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ABSTRACT Multilabel categorization, which is more difficult but practical than the conventional binary
and multiclass categorization, has received a great deal of attention in recent years. This paper proposes
a novel probabilistic generative model, label correlation mixture model (LCMM), to depict the multiply
labeled documents, which can be used for multilabel spoken document categorization as well as multilabel
text categorization. In LCMM, labels and topics have the one-to-one correspondences. The LCMM consists of
two important components: 1) a label correlation model and 2) a multilabel conditioned document model. The
label correlation model formulates the generating process of labels where the dependences between the labels
are taken into account. We also propose an efficient algorithm for calculating the probability of generating an
arbitrary subset of labels. The multilabel conditioned document model can be regarded as a supervised label
mixture model, in which labels for a document are known. Each label is characterized by distributions over
words. For the parameter learning of the multilabel conditioned document model, in addition to maximum-
likelihood estimation, a discriminative approach based on the minimum classification error rate training is
proposed. To evaluate LCMM, extensive multilabel categorization experiments are conducted on a spoken
document data set and three standard text data sets. The experimental results in comparison with other
competitive methods demonstrate the effectiveness of LCMM.

INDEX TERMS Label correlation mixture model, probabilistic generative model, multi-label spoken
document categorization, multi-label text categorization, Bayesian decision theory, minimum classification
error rate method.

. INTRODUCTION

Spoken document categorization can be considered as a spe-
cial text categorization problem. The general text categoriza-
tion is an important and basic problem in the natural language
processing field. Suppose that D is an observed data set and
Y is a label set with K labels. The text categorization problem
is how to build an optimal text classifier based on a certain
learning criterion:

F:d—y deD,yeY.

The traditional text categorization is a single label classifica-
tion problem, in which the label y is a single discrete value.
When K = 2, which means y is a binary value, suchas O or 1,
it is the conventional binary classification; when K > 2, it
is the multi-class classification. However, in the real world,
a text may belong to more than one category. For instance,
a financial news article possibly not only belongs to the
“economy’ category but also belongs to the *“politics™
category; and a spoken document relevant to a conversation
between peoples may contain more than one topic. This is
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a multi-label text categorization problem, in which y is
set-valued. In recent years, many research efforts have been
focused on this more difficult but practical text categoriza-
tion problem, which has been indispensable for many recent
applications.

In order to solve the multi-label text classification
problem, many approaches have been proposed. They can
be broadly grouped into two main categories [1], [14]:
problem transformation methods and algorithm adaptation
methods. The problem transformation methods, such as
classifier chain [2], label power-set [3], and maximal
figure-of-merit [4], [5], transform the multi-label classifi-
cation problem into one or more single-label classification
problems. The algorithm adaptation methods modify and
extend the existing algorithm to directly solve the multi-
label problem. Typical algorithm adaptation methods include
Boostexter [6], multi-label KNN [7], and multi-label neural
networks [8].

According to the Bayesian decision theory of minimum
error rate case, given a document dy, the goal of multi-label
classification is to find the optimal subset of labels which has
the maximum posterior probability. Based on the Bayes’ rule,
we have

y = argmax P(y|dyes)
y

P(dzest lY)P(Y)

= argmax
VT Py

= argmax P(dyes [VP(Y). (1
Yy

According to Eq. (1), the probabilistic generative model can
be adopted and the key points are how to calculate the con-
ditional probability P(ds.|y) and the prior P(y). Due to the
inherent ability of modeling document data, it is a natural idea
to utilize the methodology of topic model to deal with the text
categorization problem. The traditional topic models were
proposed to model text and other discrete collective data. The
popular models include probabilistic latent semantic analysis
(PLSA) [10], Latent Dirichlet allocation (LDA) [11] and their
variations, in which each document is modeled as a mixture
over a set of topics. However, these unsupervised topic mod-
els can not be directly used for classification task.

In recent years, many supervised approaches of topic mod-
els have been proposed for the multi-label text categorization
problem. A mixture model approach was proposed in [9]
for multi-label text classification, in which each label was
regarded as a class and modeled by a word distribution. The
class mixture model was used to calculate P(ds|y). This
model is similar to PLSA except for the manners of updating
parameters. The parameters of this mixture model can be
trained by the maximum likelihood estimation. However, the
approach directly used the frequency of each label to estimate
the corresponding probability P(y), which is not appropriate
for many real applications since there are not enough data to
estimate the priors of all the different classes. Labeled LDA
was proposed in [12] as a direct way to train the parameters of
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the LDA model with supervised label information. Compared
with the LDA model, labeled LDA has an additional Bernoulli
sampling process to depict the fact that only a subset of labels
associate with one document. One weakness of labeled LDA
is that the correlations between labels were not considered.
CoL-model [13] was also a supervised LDA version which
focused on formulating the correlations between labels. The
formulation was carried out through sampling labels accord-
ing to a multinomial distribution whose parameters were
drawn from a Normal distribution with full covariance matrix.
However, in the classification phase, neither labeled LDA
nor CoL-model can effectively evaluate an arbitrary subset
of labels for a testing document. The reason is that these
models can not provide a prior for a subset to calculate the
joint probability in Eq. (1). Instead, they directly provided a
subset using a threshold in terms of the relative probability
of a single label. This strategy was easy for implementation
but often limited the classification performance. Dependency
LDA was another supervised LDA approach proposed in [15].
Dependency LDA obtains a subset of labels for a document
by first sampling from the topic distributions over labels, and
then determining the label distributions by using the label
frequency. The dependencies between labels are not explicitly
modeled. In addition, for a testing document after training,
the stochastic sampling procedure must be performed to
obtain appropriate labels. As a result, the approach is not
efficient.

