
algorithmswhich are asymptotically converging to an optimal
or locally-optimal solution without providing any rates of
convergence. We do not only prove convergence results, but
we are also able to explicitly characterize the performance
loss incurred at each time slot (for each patient) with respect
to the optimal solution.

Some of the existing solutions (including [8]–[10]) pro-
pose ensemble learning techniques which combine the diag-
nosis of multiple experts into a final diagnosis. In our
work we only consider choosing the best expert (initially
unknown), where the expert selection process is driven by
the patient’s context. This is especially important in resource
constrained scenarios like healthcare informatics, where the
human resources are limited either in terms of the number of
experts that are making diagnostic decisions or the number
of healthcare personnel that acts as an interface between the
patient and the CDSS. We provide a detailed comparison to

our work in Table 1. As seen from Table 1, our proposed
system is context-adaptive, distributed, outputs confidence
bounds, and provides an explicit rate of convergence to the
optimal expert selection strategy as the number of patients
grows.

In addition to the problems in data mining, our meth-
ods can be applied to any problem that can be formulated
as a distributed contextual bandit problem. Contextual ban-
dits have been studied before in [11]–[13] and other works
in a single agent setting. Our work is very different from
these because (i) we consider decentralized agents (clinics)
who can learn to cooperate with each other, (ii) the set
of available (diagnostic) actions and the context arrivals
to the agents can be very different for each agent,
(iii) instead of learning to take the best action considering the
entire D-dimensional context vector, an agent learns to take
the marginally best action by independently considering
each D types of contexts, hence learning is much faster
than existing learning algorithms whose convergence speed
slows down exponentially with the dimension of the context
space [14]. Due to its context-adaptive property, the order
of the convergence speed of the algorithm we propose in
this paper is independent of the dimension of the context
space.

III. PROBLEM FORMULATION
The system model is shown in Fig. 2 and Fig. 3. There
are M clinics (learners) which are indexed by the set
M := {1, 2, . . . ,M}. The set of experts clinic i has is Fi.
As we discussed an expert can either be a human expert
or a CDSS. The set of all experts is F = ∪i∈MFi.
Let M−i := M − {i} be the set of clinics clinic i can
choose from to send its patient’s context for diagnosis. The
diagnostic action set1 of clinic i isKi := Fi∪M−i. Through-
out the paper we use index f to denote an element of F , j
to denote clinics in M−i, and k to denote an element of Ki.
Let Mi := |M−i|, Fi := |Fi| and Ki := |Ki|, where | · | is
the cardinality operator. A summary of notations is provided
in Table 2.

For each patient n = 1, 2, . . . ,N , the following events
happen sequentially: (i) The nth patient with aD-dimensional
context vector xi(n) = (x1i (n), . . . , x

D
i (n)) arrives to clinic

i ∈ M, where xdi (n) ∈ Xd for d ∈ D := {1, . . . ,D} and
Xd is the set of type-d contexts, and X = X1 × . . . × XD

1In sequential online learning literature [22] and [23], an action is also
called an arm (or an alternative).
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FIGURE 2. Operation of clinic i for its nth patient when it
chooses one of its own experts.

FIGURE 3. Operation of clinic i for its nth patient when it
chooses clinic j.

TABLE 2. Notations used in problem formulation.

is the context space,2 (ii) each clinic i assigns one of its own
experts or another clinic to recommend a diagnosis ŷi(n) ∈ Y
for the patient n, where Y is the set of possible diagno-
sis recommendations (in the application of breast cancer,
this set includes breast tumor being malignant or benign),

2Each dimension represents a different type of context. For example, first
dimension may represent age, second dimension may represent weight, third
dimension may represent gender, etc. In our analysis, we will assume that
Xd = [0, 1] for all d ∈ D. However, our algorithmswill work and our results
will hold even when the context space is discrete given that it is bounded. For
instance, Xd can represent the set of normalized ages (formed for instance,
by dividing the exact age of the patient with the maximum age 200). Then,
every patient’s normalized age will lie in Xd .

(iii) after some delay, the true health state of patient yi(n) ∈ Y
is revealed only to the clinic i where the patient has arrived,3

(iv) if another clinic provided the diagnosis for that patient,
then the clinic where the patient arrived passes the true health
state of the patient to that clinic.

A. CONTEXT, DIAGNOSIS, DIAGNOSTIC
ACTION ACCURACIES
For each patient n, the context vector xi(n) and true health
state of the patient yi(n) are assumed to be drawn from an
(unknown) joint distribution J over X × Y independently
from the other patients. We do not require this draw to
be independent among the clinics/learners. Given a context
vector x, there exists a conditional distribution Gx over Y
(which depends on J ). Similarly, depending on J, there is
a marginal distribution H over X from which contexts are
drawn. Given context vector x, let πf (x) :=

∫
y∈Y I(f (x) =

y)dGx(y) be the joint accuracy (or simply, accuracy) of
expert f ∈ F , where f (x) is the diagnosis recommen-
dation of expert f for context vector x.4 The diagnostic
rule used by expert f , i.e., f (·) is allowed to be deter-
ministic or random. I(·) is the indicator function which is
equal to 1 if the statement inside is true and 0 otherwise,
and the expectation E[·] is taken with respect to distri-
bution Gx. Let x−d := (x1, . . . , xd−1, xd+1, . . . , xD) and
((x′)−d , xd ) := (x ′1, . . . , x ′d−1, xd , x ′d+1, . . . , x ′D). Then,
the marginal accuracy of expert f based on type-d context
is defined as

πdf (x
d ) :=

∫
(x′)−d

πf ((x′)−d , xd )dH ((x′−d ), xd ).

We say that the problem has the similarity propertywhen each
expert has similar marginal accuracies for similar contexts.
Definition 1 (Similarity Property): If there exists α > 0

and L > 0 such that for all f , f ′ ∈ F and x, x′ ∈ X , we have

|πdf (x
d )− πdf ((x

′)d )| ≤ L|xd − (x ′)d |α, ∀d ∈ D,

and

πf (x)− πf ′ (x) ≤ Z
(
max
d∈D

πdf (x
d )−max

d∈D
πdf ′ (x

d )
)
,

for some Z > 0, then we call J a distribution with similarity
constant L and similarity exponent α.

Although, our model assumes a continuous context space,
our algorithms will also work when the context space is
discrete. Note that Definition 1 does not require the context
space to be continuous. We assume that α is known by the
clinics, while L does not need to be known. However, our
algorithms can be combined with estimation methods for α.
In reality, the knowledge of α is not required for our

3Our algorithm will also work when the true health state of some patients
is never recovered by simply disregarding the history related to that patients.

4Although for simplicity of exposition we assumed that the decision only
depends on the context vector, the radiological image can also be a part of
the information sent to the expert which is denoted by si(n). Then assuming
that this data is i.i.d. given a context vector, the decision rule can be extended
as f (xi(n), si(n)), and the expert accuracy can be defined analogously.
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algorithms to run, however an estimate of α should be given
as an input. If the estimate α̂ is chosen conservatively such
that α̂ < α, the performance bounds we prove for our
algorithm (Theorem 1 and Corollary 1) will hold with α
replaced by α̂.