In order to model the multi-labeled document data, there
are three primary questions need to be addressed:

« How to incorporate the supervised label set into the

learning procedure?
« How to formulate the correlations of labels?
« How to effectively evaluate an arbitrary subset of labels
for a testing document?

In this paper, we propose a probabilistic generative model,
label correlation mixture model (LCMM), to address the
aforementioned problems. In LCMM, we define the one-to-
one correspondences between labels and topics, so the two
terms are interchangeable in the rest of this paper. According
to LCMM, the generating process of a labeled document
consists of two phases, which correspond to two models: a
label correlation model and a multi-label conditioned doc-
ument model (or a document model for short hereafter).
In the first phase, labels are generated based on a stochastic
process where the correlations between labels are taken into
account. In the second phase, the documents are generated
based on the generated labels, which are characterized by
distributions over words. The second phase can be seen as
a supervised label mixture model, in which the dependencies
between labels are also involved. In the classification stage,
given a testing document d,, the prior P(y) of an arbitrary
subset y and the conditional probability P(d|y) can be
calculated by the label correlation model and the document
model, respectively.

The details of our approach are presented in the rest of
the paper. Section II describes the LCMM framework which
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consists of a label correlation model and a document model.
The parameter estimation and inference for these models are
discussed in Section III and Section IV, respectively. The
multi-label classification strategy is described in Section V.
Section VI presents the experimental results, and Section VII
concludes the paper.

Il. THE GENERAL FORM OF LABEL
CORRELATION MIXTURE MODEL

Let the text document corpus be represented by
D = {d;,ds,...,dy}, with words from a vocabulary
W = {wi, wa, ..., wn}. Suppose the label set Y has K labels,
Y = {y1.y2,...,yk}. X denotes K dimensional parameter

of a multinomial distribution for the size of a subset. ¢ is
also a K dimensional parameter of a multinomial distribution,
which depicts the probabilities of randomly selecting a certain
single label. E denotes a set of parameters for formulating the
correlations between labels.

LCMM assumes the following generating process for each
document d in the corpus D:

S1. Generating a label subset size L ~ Multinomial()).

S2. Generating a label subset y with L labels for the
document:

a) Sample the firstlabel y; ~ Multinomial(¢),y,; € Y,
y =l

b) For each label y;, [ € [2, L]:
Sample y;, from Y—y with probability P(y,|y, E),
then, y =y U{y;}-

S3. Generating all the words in the document d based on the
subset y. Suppose there are V words in the document,
and for each word:

a) Sample a label z; with probability P(zx|y), zx € y-
b) Sample a word w,, from P(wj,|zx), which is a label-
conditional multinomial probability of the word w,.
The LCMM model is represented as a probabilistic graphical
model in Figure 1.

X)f\
)
z

FIGURE 1. Graphical model representation for label correlation
mixture model, in which the labels and words are both observed
variables.
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Given the parameters A, ¢ and &, the generating process
of document d and its labels can be translated into a joint
probability, which has the expression as follows:

P(y,d|r, ¢, E) = P(d|y)P(y|A, ¢, E). 2
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In the above equation, P(y|XA, ¢, E) is called the label
correlation model and P(d|y) is called the document
model.

The label correlation model depicts the stochastic
generating process of labels for a document, which are
described in S1 and S2. Because there exist L! different orders
(or sequences) of the labels to generate a subset y, all these
orders should be summed over to calculate the probability
P(y|A, ¢, E), that is

P(ylh, @, B)=Py(L)- Y_ P(SLlp. B). 3)
S edy

where @y denotes all the possible orders of labels in y:

Oy = {Or1)s Yr@)s - » YraPl(@(1), w(2), ..., (L)) €
{all the permutations of the integers from 1 to L}}.

“

Suppose S = (7}, V), - - . ¥y.), we have

P(SLlg, B) = Py(3)) - PGHI{F}, B) - . s
P@i'{y/pyé”y}‘—l}a E) (5)

After generating the label subset y, the words are sampled
in S3, which corresponds to the document model. In this
step, the approach we used is similar to PLSA except for
the restriction of only using the selected labels in S2. The
conditional probability of all the words in document d can
be calculated by

N
PAly) = [ [ Powalze) - Py, (6)

n=1 2k €y

where 7(d, wy,) is the number of w,, in document d.

The above process can be interpreted as follows. For
generating a document, we first make a decision that L labels
(or topics) will be involved. Then, we select L labels in turn
and each label is chosen based on the selected labels. After
that, the words of the document are generated and each word
is probably related to any selected label.

lll. LABEL CORRELATION MODEL

An accurate estimation of the prior P(y|X, ¢, E) is impor-
tant but difficult for multi-label classification. One important
reason is the difficulty of formulating the relationships
between labels. The label correlation model provides an effec-
tive strategy to solve the problem as described below.