B. UNKNOWNS, EXPERTS AND DIAGNOSTIC REWARDS
For each patient n, clinic i can either assign one of its experts
or forward the patient’s context to another clinic to have
him/her diagnosed.We assume that for clinic i, assigning each
expert f ∈ Fi incurs a cost cif ≥ 0. We assume that whenever
the patient’s context is sent to another clinic j ∈M−i a cost
of cij is incurred by clinic i.

5 This cost can be the delay and/or
monetary costs associated with the forwarding action. When
the diagnostic action k ∈ Ki is chosen for the nth patient
of clinic i, and the diagnosis recommendation ŷi(n) is made,
the reward is equal to ri(n) := I(ŷi(n) = yi(n)) − cik . This
reward is observed only after the true health state yi(n) is
revealed. Since the costs are bounded, without loss of gener-
ality we assume that costs are normalized, i.e., cik ∈ [0, 1] for
all k ∈ Ki. The clinics are cooperative which implies that
clinic j ∈ M−i will return a diagnosis recommendation
to i when called by i using its expert with the highest
estimated diagnostic accuracy for i’s context vector. Sim-
ilarly, when called by j ∈ M−i, clinic i will return a
diagnostic recommendation to j. In our theoretical analysis
we do not consider the effect of this on i’s learning rate;
however, since our results hold for the case when other
clinics are not forwarding their patient’s context to i, they
will also hold when other clinics forward the patient’s con-
text to i. Indeed, learning is faster for clinic i when other
clinics ask clinic i for a diagnostic recommendation for their
patients.

We assume that each expert produces a binary diag-
nostic recommendation,6 thus Y = {0, 1}. The best
expert of a clinic j ∈ M for context vector x is
f ∗j (x) = argmaxf ∈Fj

maxd∈D πdf (x
d ). Hence the accuracy of

clinic j for context x is defined as πj(x) := πf ∗j (x)(x). Clinic
j’s marginal accuracy for a type-d context xd is equal to the
accuracy of its best expert, i.e.,

πdj (x
d ) := max

f ∈Fj
πdf (x

d ).

The goal of each clinic i is to maximize its total expected
reward. This corresponds to minimizing the regret with
respect to the benchmark solution which we will define in
the next subsection.

5The cost for clinic i does not depend on the cost of the expert chosen
by clinic j. Since the clinics are cooperative, j will obey the rules of the
proposed algorithm when assigning an expert to diagnose clinic i’s patient.
We assume that when called by clinic i, clinic jwill select an expert fromFj,
but not forward i’s patient’s context to another clinic.

6In general we can assume that diagnostic recommendations belong to R
and define diagnostic error as some other metric. Our results can be adapted
to this case as well.

C. DIAGNOSIS WITH COMPLETE INFORMATION
Our benchmark when evaluating the performance of the
learning algorithms is the solution which selects the diag-
nostic action in Ki with the highest marginal accuracy minus
cost (i.e., reward) given the context vector of the patient. For
k ∈ Ki, and d ∈ D, let µdk (x

d ) := πdk (x
d )− cik . Specifically,

the solution we compare against is given by

k∗i (x) := argmax
k∈Ki

(
max
d∈D

µdk (x
d )
)
, ∀x ∈ X .

Since calculating k∗i (x) requires knowledge of marginal
expert accuracies only, we call k∗i (x) the marginally best
diagnostic action given patient’s context x. Knowing this
means that clinic i knows the expert in F that yields the
highest diagnostic reward for each xd ∈ Xd , d ∈ D. We call
a policy that always acts according to this action an optimal
policy.

D. THE REGRET OF LEARNING
Let ai(n) be the diagnostic action of clinic i for its nth
patient and bi,j(n) be the expert of clinic i that is assigned
to the patient n of clinic j, when clinic j requests a diag-
nosis recommendation from clinic i. If there is no such
request, then bi,j(n) = ∅. Let a(n) := (a1(n), . . . , aM (n)),
bi(n) := {bi,j(n)}j∈M−i and b(n) = {bi(n)}i∈M. Simply,
the regret is the loss incurred due to the unknown exper-
tise. Regret of a learning algorithm which assigns an expert
ai(n) ∈ Ki for patient n in the clinic i based on its context
vector xi(n) and the past observations is defined as

Ri(N ) :=
N∑
n=1

(
πk∗i (xi(n))(xi(n))− c

i
k∗i (xi(n))

)
−E

[
N∑
n=1

(I(ŷi(n) = yi(n))− ciai(n))

]
,

where ŷi(n) denotes the diagnostic recommendation of the
expert or other clinic ai(n) assigned by clinic i to the patient n,
yi(n) denotes the true health state of the patient n that arrived
to clinic i. For instance, when ai(n) = j and bj,i(n) = f ∈ Fj,
then E

[
I(ŷi(n) = yi(n))

]
= πf (xi(n)). Regret gives the con-

vergence rate of the total expected reward of the learn-
ing algorithm to the value of the benchmark solution
k∗i (x), x ∈ X . Any algorithm whose regret is sublinear, i.e.,
Ri(N ) = O(N γ ) such that γ < 1, will converge to the
benchmark solution in terms of the average reward.

IV. ADAPTIVELY LEARNING THE RELEVANT CONTEXTS
In this section we propose an online learning algorithm that
achieves regret that is sublinear in the number of patients.
We name our algorithm Learn the EXpert (LEX).

A. THE LEX ALGORITHM
The basic idea behind LEX is to learn the accuracies of
different clinics and different experts by requesting diag-
nosis recommendations from them in a cost efficient way.
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FIGURE 4. Pseudocode for LEX.

Using LEX, a clinic can perform two tasks: (i) decide the
diagnostic action to take for own patient; (ii) decide the expert
to assign to the patients of other clinics which requested
a diagnosis recommendation. Task (i) is performed by

FIGURE 5. Pseudocode for LEX-OP.

FIGURE 6. Pseudocode for LEX-RP.

sub-algorithm LEX for own patients (LEX-OP), while task
(ii) is performed by sub-algorithm LEX for referred patients
(LEX-RP). The pseudocodes of LEX, LEX-OP and LEX-RP
are given in Figures 4, 5 and 6, respectively. A summary of
notations used in LEX is given in Table 3.

There are three operation phases of LEX: exploitation, safe
training and safe exploration. For any clinic and any patient
LEX is only in one of these phases. In an exploitation phase,
LEX is very confident about its expert selection decision.
As we will show in Corollary 1, it is able provide confidence
bounds on the probability that it selects the best expert among
all possible experts and on the accuracy of the prediction
made by the chosen expert. In the safe training phase, clinic
i is not confident about how well some other clinic j knows
its best expert for clinic i’s patient. Hence, clinic i requests a
diagnosis recommendation from clinic j which helps clinic j
learn the accuracy of its own experts. In the safe exploration
phase, clinic i is not confident about the accuracy of its
diagnostic actions. It will choose a diagnostic action and
receive a diagnosis recommendation to update the accuracy
of the chosen diagnostic action (which is done after the true
health state is revealed). Trainings and explorations are safe,
which means that LEX alerts the clinician that is in charge of
the patient that the diagnosis recommendation comes from
an expert which may not be very reliable. Knowing this,
the clinician may assign another expert or may choose to
follow the recommendation based on his/her own expertise.
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TABLE 3. Notations used in LEX.