A. PARAMETER ESTIMATION: » AND ¢

Two multinomial distributions with parameters A and ¢
are adopted in S1 and S2. A is K dimensional vector
(A1,A2, ..., k), in which Ax(k € [1,K]) represents
the probability of containing k labels for a subset and
Zf M = 1. A can be estimated by my /M, where my is
the count of subsets that contain k labels in the training
data set and M = Zf my. ¢ is a K dimensional vector
(1,92, ...,9K), where gr(k € [1,K]) is the probability
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@weighl(l 2

probability P({5} — 2) can be calculated by P({5} — 2) =

&

weigh!(l,Z)—@—weight(Z,S)

weight(2,5)
weight(3,5)

weight(5,9)

weight(5,8)

° weight(4,5)

(b)

FIGURE 2. Examples of label correlation networks and the calculation of P(y — ¥). In subgraph (a), the conditional

«({5},2) £(5,2)

subgraph (b), P({2, 5, 8} — 3) = ©(12,5,81,3)

= = =
V' €(2,3,4,6,8,9) “UOMY)  Xprero 5.4.6,8,056Y

7. As for

£(2,3)+£(5,3)

of hitting the k™ label and Zf ¢r = L. @ in this paper is
estimated by sy /S, where sy, is the count of the k" single label
in the training data set and S = Z{( Sk.

B. LABEL CORRELATION NETWORK

The key of LCMM is the S2-b in the generating process
of Section II. The label selection involves the distribution
P(;ly, E). However, because the number of power set of Y
is an exponential function of K in theory, it is impractical to
estimate the distributions for all the possible subsets. Here we
propose a novel approach to estimate these conditional prob-
abilities, by which the probability of generating an arbitrary
subset can be effectively calculated.

We first define a label correlation network using an undi-
rected graph. In a label correlation network, each vertex
represents a single label, each edge between two vertexes
indicates the correlation of the two corresponding labels,
and there is a weight on each edge representing a certain
measure of the correlation. Co-occurrence is a typical kind of
representation for the correlation between two labels. In this
paper the frequency of co-occurrence of two labels is chosen
as the weight on the edge between the corresponding two
vertexes. We can then build a label correlation network from
all the observed multiple labels of the training data.

The basic idea is that the labels are generated based on
a label correlation network. That is to say, the conditional
probability in S2-b of the generating process can be calculated
based on the correlations between the relevant labels, which
are all included in the label correlation network. Therefore, in
this case, & represents all the weights in the label correlation
network, & = {§(k,k)|k # k', k € [1,K], k' € [1,K]},
where £(k, k') is the weight on the edge between the two
vertexes which correspond to label y; and label y;/. ¥ denotes
the complementary set of a label subset y, y = Y — y.
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y* denotes the candidate set of y, y* = {y|3e(y,y),y €y,
Y €7}, e(y, y) is the edge between vertexes which correspond
to label y and label y, respectively. In other words, y* includes
all the labels that connects to at least one label in y. Given
a subset y, suppose that we will select another label y. Our
basic assumption is that the label y should be chosen from y*,
i.e.y € y*. Every label, which belongs to y*, has a probability
to be chosen. This probability is relevant to both y and y*.
Given y, P(y — y) denotes the conditional probability of
choosing a label y in y* given y and can be calculated by

k(y,)
Zy’ey* Kk(y, y/)
D NS R
T k0 Y

where  «(y,y) = 2 ey (Y. We also have
Zyey* P(y — y) = 1. It should be pointed out that in the
generating process of S2-b each label is sampled from a multi-
nomial distribution. Figure 2 shows two examples of label
correlation networks and how to calculate the conditional
probability of sampling a new label according to Eq. (7).

Py —>y) =

@)

C. INFERENCE FOR A LABEL SET
According to Eq. (7), the conditional probabilities in Eq. (5)
can be rewriten as

P(SLlg, B) = Py(3)) - PV} — 75) - .. -

PUY, Yy o Yoy} = V). ®)

It can be calculated based on the label correlation net-
work. We define the sampling probability ﬁ(y) of a label
subset y as the second term of the RHS of Eq. (3),
ie., ﬁ(y) = ZSL@Y P(SL|@, E). In theory, ﬁ(y) can be
calculated by summing over all the L! possible label
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FIGURE 3. An example for the process of calculating sampling probability. This can be displayed by a finite state

machine with trellis structure. In this example, y = {2, 3, 5, 8}.

sequences’ probabilities. However, according to the Stirling’s
approximation, L! ~ /2L - (L /e)", the total computational
requirements are on the order of L - ~/27L - (L/e)* opera-
tions. This complexity greatly influences the computational
efficiency. Fortunately, there is an equivalent algorithm for
calculating ﬁ(y), which is similar with the well known
forward algorithm [16], [17] and can easily alleviate the
expensive computational requirement.

We use a finite state machine to illustrate this algorithm.
Suppose that the sampling probability of subset y will be
calculated. As for the finite state machine, the states have
one-to-one correspondence to the subsets of y. There are two
special states: one corresponds to the empty set and is used
as the initial state; and the other one corresponds to y itself
and is used as the final state. We use s, to represent the
state which corresponds to the subset e, e C y. For two
subsets e’ and e, if

le'| +1=lel, € Ce,

then, we call € the precursor set of e. In the finite state
machine, there exists a transition from each precursor set
of e to se. We define the transition score as the conditional
probability of generating e when €’ is given, which can be
calculated according to the Eq. (7). This finite state machine
can be displayed by a directed acyclic graph (DAG). In this
DAG, a complete path from the initial state s4 to the final state
sy corresponds to a label sequence of y and the path score
which is the product of all the transition scores is equal to the
probability of generating the corresponding label sequence,
i.e. Eq. (8). Therefore, ﬁ(y) can be calculated by summing
over all the path scores, which is just from the definition
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of the sampling probability without complexity constraints.
Figure 3 displays an example of DAG for a finite state
machine, which has a trellis structure. We furthermore define
the state score as the sampling probability of the correspond-
ing subset. From Figure 3 we can see that the state score can
be calculated inductively by

Pe)=) P(€) P(€ — (e—¢). )

In other words, the sampling probability of a subset can be
obtained through the sampling probabilities of its precursor
set. This is also true for y, and the equivalent formula is

P(y) =) Py\y-Py\y—y. (10)
yey
The above equation ignores the conditions A, ¢ and E for
brevity. The calculation of ﬁ(y) does not require summing
over all the path scores. This divide-and-conquer machinery
significantly alleviates the computational complexity.

The upper bound of the operation requirement can be
reduced to L/+/27L - 2L, Typically the actual number of
labels for a document in practice is not very large. So the
size L of each subset y can also be controlled, which is
relevant to the multi-label classification strategy discussed
in Section V. Therefore, the exponential upper bound of the
proposed algorithm can be acceptable in most cases.

IV. MULTI-LABEL CONDITIONED DOCUMENT MODEL

A. MAXIMUM LIKELIHOOD ESTIMATION

The multi-label conditioned document model is similar to
PLSA. However, an obvious difference between the two mod-
els is that the labels of a document are restricted to belonging
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to the document’s label set. Therefore, the document model
can be regarded as a supervised label mixture model. The
re-estimation equations for parameters in EM algorithm are:

PWalz)P(zklyi)

Pabony) = S Py * €Y D
n dla n P ns Yi

P(zilyd) = 2T v;(zl.)(mw Y),Zk eyi. (12)

POwalzi) = Ziﬁ(dit wi)P(zk [Wn, ¥i) (13)

>, > adi, wa)P(zk W, ¥i)

n(d;, wy,) is the number of w, in document d;, n(d;) is the
number of all the words in document d;. The equations above
are exactly the same as the PLSA except that label z; of a
document d; must belong to the document’s label set y;.

B. MCE CLASSIFIER DESIGN
The maximum likelihood estimation approach may not
guarantee a minimum classification error rate performance.
There are two key reasons: (1) the mismatch between the
chosen model hypothesis and the actual data distribution;
(2) the inadequacy of the training data. In order to solve these
problems, many criteria of discriminative training approaches
have been proposed over the past few years. Multi-label
categorization is a typical classification problem, therefore,
we propose the training approach based on minimum classifi-
cation error (MCE) method [18]-{20] to learn the parameters
of document model discussed in Section IV-A. It should be
pointed out that the MLE model is used as the initial model
for our learning approach. During the learning approach,
only the word distributions conditioned on labels (Eq. (13))
will be updated, and meanwhile, the document-conditional
probabilities (Eq. (12)) for each training document will be the
same as the final probabilities of MLE training. We denote
these parameters to be updated by A = {P(wy|zx)|n € [1, N1,
k € [1,K]}.

We first define two kinds of discriminant functions for
document d; in the training data set as follows.

gy,(dis A) =Y A, wy) - logl Y Pk |y)POwalzi)] (14)
n k€Y
gi(di; A) = Y A, wy) - log Pwalz), 5 € ¥, €T (15)

n

Eq. (14) calculates the log-likelihood for document model
with the label set y; of document d;. This is different from
the traditional classification. Eq. (15) calculates the log-
likelihood for the parameters of the single label that does
not belong to the label set y;. y; is complementary set of y;,
ie.¥i = Y—y;. ¥, is asubset of y; and can be regarded as the
competing categories.

Based on these discriminant functions, the misclassifica-
tion measure takes the following form:

1
d(di) = —gy,(di: A) +logl > "explg;(di; A) - 11"/,
l‘ .
J

€y, (6
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where [y;| represents the size of the subset ¥, and 7 is a
positive number. d(d;) is a continuous measure of A and
approximately quantifies the separation between the correct
label subset and the competing labels.