This way the system learns, while the patient safety is not
compromised.Whenever we refer to training and exploration,
we mean safe training and safe exploration.

LEX adaptively divides the context space into finer and
finer regions as more patients arrive such that the regions of
the context space with large number of arrivals are trained
and explored more accurately than regions of the context
space with small number of arrivals, and then only uses the
observations in those regions when estimating the rewards of
diagnostic actions in Ki for contexts that lie in those regions.
For each patient, LEX chooses a diagnostic action adaptively
based on the estimated marginal accuracy of the diagnostic
action given the context vector.

For each type-d context, LEX starts with a partition with
a single element which is the entire context space Xd , then
divides the space into finer regions and explores them asmore
patients with those contexts arrive. In this way, LEX focuses
on parts of the context space in which there are large number
of patient arrivals, and does this independently for each type
of context of the patients.

For each type-d context, we call an interval
(a2−l, (a + 1)2−l] ⊂ [0, 1] a level l hypercube for
a = 1, . . . , 2l − 1,7 where l is an integer. Let Pd

l be the
partition of type-d context space [0, 1] generated by level l
hypercubes. Clearly, |Pd

l | = 2l . Let Pd
:= ∪

∞

l=0P
d
l denote

the set of all possible hypercubes. Note that Pd
0 contains only

a single hypercube which is Xd itself. LEX keeps for the
clinic i a set of mutually exclusive hypercubes that cover
the context space of each type-d context. We call these
hypercubes active hypercubes, and denote the set of active
hypercubes for type-d context for patient n of clinic
i by Ad

i (n). Let Ai(n) := (A1
i (n), . . . ,A

D
i (n)) and

A(n) := {Ai(n)}i∈M. All clinics know A(n), so that they
can form marginal sample mean diagnostic action reward
estimates of their experts for the hypercubes of other clinics.
This can be done via a simple message exchange between
the clinics, where a clinic reports its new partition to the
other clinics only when it updates its partition as shown in
lines 34-41 of LEX. Clearly, we have ∪C∈Ad

i (n)
C = Xd .

Denote the active hypercube that contains xdi (n) byC
d
i (n). Let

C i(n) := (C1
i (n), . . . ,C

D
i (n)) be the set of active hypercubes

that contains xi(n). The diagnostic action chosen by clinic i
for patient n only depends on the diagnostic actions taken

7The first level l hypercube is defined as [0, 2−l ].

on previous context observations which are in Cd
i (n) for

some d ∈ D. The number of such actions and observations
can be much larger than the number of previous actions
and observations in C i(n). This is because in order for an
observation to be in C i(n), it should be in all Cd

i (n), d ∈ D.
As we will explain below, for each patient n, LEX selects a
diagnostic action based on a particular type of context that
lies in D. This type for patient n of clinic i is called the
main type and is denoted by d∗i (n), and the hypercube that

contains x
d∗i (n)
i (n) is called themain hypercube and is denoted

by C∗i (n).
Before going into the details of the operation of LEX,

we define several counters which count the number of occu-
rances of specific events that will be used by LEX to decide
whether to train, explore or exploit.
Definition 2: LEX uses the following counters to deter-

mine whether to train, explore or exploit for each patient n.

• T i,dC (n): The number of patients of clinic i that arrived
within the time window from the activation of C to the
arrival of patient n whose type-d contexts are in C .

• T tr,i,d
j,C (n): The number of patients of clinic i that arrived

within the time window from the activation of C to the
arrival of patient n whose type-d contexts are in C , for
which LEX was in the training phase, the main type
was d , and the diagnostic action was requested from
clinic j ∈M−i.

• T i,dj,C (n), j ∈ M−i: The number of patients of clinic i
that arrived in the time window from the activation of
C to the arrival of patient n whose type-d contexts are
in C , for which LEX was in exploration phase, the main
typewas d , and the diagnostic actionwas requested from
clinic j ∈M−i.

• T i,df ,C (n), f ∈ Fi: The number of patients that arrived
to clinic i (own patients and patients from other clinics)
within the time window from the activation of C to the
arrival of patient n whose type-d contexts are in C , for
which LEX was in exploration phase, the main type
was d , and the diagnostic action was requested from
expert f ∈ Fi.

Once activated, a level l hypercube C will stay active until
n such that T i,dC (n) ≥ A2pl , where p > 0 and A > 0 are
parameters of LEX. After that, LEX will divide C into 2 level
l + 1 hypercubes. For each expert in Fi, LEX have a single
(deterministic) control function D1(n) which controls when
to do safe exploration or exploitation, while for each clinic
in M−i, LEX have two (deterministic) control functions
D2(n) and D3(n), where D2(n) controls when to do safe
training, D3(n) controls when to do safe exploration or
exploitation when there are enough trainings.

For a type d hypercube C let

F i,d
ue,C (n) := { f ∈ Fi : T

i,d
f ,C (n) ≤ D1(t)},

be the set of under-explored experts of clinic i,

Mi,d
ue,C (n) := { j ∈M−i : T

i,d
j,C (n) ≤ D3(t)},
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be the set of under-explored clinics in M−i, and

Mi,d
ut,C (n) := { j ∈M−i : T

tr,i,d
j,C (n) ≤ D2(t)},

be the set of under-trained clinics in M−i. For
C = (C1, . . . ,CD), let F i

ue,C (n) :=
⋃

d∈D F i,d
ue,Cd (n),

Mi
ue,C (n) :=

⋃
d∈D Mi,d

ue,Cd (n) and Mi
ut,C (n) :=⋃

d∈D Mi,d
ut,Cd (n).

When patient n arrives to clinic i, LEX first finds
C i(n) ∈ Ai(n). Then, it enters training, explo-
ration or exploitation phase based on the following
order: (i) If F i

ue,C i(n)
(n) 6= ∅, then randomly select

ai(n) ∈ F i
ue,C i(n)

(n) to explore it; (ii) Else ifMi
ut,C i(n)

(n) 6= ∅,
then randomly select ai(n) ∈ Mi

ut,C i(n)
(n) to train it;

(iii) Else if Mi
ue,C i(n)

(n) 6= ∅, then randomly select
ai(n) ∈ Mi

ue,C i(n)
(n) to explore it; (iv) Else, if all the

above sets are empty, then exploit the diagnostic action
which have the highest marginal sample mean reward,

i.e., ai(n) ∈ argmaxk∈Ki

(
maxd∈D r̄ i,d

k,Cdi (n)
(n)
)
, where

r̄ i,d
k,Cdi (n)

(n) = π̂ i,d
k,Cdi (n)

(n)− cik .

Marginal sample mean diagnostic action accuracies, i.e.,
π̂
i,d
k,C (n), k ∈ Ki, C ∈ Ad

i (n), d ∈ D, are calculated
only based on the diagnostic results I(ŷi(n′) = yi(n′)) for
the patients n′ who arrived between the activation of C and
patient n, for which LEX explored k , the main type was d and
main hypercube wasC . Note that the sample mean diagnostic
action accuracies are not updated when LEX is in training or
exploitation phase. The reason for not updating in training
phase is that the clinic chosen by LEX may not know its
best expert accurately, while the reason for not updating in
exploitation phase is that the diagnostic action, and hence the
main type, is chosen by looking at the values of all contexts,
which will introduce bias to the sample mean estimate.