We also need to choose a loss function, which is smooth
and approximates the 0-1 step function. The misclassification
measure will then be embedded in this function. The general
form of the loss function can be defined as:

£d;; A) = £(d(dy)) a7
where £(-) is a sigmoid function:
1
D= T a®

In Eq. (18), y is a constant and influences the learning rating
of parameters. 6 is also a constant which can be seen as an
offset of d from 0. Finally, based on the loss function, the
overall objective function of the multi-label text categoriza-
tion problem can be defined as:

M
L(A) = Zﬁ(di; A). (19)

C. MCE OPTIMIZATION

The objective function of Eq. (19) can be optimized to
find a suitable set of parameters. As for traditional MCE
approaches, the generalized probabilistic descent (GPD)
[18], [21], [22] algorithm has been proved to be powerful.
However, for document model, all the parameters are
conditional probabilities, which maintain the constraints:
Pwaulze) = 0,3, Pwalze) = 1,n € [1,N], k € [1,K].
The GPD algorithm is an unconstrained approach, which
is not appropriate to be directly adopted to optimize the
parameters. In our approach, we use another optimization
method, growth transformation [23]{26], which can naturally
solve the above problem. Based on growth transformation
approach, the parameter set A, can be updated with the
following equation:

P(walz)(gpens + 1)

—
P (wylz,) = ’
Y POwy |zr)<3,f(LW<,A|;,) +7)
nell,NI,0 €[l,N],r €[1,K] (20)
where
M
dL(A) Z 0l(d;; A)
oP(wylz,) i1 oP(wylz,)
M . .
P ad(di) OP(Wylzr)
% =y - (d; A1 — £(d;; A)] (22)
l —n(d;, wp)P(z,|yi) ey
dd(d;) Y ey P@rIYDPOWalze)” :
8P(Wnlzr) exp{gr(d,, A) 77} n(dlv Wﬂ) 3;/
> explgi(di; A) - n} P(walzr)’ "
(23)
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In Eq. (20), T is a constant which controls the convergence
speed of the objective function L(A) and P (wy|z,) is the
updated parameter corresponding to P(wy|z,). There exists
a value T* such that T > T* will guarantee the growth of
L(A) [23], therefore, y in Eq. (22) is a negative constant in
the sigmoid function of Eq. (18).

D. FOLD-IN PROCESS

Given a new document and a label subset, the fold-in process
can be performed, which is the same as that of PLSA. The
EM algorithm can be adopted again to obtain the conditional
probability (Eq. (12)) of each given label, while the word
distributions conditioned on labels (Eq. (13)) are not changed
during the fold-in process.

V. MULTI-LABEL CLASSIFICATION STRATEGY

We present the framework of our multi-label classification
approach based on label correlation model and document
model as follows.

Given a new document, in order to find the best subset of Y,
all the possible label subsets should be assessed. However, the
number of all the subsets is 2X — 1, which makes it impractical
to implement, even when K is not very large. We use a simple
greedy strategy with the following three steps to solve this
problem:

o Step-a: Carry out the fold-in process to calculate the
conditional probability P(z|y) for each label in the whole
label set (i.e. y = Y) according to Eq. (11) and (12).

« Step-b: Discard the labels whose conditional probability
is lower than a threshold.

o Step-c: Compare all the possible subsets that are limited
to being chosen from the remainder labels to explore the
best subsets according to Eq. (1), Eq. (2), Eq. (3), and
Eq. (6).

This strategy is reasonable because when a document is
forced to associate with all the labels, the true labels belong
to the document should have relatively higher conditional
probabilities. Our experimental results verify that this greedy
strategy works well.

VI. EXPERIMENTS

A. DATA SETS

We use four data sets to evaluate LCMM. The details of data
sets are presented in Table 1.

The first one is called MSD-TCS, which is a Mandarin
spoken document data set. Each document corresponds to
a telephone conversation between a caller and a call-center
staff in a telecom customer service system. Each document
contains one or more topics, such as “3G service”, “music”’,
“SMS”, “cancel”, “download”, etc. Our task is to assign
one or more topics to a given document, which can be formu-
lated into a multi-label text categorization problem. Both the
training and testing data are recognition text, which are from
a large vocabulary continuous speech recognition (LVCSR)
system with an average word accuracy 73.4%. The dictionary
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TABLE 1. Data sets collection and statistics. #trn is the number
of training documents. #tst indicates the number of testing
documents. #lbl is the number of labels. I-card indicates

label cardinality [1], which is the average number of labels
relevant to each document.

data set #trn #tst #Ibl | I-card
MSD-TCS 9747 1083 | 109 2.75
Reuters-top10 6490 2544 10 1.10
Reuters-top36 7543 2906 36 1.19
Reuters-all90 7768 3019 90 1.24
TMC2007 21519 | 7077 22 2.16
OHSUMED 6965 6964 | 23 1.67

including 15969 words used in the LVCSR system is also
utilized as the original vocabulary for text categorization.
Besides the training set and testing set presented in Table 1,
there exists a validation set with 812 documents for tuning the
constant parameters in our approach which will be described
in Section I'V-C.

We also use three standard text classification data
sets downloaded from Web to evaluate the performance
of LCMM: Reuters-21578 [27], TMC2007 [28] and
OHSUMED [29]. Reuters-21578 is a collection of articles
appeared in the Reuters newswire in 1987. We use the
Mod-Apte split as descried in the “README” file
accompanying the original set. This data set is named
Reuters-all90 in this paper, which contains 90 classes. Two
subsets of Reuters-all90 are also used for experiments. They
only use the 10 and 36 largest classes [5], [9], [13], which
are called Reuters-topl0 and Reuters-top36 respectively.
TMC2007 is a data set about aviation safety reports which
record the problems occurred during flights. OHSUMED
includes medical abstracts from the MeSH categories of the
year 1991.

B. COMPARISON APPROACHES AND

EVALUATION MEASURES

LCMM is compared with other reported multi-label
classification approaches: Mixture Model (Mix-Model) [9],
CoL-Model [13], naive Bayes (NB) [1], [13],
ML-KNN [7], [13], [34], ML-SVM [13], [32]-[34], Multi-
nomial Model (Mul-Model) [33], Boostexter [6], [13],
MFoM-Bin [4], MFoM-MC [5], Rocchio method
(Roc-Method) [32], KNN [32], fuzzy similarity
KNN (FS-KNN) [34], Ensemble-CC [2], Ensemble-BM [2],
Ensemble-PS [2], [3], RAKEL [2], [35].

As for LCMM, the MCE training procedure for the
document model is adopted. For illustrating the performance
improvement that stems from the prior based on the label
correlation model, the performances of LCMM without
prior (LCMM-NoPr) are also evaluated. LCMM-NoPr
ignores the calculation of the prior P(y) or treats the prior
P(y) as a constant in the classification process. In addition, the
approaches with MLE training procedure (LCMM-MLE and
LCMM-MLE-NoPr) for the document model is also evalu-
ated on the MSD-TCS data set for comparison.

Various kinds of evaluation measures are adopted in this
paper: accuracy, precision, recall, F-Score, micro/macro
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precision (Micro/Macro P), micro/macro recall (Micro/
Macro R), micro/macro F-Score (Micro/Macro F). Tsoumakas
and Vlahavas [1], Chai et al. [36] described the details of these
evaluation measures.

C. EXPERIMENTAL SETUP AND RESULT ANALYSIS
Simple preprocessing is carried out on each data set. The
meaningless tags in each document are removed, and all the
words are lowercased and the words on a standard stop word
list of about 400 words are removed.

The competing labels in Eq. (15) are obtained through
Step-a and Step-b described in Section V. After step-b, the
subset of the remaining labels, except for the manual labels,
are used as the competing set, i.e.,y; in Eq. (15). n in Eq. (16)
is fixed at 2.0, y in Eq. (18) is —1.0, 6 is —1.0. The iteration
number of MCE training is set to be 50. As for the stage of
classification, the strategy described in Section V is adopted.
The thresholds of Step-b in the learning and classification
stages are set to be 0.12. These parameters result in the
best performance on the validation set of MSD-TCS and are
chosen for the following experiments on all the testing sets.

We first compare LCMM with LCMM-MLE on the
MSD-TCS data set and the experimental results are shown
in Tables 2 and 3. The tables illustrate that the performance
measures of MCE training approach is about 4.6% better
on average than those of the MLE training approach for
all the evaluation measures, demonstrating the effectiveness
of the MCE training approach. In the following experi-
ments, we only provide the performance measures of LCMM
approach compared with other reported methods. Since these
approaches were evaluated by different measures and the data
sets were also different, we list the corresponding perfor-
mance values in Tables 4-7 and the complete experimen-
tal results for all the evaluation measures are included in
Appendix A.

TABLE 2. Performance comparison on MSD-TCS.

| Approach | Accuracy | Precision | Recall | F-Score |
LCMM-MLE-NoPr 0.617 0.740 0.697 0.707
LCMM-MLE 0.712 0.813 0.766 0.780
LCMM-NoPr 0.678 0.794 0.747 0.759
LCMM 0.734 0.840 0.778 0.799

TABLE 3. Performance comparison on MSD-TCS.

[ Approach [ Micro P | Micro R | Micro F |
LCMM-MLE-NoPr 0.674 0.778 0.722
LCMM-MLE 0.783 0.805 0.794
LCMM-NoPr 0.744 0.812 0.777
LCMM 0.839 0.769 0.803

[ Approach [ Macro P | Macro R | Macro F |
LCMM-MLE-NoPr 0.742 0.661 0.699
LCMM-MLE 0.815 0.733 0.772
LCMM-NoPr 0.791 0.708 0.747
LCMM 0.840 0.737 0.785

With regard to the performance measures on Reuters
(shown in Tables 4 and 5), LCMM outperforms most of
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TABLE 4. Performance comparison on Reuters.