By this sample mean update mechanism, as the number
of true health state observations increases, it is guaranteed
that π̂ i,dk,C (n) converges to a number very close to the true
marginal expected accuracy of action k for contexts in C .
This, together with the adaptive partitioning guarantees that
the regret remains sublinear in the number of patients.

Next, we explain how clinic i assigns experts to other
clinics’ patients who request diagnosis recommendation from
clinic i. LetMi(n) be the set of clinics that request diagnosis
recommendation from clinic i for their nth patient. For these
clinics, clinic i selects its experts using LEX-RP. To do this, it
first identifies the set of hypercubes C j(n) ∈ Aj(n) that con-
tains xj(n). Then, it enters exploration or exploitation phase
based on the following order: (i) If F i

ue,C j(n)
(n) 6= ∅, then

randomly select bi,j(n) ∈ F i
ue,C j(n)

(n) to explore it; (ii) Else
exploit the expert with the highest marginal sample mean

accuracy, i.e., bi,j(n) ∈ argmaxf ∈Fi

(
maxd∈D π̂

i,d
f ,Cdj (n)

(n)
)
.

Again, the marginal sample mean accuracy of the chosen
expert is updated only if the expert is explored, after the true
label for the patient n of clinic j is sent to clinic i.

B. ANALYSIS OF THE REGRET OF LEX
In this subsection we analyze the regret of LEX and derive
a sublinear upper bound on the regret, whose order of
growth with N does not depend on D. We divide the regret
Ri(N ) into three different terms. Rei (N ) is the regret of
clinic i due to trainings and exploitations by patient N ,
Rsi (N ) is the regret of clinic i due to selecting subopti-
mal diagnostic actions at exploitation steps by patient N ,
and Rnei (N ) is the regret of clinic i due to selecting near-
optimal diagnostic actions in exploitation steps by patient N .
Using the fact that LEX separate trainings, explorations
and exploitations over time, and linearity of expectation
operator, we get Ri(n) = Rei (n) + Rsi (n) + Rnei (n). In the
following analysis, we will bound each part of the regret
separately.
Lemma 1 (Regret Due to Safe Trainings and Safe

Explorations in a Hypercube): Consider clinics that use
LEX with parameters D1(n) = D3(n) = nz log n and
D2(n) = Fmaxnz log n. For clinic i consider any level l
hypercube for type-d contexts. The regret of clinic i in such
a hypercube due to safe trainings and safe explorations up to
its N th patient is O(MFmaxN z logN ).

Proof: See Appendix A-B.
For clinic i let µdk (x

d ) := πdk (x
d ) − cik , be the expected

marginal reward of diagnostic action k ∈ Ki for a patient
with type-d context xd ∈ Xd . For a type-d hypercube C ,
let ẋdC denote the context at the geometric center of C
and let µ̇dk,C := µdk (ẋ

d
C ). Let Li,dk,C (n) := {|r̄

i,d
k,C (n) −

µ̇dk,C | ≥ BL2−l(C)α}, where B := 4/(L2−α) + 2,
Lik,C (n) := ∪d∈DLi,dk,Cd (n) and LiC (n) := ∪k∈KiLik,C (n).
When LiC (n) happens we say that the marginal expected
reward estimate is inaccurate for at least one diagnostic
action k .
For clinic i that exploits for its nth patient, the diagnostic

action selection for patient n is called suboptimal if LiC i(n)(n)
happens, otherwise, it is called near optimal. The next lemma
bounds the regret due to suboptimal diagnostic action selec-
tions by bounding the expected number of times LiC i(n)(n)
happens for n = 1, . . . ,N .
Lemma 2 (Regret Due to Suboptimal Diagnostic Action

Selections): Consider clinics that use LEX with parameters
p > 0, 2α/p ≤ z < 1, D1(n) = D3(n) = nz log n and
D2(t) = Fmaxnz log n. The regret of clinic i due to subop-
timal diagnostic action selections in its exploitation phases,
i.e., Rsi (N ), is O(MFmaxN 1−z/2).

Proof: See Appendix A-C.
Lemma 3 (Regret Due to Near-Optimal Clinics Choosing

Suboptimal Experts): Consider clinics that use LEX with
parameters p > 0, 2α/p ≤ z < 1, D1(n) = D3(n) = nz log n
and D2(t) = Fmaxnz log n. Then, for any set of hypercubes
C that has been active and contained xi(n′) for some patients
n′ ∈ {1, . . . ,N } of clinic i, the regret due to a near optimal
clinic choosing a suboptimal expert for these patients when
called by clinic i is O(1).

Proof: See Appendix A-D.
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The next lemma bounds the regret due to clinic i choosing
near optimal diagnostic actions for its patients up to the
N th patient.
Lemma 4 (Regret Due to Near-Optimal Diagnostic

Actions): Consider clinics that use LEX with parameters
p > 0, 2α/p ≤ z < 1, D1(n) = D3(n) = nz log n and
D2(n) = Fmaxnz log n. Then, the regret of clinic i due to near
optimal diagnostic action selections in its exploitation phases

for its own patients 1, . . . ,N is O
(
N

1+p−α
1+p

)
.

Proof: See Appendix A-E.
Next, we combine the results from Lemmas 1, 2, 3 and 4

to obtain the regret bound for LEX.
Theorem 1 (Convergence Rate to the Optimal Diagnostic

Action): Consider clinics that use LEX with parameters

p = 3α+
√

9α2+8α
2 , z = 2α/p < 1, D1(n) = D3(n) = nz log n

and D2(n) = Fmaxnz log n. Then, the regret of clinic i for its
patients up to the N th patient is

Ri(N ) = O
(
FmaxMN f1(α) logN

)
,

where f1(α) = (2+α+
√
9α2 + 8α)/(2+3α+

√
9α2 + 8α).

Hence, limN→∞ Ri(N )/N = 0.
Proof: For clinic i, for each hypercube of each type-d

context, the regret due to trainings and explorations is
bounded by Lemma 1. It can be shown that for each type-d
context there can be at most 4N 1/(1+p) hypercubes that
are activated up to the N th patient. Using this we get a
O(N z+1/(1+p) logN ) upper bound on the regret due to explo-
rations and trainings for a type-d context. Then we sum over
all types of contexts d ∈ D. Since this regret increases with z,
we need to choose it as small as possible. From the results
in Lemma 2, the smallest possible value of z is 2α/p. For
this z value, the regret due to suboptimal action selections in
exploitation phases (given in Lemma 2) is O(N 1−α/p). The
regret due to near optimal action selection in exploitation
phases (given in Lemma 4) isO(N 1−α/(p+1)). Hence the high-
est orders of the regret come from trainings and explorations
and near-optimal action selections. The value of p that makes

these two terms equal is 3α+
√

9α2+8α
2 .