[ Approach [ Precision | Recall [ F-Score
Reuters-top10
Mix-Model 0.839 - -
CoL-Model 0.901 0.923 0.898
LCMM-NoPr 0.800 0.973 0.848
LCMM 0.940 0.949 0.932
Reuters-top36
NB 0.751 0.892 0.803
ML-KNN 0.795 0.797 0.791
ML-SVM 0.878 0.814 0.848
CoL-Model 0.872 0.875 0.876
LCMM-NoPr 0.835 0.864 0.829
LCMM 0.882 0.911 0.883
Reuters-all90
Mul-Model 0.852 0.720 -
Boostexter - - 0.851
CoL-Model 0.867 0.873 0.866
LCMM-NoPr 0.818 0.830 0.805
LCMM 0.878 0.872 0.870
TABLE 5. Performance comparison on Reuters.
[ Approach [ Micro F | Macro F ]
Reuters-top10
Roc-Method 0.839 0.681
KNN 0.852 0.855
ML-SVM 0.926 0.857
MFoM-Bin 0.933 0.883
MFoM-MC 0.937 0.884
LCMM-NoPr 0.793 0.686
LCMM 0.921 0.840
Reuters-all90
Roc-Method 0.765 0.550
KNN 0.793 0.529
ML-KNN 0.751 -
FS-KNN 0.762 -
ML-SVM 0.869 0.445
MFoM-Bin 0.884 0.556
MFoM-MC 0.888 0.630
LCMM-NoPr 0.751 0.551
LCMM 0.816 0.635
TABLE 6. Performance comparison on TMC2007.
Approach Accuracy | Macro F
Ensemble-CC 0.530 0.551
Ensemble-BM 0.527 0.548
Ensemble-PS 0.523 0.561
RAKEL 0.529 0.557
LCMM-NoPr 0.405 0.524
LCMM 0.533 0.595
TABLE 7. Performance comparison on OHSUMED.
Approach Accuracy | Macro F
Ensemble-CC 0.411 0.378
Ensemble-BM 0.414 0.379
Ensemble-PS 0.420 0.376
RAKEL 0.416 0.398
LCMM-NoPr 0.409 0.478
LCMM 0.489 0.537

the reported approaches on precision, recall and F-Score
measures. According to micro F-Score and macro F-Score
measures, the comparison shows that the performance values
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of LCMM are better than that of Roc-Method and the series
of KNN approaches, but are worse than those of ML-SVM
and MFoM approaches. We further analyze these results in
more detail. From the perspective of model training, the
parameter learning procedure of LCMM tries to find the
parameters that optimize the local performance of each
document, which is coincident with the document-based eval-
uation measures, such as precision, recall and, F-Score. The
ML-SVM and MFoM approaches learn the parameters to
obtain the best performances for each label, which is consis-
tent with the micro and macro measures. Note that MFoM,
whose objective function was directly designed for optimiz-
ing micro F-Score, achieved the best performances in Table 5.
On the other hand, LCMM is a probabilistic generative model,
which can be used for classification based on its modeling
ability. For Reuters-top10, the number of labels is not large
and the data is sufficient for parameter estimation. The perfor-
mances on micro F-Score and macro F-Score of LCMM are
slightly worse than those of ML-SVM and MFoM methods.
However, from Reuters-top10 to Reuters-all90, the number
of labels increases by 80 while the number of documents
increases by only 1278, and the top 10 labels still accounts
for a large proportion (74.5%) of all the label occurrences.
As a result, there are not sufficient data for the parameter
learning for the other 80 labels. Therefore, the performances
on Reuters-all90 of LCMM decrease clearly. ML-SVM and
MFoM methods are essentially discriminative models whose
primary targets are learning different surfaces between labels,
which are relatively less sensitive to the amount of training
data compared with LCMM.

With regard to the other two data sets TMC2007 and
OHSUMED, LCMM performs much better than the reported
methods in terms of accuracy and macro F-Score. In addition,
we can observe from the tables (including the performances
presented in Appendix A) that the overall performance val-
ues of LCMM-NoPr are significantly worse than those of
LCMM. LCMM-NoPr tends to assign more labels to a doc-
ument, which can result in the improvement on the recall
or micro/macro recall scores on several data sets. However,
this improvement does not occur on all the data sets because
the relevant recall or micro/macro recall performance values
are determined not only by the number of labels but also by
the accuracy of the document model itself. All these results
demonstrate the effectiveness of the prior based on the label
correlation network.

As for time efficiency, we measure the time consump-
tion for LCMM on each data set and the results are
presented in Table 8. For all experiments, we used an
Intel Xeon ES5405 2.00GHz processor running Windows
Server2003-32bits(OS). All the programs for LCMM are
written in C++-. From the results in Table 8, we can give a
qualitative conclusion that LCMM is efficient compared to
other methods [2], whose results are not presented in the table
because of different experimental conditions. The strategy
demonstrated in Section V is reasonable and can effectively
control the time complexity of LCMM. However, from results
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TABLE 8. Testing time for a whole set and average
time for a testing example (in seconds).

data set testing time | average time
MSD-TCS 39.6 3.65 x 102
Reuters-top10 3.2 1.26 x 1073
Reuters-top36 17.1 5.87 x 1073
Reuters-top90 75.2 2.49 x 10~2
TMC2007 47.4 6.69 x 10~3
OHSUMED 51.3 7.36 x 1073

about the average prediction time for a testing document, we
find strong positive correlation between the time consumption
and the number of labels in the data set.

D. DISCUSSION

From the perspective of Bayesian decision theory, both
the likelihood and the prior should be calculated for clas-
sification. In order to calculate the likelihood, the docu-
ment model is adopted in the LCMM approach and similar
models [9], [12] are also used in other approaches. These
supervised probabilistic models are the basis of the clas-
sifiers. However, multi-label categorization performance is
also significantly influenced by the prior, which can be illus-
trated through the comparison of the experimental results of
LCMM-NoPr and LCMM. Compared with other approaches,
one primary advantage of LCMM is that it can provide an
reasonable estimation for the prior probability of an arbi-
trary subset of labels, which facilitates the classification
within the Bayesian decision framework. Therefore, LCMM
can have further performance improvement compared with
LCMM-NoPr.

According to Eq. (3), if every multi-label class only has
one single label, then the multi-label classification problem
reduces to a single label classification problem and Eq. (3) is
equivalent to direct estimating the prior for each single label.
However, for general multi-label classification problems, it
is difficult to directly calculate the probability of a label
subset, because the number of multi-label classes may be
significantly larger than the number of observations. LCMM
does not directly calculate the prior of a label subset. Instead,
LCMM estimates the probability of a label subset based on
the correlations between pairs of labels, which are encoded
on a label correlation network. The approximate computation
can be implemented through a recursive strategy according
to Eq. (10), in which large complicated problems are decom-
posed to a set of small simple problems. On the other hand,
the correlation between labels is involved in the process of
estimating a prior, which is reasonable and necessary for the
multi-label case. Furthermore, each multi-label class can be
represented by a subgraph of the label correlation network.
So LCMM can estimate an unseen multi-label class in the
training data set, as long as it corresponds to a complete
subgraph in the label correlation network. This can also be
considered as the LCMM’s smoothing effect for the unseen
data.
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TABLE 9. Performances of LCMM-NoPr and LCMM
according to accuracy, precision, recall, F-score.

[ Approach [ Accuracy [ Precision | Recall | F-Score |

Reuters-top10

LCMM-NoPr 0.787 0.800 0.973 0.848

LCMM 0.922 0.940 0.949 0.932
Reuters-top36

LCMM-NoPr 0.791 0.835 0.864 0.829

LCMM 0.855 0.882 0.911 0.883
Reuters-all90

LCMM-NoPr 0.771 0.818 0.830 0.805

LCMM 0.839 0.878 0.872 0.870

TMC2007

LCMM-NoPr 0.405 0.530 0.631 0.524

LCMM 0.533 0.671 0.668 0.626
OHSUMED

LCMM-NoPr 0.409 0.479 0.673 0.524

LCMM 0.489 0.610 0.640 0.584

TABLE 10. Performances of LCMM-NoPr and LCMM according
to micro precision, micro recall, micro F-score.

[ Approach [ Micro P | Micro R | Micro F |

Reuters-top10

LCMM-NoPr 0.678 0.955 0.793

LCMM 0.912 0.930 0.921
Reuters-top36

LCMM-NoPr 0.781 0.787 0.784

LCMM 0.821 0.861 0.841
Reuters-all90

LCMM-NoPr 0.772 0.731 0.751

LCMM 0.850 0.785 0.816
TMC2007

LCMM-NoPr 0.466 0.565 0.511

LCMM 0.649 0.618 0.633
OHSUMED

LCMM-NoPr 0.438 0.619 0.513

LCMM 0.575 0.584 0.579

TABLE 11. Performances of LCMM-NoPr and LCMM according
to macro precision, macro recall, macro F-score.

[ Approach [ Macro P | Macro R | Macro F |

Reuters-top10

LCMM-NoPr 0.551 0.910 0.686

LCMM 0.843 0.837 0.840
Reuters-top36

LCMM-NoPr 0.618 0.590 0.604

LCMM 0.716 0.662 0.688
Reuters-all90

LCMM-NoPr 0.597 0.512 0.551

LCMM 0.722 0.567 0.635
TMC2007

LCMM-NoPr 0.420 0.697 0.524

LCMM 0.641 0.556 0.595
OHSUMED

LCMM-NoPr 0.386 0.628 0.478

LCMM 0.571 0.507 0.537

In addition, we can see from Section II that the label
correlation model and the document model are relatively
independent. In our experiments, we train the two models
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on the same training data set. However, this is not necessary
in practice and the models can be trained on different data
sets. For the document model, both the documents and the
corresponding multi-label classes are needed, while for the
prior model, the data set can only contain the multi-label
classes.

VIl. CONCLUSION

This paper presents a label correlation mixture model for
multiple labeled document data, which is a probabilistic gen-
erative model and can be used for multi-label spoken docu-
ment categorization as well as multi-label text categorization.
LCMM models the generating process of both multiple labels
and words of a given document in two phases, which corre-
spond to a label correlation model and a document model.
The label correlation network is defined and constructed for
formulating the correlation between labels and estimating the
prior of an arbitrary subset of labels. The words are gener-
ated based on labels, which are depicted by the document
label, of which the parameters can be learned through the
MCE criterion. The experimental results on a spoken
document data set and three standard text data set illustrate
LCMM’s effectiveness.

For multiply labeled document data, LCMM provides a
general framework for generative model and has advantages
in terms of the concise depiction of data generating process
and the ability of addressing the correlations between labels.
In many applications, there may be a certain order or a hier-
archical structure underlying the labels [37]. These structures
can be regarded as a special case of the label correlation
network. Therefore, LCMM is also applicable to these cases.
Moreover, LCMM can also be used for other multiple labeled
collections of discrete data sets.

APPENDIX A

COMPLETE PERFORMANCES

In this appendix, the complete results of LCMM-NoPr and
LCMM are presented in Tables 9—11. The relevant evaluation
measures are described in Section I'V-B.
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