From the result of Theorem 1, it is observed that the regret
increases linearly with the number of clinics in the system and
their number of experts (which Fmax is an upper bound on).
We note that the regret is the gap between the total expected
reward of the optimal distributed policy that can be computed
by a genie which knows the marginal accuracies of every
expert, and the total expected diagnostic reward of LEX.
Since the performance of optimal distributed policy never
gets worse as more clinics are added to the system or as more
experts are introduced, the benchmark we compare our algo-
rithm against with may improve. Therefore, the total reward
of LEX may improve even if the regret increases with M , Fi
and Fmax.
Theorem 1 gives a bound on the long-term performance of

LEX. In a clinical setting, for interpreting the diagnosis rec-
ommendation provided by LEX, clinicians may want to know

the confidence about the proposed diagnosis recommenda-
tion for the patient under consideration. LEX can provide the
clinicians sharp confidence bounds on the diagnostic
accuracy of the expert it selects. These bounds reveal
the context-specific expertise level of the human experts
or CDSSs.
Corollary 1 (Confidence Bounds on the Diagnosis

Recommendation): Consider clinics that use LEX with

parameters p = 3α+
√

9α2+8α
2 , z = 2α/p < 1, D1(n) =

D3(n) = nz log n and D2(n) = Fmaxnz log n. Then, we
have the following confidence bounds on the diagnostic
recommendation ŷi(n): (i) If the prediction is made in an
exploitation phase, then with probability at least

Popt := min
{
0, 1−

2KiD
n2
−

2MFmaxDβ2
nz/2

}
,

the recommendation comes from a near-optimal diagnos-
tic action (the complement of event LiC i(n)(n) happens),
where β2 =

∑
∞

n=1 1/n
2; (ii) With probability at least Popt,

we have

πdai(n)(x
d ) ≥ π̂ i,d

ai(n),Cdi (n)
(n)− 2(B+ 1)L2l(C

d
i (n))α,

for all d ∈ D, where ai(n) is the diagnostic action taken by
clinic i for its nth patient.

Proof: The proof is contained within the proofs of
Lemma 2 and Lemma 4.

Corollary 1 implies that when LEX exploits for a patient n,
it can tell the clinician the probability that the chosen expert
is one of the best (near-optimal) experts for the context of
patient n. Moreover, it can also tell the clinician a bound on
the accuracy of the current diagnostic recommendation. This
bound given in Corollary 1 says that for the patient population
with type-d context xd , the true accuracy of the best expert
corresponding to the diagnostic action ai(n) will almost be as
high as its estimated accuracy minus some uncertainty term
related to the length of the hypercube that the accuracy esti-
mates are formed over. Using this information, the clinician
can arrive at a decision: it can follow the recommendation
of LEX, or it can find and assign another expert to the
patient.
Remark: From Corollary 1 when α = 1, the probability

that a suboptimal expert is chosen for the nth patient when
LEX exploits for the nth patient is O(n−0.28). Although this
goes to zero quickly, the recommendation for the initial set
of patients may not be very accurate. This is not a problem
since prior knowledge can be incorporated to LEX. Assume
that LEX is a priori trained with N0 patients for each clinic.
All the recommendations in this training set is done for the
purpose of training LEX and does not affect a clinician’s final
decision on the patient. Then, for the nth patient that arrives
to clinic i after the initial training, the probability that LEX
chooses a suboptimal expert will be O((n+N0)−0.28), which
can be made arbitrarily small by adjusting the initial training
population.
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V. DISCUSSION AND EXTENSIONS OF LEX
A. CONTEXT OF THE EXPERTS
Our current algorithmLEX is learning independently for each
expert. When the number of experts is large, learning for
groups of experts using the similarity between their contexts
can speed up the learning process. Moreover, depending on
the context of expert, the set of patients that can be assigned
to that expert can be different.

Below we describe the modification to LEX by which
expert context can be taken into account: Consider the set
of experts F . For each f ∈ F , let z(f ) ∈ Z be the con-
text of expert f , which is a vector in some de-dimensional
Euclidian space Z . Consider a patient with context vector
x and two experts f and f ′. Then, the diagnosis accuracy
of these experts for the patient will depend on how similar
these experts are. This can be mathematically modeled as
a similarity property between the experts which is stated
as follows.
Definition 3 (Similarity of the Experts): There exists

Le > 0 and αe > 0 such that for all f , f ′ ∈ F , x ∈ X and
d ∈ D, we have |πdf (x

d )− πdf ′ (x
d )| ≤ Le||z(f )− z(f ′)||αe .

Now consider the following modification to LEX: Instead
of forming marginal sample mean accuracy estimates for
experts f ∈ Fi, each clinic i creates a partition of the space
of contexts Z of the experts denoted by Ei. For each e ∈ Ei,
let F(e) ⊂ Fi be the subset of experts whose contexts lie
in e ⊂ Z . For each e ∈ Ei, we define a new diagnostic
action ge. Let Gi = {ge}e∈Ei . When clinic i takes diagnostic
action ge, it randomly selects an expert from F(e) to assign
to the patient.

Then, the set of diagnostic actions of clinic i will be
K′i = M−i ∪ Gi. Now, instead of keeping marginal sample
mean accuracy estimates π̂ i,df ,C for hypercubes C of patients’
contexts for expert f ∈ Fi, LEX will keep marginal sample
mean accuracy estimates π̂ i,dge,C for hypercubes C of patients’
contexts for set of experts F(e) for all ge ∈ Gi. With this
modification, the performance of LEX will depend on the
cardinality ofGi and similarity constants Le and αe. The regret
due to explorations will increase with |Gi| since more actions
need to be explored, while the regret due to grouping the
experts decreases since experts’ contexts within the same
group will be more similar to each other as the size of the
sets e ∈ Ei decreases.

B. COOPERATION AMONG THE EXPERTS
In our current setting the clinics cooperate with each other
by making diagnosis recommendations for each other’s
patients when requested. Such cooperation is very bene-
ficial when the expertise of the experts vary among the
clinics [24], [25]. However, LEX assigns a single expert to
each patient (whether an own expert of the clinic or another
clinic’s expert). In some clinical applications, such as some
complex diseases, multiple experts and clinics can work
simultaneously to diagnose a patient, which can significantly
improve the diagnosis accuracy.

LEX can be easily adapted to learn the best group of experts
and clinics to assign to a patient given its context vector.
We describe how LEX should be modified for this below.

Consider a new diagnostic action set Kcoop
i for clinic i,

whose elements are the group of experts/clinics that can
be assigned to a patient. Now, instead of keeping marginal
sample mean accuracy estimates π̂ i,dk,C for hypercubes C of
patients’ contexts for a diagnostic action in k ∈ Ki, LEX will
keep sample mean accuracy estimates π̂ i,dk,C for hypercubes C
of patients’ contexts for groups of experts/clinics k ∈ Kcoop

i
such that k ⊂ Ki. Since LEX will learn independently for
each group k ∈ Kcoop

i , the regret of LEX will be linear in
the cardinality of Kcoop

i . This can be large if Kcoop
i is set to

contain all possible groups of experts and clinics. However,
clinic i can intelligently adapt the set Kcoop

i in a way that cer-
tain combinations of experts and clinics are discarded based
on how these individual experts and clinics performed in the
past. For instance, LEX can set a threshold τ and discard
experts/clinics whose sample mean accuracy falls below τ .
Moreover, LEX can also use the contextual information of
experts when creating the groups in Kcoop

i . For instance,
similarity of the experts described in the previous subsection
can be be used when creating the groups of experts. While
forming groups with experts that have contexts that are very
similar to each other may not improve the diagnosis accuracy
a lot, adding experts with different contexts (background,
education, etc.) may significantly improve the diagnostic
accuracy because one expert may look to the patient data
from a different perspective from the other experts within the
group.

C. CONGESTION COST FOR EXPERTS
In our framework, we have not considered the congestion
of the experts. In reality, making a diagnosis for a new
patient requires a certain amount of time devoted by the
expert. Hence, an expert gets congested when too many new
patients are recommended, which results in delay in making a
diagnosis. We model this as the congestion cost for
f ∈ Fi as cf (n), which is given as cf (n) := min{(cf (n− 1)+
uxi(n),f I(ai(n) = f ) +

∑
j∈M−i

uxj(n),f I(bi,j(n) = f )−
pf δ(n − 1, n))+, 1}, where pf ∈ [0, 1] is the amount of
work that expert f can do in one unit of time, δ(n − 1, n)
is the time between the arrival of patient n − 1 and n, and
ux,f ∈ [0, 1] is the amount of work to diagnose the patient
with context x. We assume that cf (n) is known (as ux,f and pf
can be calculated from the historical patient data). LEX can
take this congestion cost into account by setting the marginal
sample mean reward of expert f for clinic i’s nth patient to
r̄ i,d
f ,Cdi (n)

(n) = π̂ i,d
f ,Cdi (n)

(n)− cf (n)− cif . We present numerical
results considering congestion cost in Section VI.

D. GENERALITY OF LEX
Our proposed algorithm is general, can be applied to discover
the expertise in many applications such as personalized edu-
cation, recommender systems and task assignments. Note that
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TABLE 4. Comparision of LEX with state-of-the-art learning algorithms in terms of diagnostic accuracy.

although we made a case study in breast cancer dataset, there
is nothing specific about breast cancer or medical applica-
tions in our proposed algorithm. For example, in a person-
alized education system, the context can be the GPA, quiz
and/or homework scores of the student, while experts can be
instructors, teaching assistants and/or online courses.

VI. ILLUSTRATIVE RESULTS
In this section, we illustrate the functioning and performance
of our algorithm by comparing it against several state-of-
art online ensemble learning algorithms and other multi-
armed bandit algorithms. While many of these algorithms are
centralized and they cannot easily or at all be deployed in
the envisioned distributed clinic setting, we compare against
these various methods to highlight the merits of our pro-
posed scheme, including the importance of using contextual
(semantic) information in making decisions.

A. DATASET
BREAST CANCER DATASET
We consider a breast cancer data set provided by UCLA
radiology department. The data set includes 45450 patients.
A radiologist interprets the breast image of the patients and
assigns a BI-RADS score. Score ‘1’ is negative, ‘2’ and ‘3’
are associated with benign, ‘4’ is suspicious, ‘5’ is highly
probable malignancy, and ‘6’ is known malignant. The score
‘4’ is further divided into three subcategories with 4A indicat-
ing low suspicion of malignancy, 4B indicating intermediate
suspicion and 4C indicatingmoderate concern.We focus only
on the BI-RADS 4, 4A, 4B and 4C patients who need to
be further monitored and/or screened to decide their can-
cer status (i.e. benign or malignant tumor). These patients
are assigned to an expert, which decides whether or not
to undergo a biopsy based on the patients’ context, which
includes their age, imaging modality, and breast density. Note
that some instances of the context vector are missing for
some patients. For instance, the breast density information is
available for only 45% of the patients.

B. ALGORITHMS THAT WE COMPARE AGAINST
- LinUCB [26] is a contextual bandit algorithm which
assumes that the expected reward of a diagnostic action
is a linear combination of the components of the
context vector. However, the coefficients in the linear
combination is different for each diagnostic action and
is unknown.

- Hybrid-ε (Hybrid) [11] combines the context (side)
information with an ε-greedy algorithm, by extracting

the history of context arrivals within a small region of the
context space and running an ε-greedy algorithm within
that space.

- Weighted Majority (WM) [27] is an offline algorithm
that assigns and updates weights for the experts based
on training data, and produces a final diagnosis recom-
mendation byweighting the diagnosis recommendations
of all the experts.

- Sliding Window Adaboost (AdaSliding) [28] is an
online version of Adaboost [29], which aims to find the
optimal weighting among the experts by an exponen-
tial weight update mechanism, where the weights are
updated using a window of recent past observations and
decisions.

All the algorithms above are centralized, i.e., they require
a central clinic which has direct access to all the experts of
all clinics. From the above algorithms, we modified LinUCB
and Hybrid-ε such that they can run on the distributed setting
we consider. For Weighted Majority and Sliding Window
Adaboost we assume that there is a central clinic which has
direct access to all the experts of all clinics.

C. PERFORMANCE OF LEX IN BREAST
CANCER DATASET
Unless stated otherwise, we assume that there are M = 4
clinics and Fi = 2 experts for each clinic i ∈ M. A clinic
can select one of its own experts without incurring any cost,
while the cost of selecting another clinic is set to 0.01.

While LinUCB and Hybrid-ε are bandit algorithms
(i.e., they require a diagnosis only from the expert they
select), AdaSliding and AdaWeighted require the diagnostic
recommendations of all the experts in the system for each
patient. Hence, these algorithms are run on a centralized
system in which the clinic has access to all experts.

RESULTS ON THE DIAGNOSTIC ACCURACY
The comparison between LEX and the above algorithms is
given in Table 4. As the performance metric, we use the
diagnostic accuracy (i.e., the percentage of patients that are
correctly diagnosed). LEX outperforms other learning algo-
rithms by achieving a diagnostic accuracy that is at least
13% higher than the best of the other methods. Moreover, as
the number of patients N increases, the diagnostic accuracy
increases because LEX learns the expertise of the experts
with a higher accuracy as more patients arrive. The poor
performance of LinUCB and Hybrid-ε algorithms is due to
the fact that they don’t have the training phase that LEX
have, and they learn considering all the contexts in the context
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vector, rather than learning for the most relevant context as
LEX does.

RESULTS ON COOPERATION AMONG THE CLINICS
In order to assess the effect of cooperation between clinics,
we simulate the performance of LEX for different numbers
of clinics that clinic i can forward its patient’s context for
diagnosis recommendation. As shown in Table 5 diagnosis
accuracy of LEX increases with the number of clinics that
clinic i is connected to. This is due to the diversity of the
expertise among different clinics. While a clinic can be good
at making diagnosis recommendation to patients with a spe-
cific type of context, another clinic may be better specialized
for other types of contexts.

TABLE 5. Diagnostic accuracy of LEX as a function of the
number of clinics.

RESULTS ON COSTS ASSOCIATED WITH COOPERATION
How and when the clinics cooperate with each other depends
on several factors including the expertise of the clinics, con-
texts of the patients and costs of cooperation (delay, money,
etc.). Here, we evaluate the percentage of times a clinic
cooperates with the other 4 clinics in exploitations using
LEX, as a function of the cost of choosing another clinic for
diagnosis recommendation. We assume this cost is the same
for all clinics and denote it by c. As seen in Table 6, the
percentage of cooperation decreases as the cost increases, and
reaches zero when the cost exceeds some threshold.When the
cost is too high, asking for expertise of another clinic is not
advantageous, evenwhen it improves the diagnostic accuracy.

TABLE 6. Cooperation % vs. cooperation cost. Cooperation % is
the percentage of times another clinic is called in exploitations.

RESULTS ON DELAYED HEALTH STATE OBSERVATIONS
For most cases, it may not be possible observe the true health
state of the patient just after the diagnostic decision is made.
When the decision ismalignant, usually a biopsy is performed
in a short amount of time, and this reveals the true health
state of the patient. However, when the decision is benign,
the patient usually waits until the next screening, without any
immediate action.

We simulate this by introducing a delay dn, in terms of
the number of patients that have arrived after the nth patient
before the true health state of the nth patient is revealed.
We assume that dn ∼ geometric(λ), for some parame-
ter λ > 0. In Table 7, the performance of LEX as a
function of the delay is shown in terms of parameter λ.

TABLE 7. Tradeoff between diagnostic accuracy and delay.

TABLE 8. Allocation of the experts under congestion cost.

TABLE 9. Resulting performance of LEX under congestion cost.

Smaller values of λ imply larger delay, but as seen from the
table, the performance of LEX is only slightly affected by
the delay.

RESULTS ON WORKLOAD BALANCE
AMONG THE EXPERTS
Tables 8 and 9 provide a comparison of the diagnostic accu-
racy and the workloads of the experts for a single clinic
M = 1 with 6 experts under two different models
(i) a model that assumes congestion cost for each expert
which depends on the number of patients that expert
is assigned to, and (ii) a model that does not consider
congestion. Table 8 shows the fraction of times the
experts 1, 2, 3 (the most congested experts) and the rest of
the experts (expert 4, 5, 6) are recommended to the patients.
We simulate this by taking the congestion cost cf (n), f ∈ F
defined in Section V-C, and setting its parameters to
ux,f = 0.4, pf = 1, λ = 1 for all x ∈ X and f ∈ F and
arrival times δ(n − 1, n) ∼ exp(β). In this setting smaller
values of β imply more frequent patient arrivals.
As seen from Table 8 when the congestion cost is intro-

duced, based on the level of congestion theworkload becomes
more uniform among the experts. The effect of this on the
diagnostic accuracy is given in Table 9. From this table, it is
observed that the diagnostic accuracy is only slightly affected
due to the congestion, since LEX trade-offs between the
accuracy and the congestion cost by shifting the workloads
to less accurate but less congested experts when the rate of
patient arrivals increases.

VII. CONCLUSION
In this paper we proposed a context-adaptive medical diag-
nosis system that selects from a pool of human experts and
CDSSs to make diagnosis recommendations. The system
learns online, which context of the patient to use, and which
expert to rely on when making diagnosis recommendations.
We prove that the diagnostic accuracy of the proposed system
converges to the accuracy of the best context-adaptive expert,
which means that the best diagnosis mechanism (whether
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a human expert or a CDSS) for each context is perfectly
learned. Moreover, the proposed algorithm LEX learns the
best expert for treating a patient with a specific context
not only within a clinic but also across all clinics; hence,
its performance is better than the performance of the best
expert within any given clinic. In a clinical deployment of
the proposed system, diagnosis recommendations made by
the system will be examined by a clinician before the final
prediction is made. This will provide an additional layer of
safety. For any patient, it is the clinician’s discretion whether
to rely on or to disregard the recommendation of the LEX
algorithm. Future work includes designing algorithms that
can track the changes in a clinician’s performance by exploit-
ing a recent time window of patient histories, and adapting
LEX to discover expertise in other settings.

APPENDIX A
PROOF OF THE LEMMAS
A. PRELIMINARIES
Let β2 =

∑
∞

n=1 1/n
2. For a set A let AC denote the com-

plement of that set. For a set of hypercubes C, let lmin(C)
be the level of the hypercube in C with the minimum level.
We start with a simple lemma which gives an upper bound on
the highest level hypercube that is active for any patient n.
Lemma 5 (A Bound on the Level of Active Hypercubes):

All the active hypercubes Ad
i (n) for type-d contexts for

patient n have at most a level of (log2 n)/p+ 1.
Proof: Let l + 1 be the level of the highest level

active hypercube. We must have A
∑l

j=0 2
pj < n, otherwise

the highest level active hypercube will be less than l + 1.
We have for n/A > 1, A 2p(l+1)−1

2p−1 < n ⇒ 2pl <
n
A ⇒ l < log2 n

p .

B. PROOF OF LEMMA 1
This directly follows from the number of trainings and explo-
rations that are required before any diagnostic action can be
exploited which is determined by D1(n), D2(n) and D3(n).

C. PROOF OF LEMMA 2
Let � denote the space of all possible outcomes, and w be
a sample path. The event that the LEX exploits when
xi(n) ∈ C is given byW i

C (n) := {w : F
i
ue,C (n)∪M

i
ue,C (n)∪

Mi
ut,C (n) = ∅, xi(n) ∈ C,C ∈ Ai(n)}. We will bound the

probability that LEX chooses a suboptimal action for clinic i
in an exploitation phase when i’s context vector is in the set
of active hypercubes C for any C, and then use this to bound
the expected number of times a suboptimal action is chosen
by clinic i for its patients in exploitation steps using LEX.
Recall that reward loss in every step in which a suboptimal
action is chosen can be at most 2, hence the regret due to
suboptimal action selections is directly proportional to the
number of times event LiC (n) ∩W

i
C (n) occurs.

Let Bi,dj,C (n) be the event that clinic j made a suboptimal
expert assignment for clinic i for at most nφ of the patients
of clinic i whose type-d contexts are in C for which clinic i

explored clinic j up to its nth patient according to the type-d
context. For f ∈ Fi let Bi,df ,C (n) := � for all d ∈ D. We have

P
(
LiC (n),W

i
C (n)

)
≤

∑
k∈Ki

P
(
Lik,C (n),W

i
C (n)

)
≤

∑
k∈Ki

∑
d∈D

(
P
(
Li,dk,Cd (n),B

i,d
k,C (n),

W i
C (n)

)
+ P

(
Bi,dk,C (n)

C
))
. (A.1)

We generate an artificial i.i.d. processes for each type-d
hypercube Cd to bound the probabilities related to deviation
of sample mean reward estimates r̄ i,dk,Cd (n) := π̂

i,d
k,Cd (n)− c

i
k ,

k ∈ Ki, d ∈ D from the expected rewards, which will be used
to bound the probability of choosing a suboptimal action.
We call this the center process, in which rewards are gen-
erated according to a bounded i.i.d. process with expected
reward µ̇dk,Cd . Let ṙ

i,d
k,Cd (n) denote the sample mean of the

n samples from the center process for type-d hypercube Cd

and action k . Let T̃ dk := T i,dk,Cd (n). We have

P
(
Li,dk,Cd (n),W

i
C (n),B

i,d
k,C (n)

)
= P

(
|r̄ i,dk,Cd (n)− µ̇

d
k,Cd | ≥ BL2

−l(Cd )α,Bi,dk,C (n),W
i
C (n)

)
≤ P

(
|ṙ i,dk,Cd (T̃

d
k )− µ̇

d
k,Cd | ≥ (B− 2)L2−l(C

d )α

−2
nφ

T̃ dk
,W i

C (n)

)
≤ 2/n2, (A.2)

by using a Chernoff-Hoeffding bound. This can be verified
by checking that the last inequality holds when the condition

(B− 2)L2−l(C
d )α
− 2

nφ

T̃ dk
≥ 2n−z/2

holds, which holds when

(B− 2)L2−l(C
d )α
− 2nφ−z ≥ 2n−z/2 (A.3)

holds. By Lemma 5, (A.3) holds when

(B− 2)L2−αn−α/p ≥ 4n−z/2. (A.4)

Since the parameters in the statement of the lemma are
φ = z/2 and z ≥ 2α/p, and since B = 4/(L2−α) + 2, (A.4)
holds.

For j ∈ M−i, let X
i,d
j,C (n) be the number of times a

suboptimal expert (suboptimal diagnostic action) of clinic j
is selected when clinic i calls clinic j in exploration phases
of clinic i with d as the main type of context, and when the
context vector is in the set of hypercubes C of the nth patient.
Since P(Bj,dk,C (n)

C ) = 0 for k ∈ Fj, d ∈ D, using the result
in (A.2) for clinic j instead of i, we have

E[X i,dj,C (n)] ≤
N∑
n=1

∑
k∈Fj

P
(
Ljk,C (n),W

j
C (n)

)
≤ 2FmaxDβ2,
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where β2 =
∑
∞

n=1 1/n
2. Hence, P(Bi,dj,C (n)

c) ≤

E[X i,dj,C (n)]/n
φ
≤ 2FmaxDβ2n−z/2, for j ∈M−i.

Combining all of these we get

P
(
LiC (n),W

i
C (n)

)
≤

2KiD
n2
+

2MFmaxDβ2
nz/2

.

Hence

Rsi (N ) ≤
N∑
n=1

(
2KiD
n2
+

2MFmaxDβ2
nz/2

)
= O(MFmaxN 1−z/2).

D. PROOF OF LEMMA 3
Let X ij,C (N ) denote the random variable which is the number
of times a suboptimal expert of clinic j ∈ M−i is chosen in
exploitation phases of clinic iwhen xi(n′) is in set C ∈ Ai(n′)
for n′ ∈ {1, . . . ,N }. Similar to the proof of Lemma 2, it can be
shown that E[X ij,C (N )] ≤ 2FmaxD2β2. Thus, the contribution
to the regret from suboptimal actions of clinic j is bounded by
4FmaxD2β2. We get the final result by considering the regret
from all M − 1 other clinics.

E. PROOF OF LEMMA 4
The following lemma bounds the per-patient (one-step) regret
to clinic i from choosing near optimal actions. This lemma is
used later to bound the total regret from near optimal actions.
Lemma 6 (One-Step Regret Due to Near-Optimal Actions

for a Set of Hypercubes): Consider clinics using LEX with
parameters p > 0, 2α/p ≤ z < 1, D1(n) = D3(n) = nz log n
and D2(n) = Fmaxnz log n. Then, for any set of hypercubes
C i(n) = C, the one-step regret of clinic i in an exploitation
phase n from choosing one of its near optimal diagnostic
actions (i.e., when LiC (n)

C happens) is bounded above by
4Z (B+ 1)L2−lmin(C)α .

Proof: Consider the event LiC (n)
C in which clinic i

exploits and chooses diagnostic action k . Then, the one step
regret for any context vector x ∈ C is equal to

1i(n) := (πk∗i (x)(x)− c
i
k∗i (x)

)− (πk (x)− cik )

≤ Z
(
max
d∈D

µdk∗i (x)
(xd )−max

d∈D
µdk (x

d )
)
, (A.5)

by the Similarity Property. Again by the Similarity Property,
we have

µdk∗i (x)
(xd ) ≤ µ̇dk∗i (x),Cd

+ L2−l(C
d )α,

µdk (x
d ) ≥ µ̇dk,Cd − L2

−l(Cd )α.

Since |r̄ i,dk,Cd (n) − µ̇
d
k,Cd | ≤ BL2−l(C

d )α for all k ∈ Ki and
d ∈ D on event LiC (n)

C , we have

µdk∗i (x)
(xd ) ≤ r̄ i,dk∗i (x),Cd

(n)+ 2(B+ 1)L2−l(C
d )α,

µdk (x
d ) ≥ r̄ i,dk,Cd (n)− 2(B+ 1)L2−l(C

d )α,

where the factor 2 on the right hand side of the equations
accounts for a near optimal clinic k ∈ M−i choosing one
of its near optimal actions in Fk .

The equations above imply that

max
d∈D

µdk∗i (x)
(xd ) ≤ max

d∈D
r̄ i,dk∗i (x),Cd

(n)+ 2(B+ 1)L2−lmin(C)α,

max
d∈D

µdk (x
d ) ≥ max

d∈D
r̄ i,dk,Cd (n)− 2(B+ 1)L2−lmin(C)α.

Since k is chosen by clinic i in its exploitation phase, we must
have maxd∈D r̄ i,dk,Cd (n) ≥ maxd∈D r̄ i,dk∗i (x),Cd

(n). Combining
the above equations with (A.5), we get

1i(n) ≤ 4Z (B+ 1)L2−lmin(C)α.

Let τi(N ) be the set of patients up to the N th patient of
clinic i for which clinic i exploits. Using the results of the
above lemma, the regret of clinic i due to near optimal actions
up to its N th patient is bounded by∑
n∈τi(N )

1i(n) ≤ 4Z (B+ 1)L
∑

n∈τi(N )

2−lmin(C i(n))α

≤ 4Z (B+ 1)L
∑

n∈τi(N )

∑
d∈D

2−l(C
d
i (n))α

≤ 4Z (B+ 1)LDmax
d∈D

∑
n∈τi(N )

2−l(C
d
i (n))α. (A.6)

We know that the length of the hypercubes used by LEX
decreases over time due to its accounting for the tradeoff
between patient arrivals and reward variations within a hyper-
cube. In order to bound (A.6), we assume a worst case
scenario, where context vectors arrive such that at each n,
the active hypercube that contains the context of each type
has the maximum possible length. This happens when type d
contexts arrive in a way that all level l hypercubes are split
to level l + 1 hypercubes, before any arrivals to these level
l+1 hypercubes happen, for all l = 0, 1, 2, . . . This way it is
guaranteed that the length of the hypercube that contains the
context for each n ∈ τi(N ) is maximized. Let lmax be the level
of the maximum level hypercube inAi(N ). For the worst case
context arrivals we must have

lmax−1∑
l=0

2l2pl < N ⇒ lmax < 1+ log2 N/(1+ p),

since otherwise maximum level hypercube will have level
larger than lmax. Hence, continuing from (A.6), we have∑

n∈τi(N )

1i(n) ≤ 4Z (B+ 1)LDmax
d∈D

∑
n∈τi(N )

2−l(C
d
i (n))α

≤ 4Z (B+ 1)LD
1+log2 N/(1+p)∑

l=0

2l2pl2−lα

≤ 4Z (B+ 1)LD22(p+1−α)N
p+1−α
p+1 .
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