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ABSTRACT We study the problem of assigning users to servers with an emphasis on the distributed
algorithmic solutions. Typical online social network applications, such as Facebook and Twitter, are built on
top of an infrastructure of servers that provides the services on behalf of the users. For a given communication
pattern among users, the loads of the servers depend critically on how the users are assigned to the
servers. A good assignment will reduce the overall load of the system while balancing the loads among the
servers. Unfortunately, this optimal assignment problem is NP-hard. Therefore, we investigate three heuristic
algorithms for solving the user server assignment problem: 1) the centralized simulated annealing (CSA)
algorithm; 2) the distributed simulated annealing (DSA) algorithm; and 3) the distributed perturbed greedy
search (DPGS). The CSA algorithm produces good solution in the fastest time, however it relies on timely
accurate global system information, and is practical only for small and static systems. In contrast, the two
distributed algorithms, DSA and DPGS, exploit local information at each server during their search for the
optimal assignment, and thus can scale well with the number of users and servers as well as adapting to the
system dynamics. Simulation results show that the performance of the distributed algorithms, specifically the
DPGS algorithm, is very competitive with that of the centralized algorithm while providing the advantage of

naturally adapting to time-varying communication patterns of users.

INDEX TERMS Distributed algorithms, online social network, operations research, combinatorial
optimization.
. INTRODUCTION message from server S,. For private and instant messages

Social network applications such as Facebook, Twitter, and
many popular Internet applications [1] employ an underly-
ing infrastructure of servers that facilitate communications
among the users. In these settings, the users communicate
with each other indirectly via their designated servers. Specif-
ically, for an online social network system (OSN) such as
Facebook, each user profile and its data are stored at its
primary servers. When a user u posts a message, the message
is first sent to its designated server S,. Suppose a user v
is a friend of user u, then whenever v logs in his or her
(Facebook) account, the updated message will be pushed
directly from server S, to v if v happens to be assigned
to the same server S,. Otherwise if user v was previously
assigned to a different server S), then a read request is sent
from server S, to server S,; server S, then receives the
updated message from S,,. Finally, user v reads the updated

embedded in OSNs, the mechanism is slightly different.
User u first sends a message to server S,, server S, then
forwards the message to user v if he or she is located on
the same server S,; otherwise, server S, then forwards the
message to server S, which then forwards the message to
user v. Effectively, the two designated servers S, and S,
communicate with each other on behalf of their users. This
indirect communication architecture enables rich applica-
tion functionalities that is often difficult otherwise. Last but
not least, this architecture also scales well with the number
of users. Specifically, new servers can be added incremen-
tally to accommodate the new users. That said, this indirect
communication architecture requires additional resources for
handling the inter-communication among servers. In what
follows, we will elaborate more on the user server assignment
problem.
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FIGURE 1. Message exchange mechanism. (a) User
communication Example. (b) Balanced partitions. (c) Improved
scheme. (d) Best resource utilization.

The indirect communication mechanism is depicted
in Figure 1 where each server has a message queue for
processing user messages. If two users are located on the
same server, e.g., user 1 and user 2 are located on server /,
then each message is processed once by the server I’s. If the
two users are located on two different servers, e.g., user 1
and user 3, then each message will have to be processed by
both servers I and II. In addition, there is an inter-server
communication load between the two servers.
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FIGURE 2. Examples of assignment schemes.

Let’s consider an example of user communication pattern
as shown in Figure 2(a). Nodes represent users and an edge
between two nodes represents the communication between
the two users. The weight of the edge represents how often
the users communicate with each other. In this example, we
assume that all users communicate at equal rate, so all the
edge weights are normalized to 1. The assignment scheme
shown in Figure 2(b) has a perfectly balanced load where
each server processes the same number of messages, i.e., five
messages per unit time. The total load incurred to all the
servers will be 10 messages per unit time. Due to the inter-
server communication, of these 10 messages, there are three
messages per unit time processed by both servers.

Now, consider a less balanced assignment in shown
Figure 2(c). The total load is now 9 messages per unit
time, of which, only two messages per unit time are due to
inter-communication. We can further reduce the inter-server
communication by moving user 2 to server /. The resulted
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configuration is shown Figure 2(d) which has imbalanced
load at servers but smaller total load.

In many large scale systems, the problem of client-server
assignment with a specific objective of reducing the total
load while maintaining a good load balance among the
servers is crucial. We assume the load at the servers is
due mainly to handling messages/information passing among
users. We begin with the following observations:

1) The amount of load incurring by messages exchanged
between two users assigned to the same server will
be less than that of when the users are assigned to
different servers. This is due to local communication
incurred less load than non-local communications. This
observation will be made more precisely in Section III.
Consequently, the total load is minimum when all users
are assigned to one server.

2) However, when all users are assigned to one server,
this server might be overloaded, resulting in degraded
performance. Also, from the robustness perspective,
this assignment is prone to bottleneck failures.

3) It is beneficial to assign two users that exchange mes-
sages with each other often to the same server in order
to minimize the overall communication load. On the
other hand, because of the load balance consideration,
two users that rarely exchange messages with each
other should be assigned to two different servers.

Based on the observations above, the communication
pattern among the users is critical to the optimal client-server
assignment. We must strike a balance between reducing the
overall communication load, equivalently the communication
cost among the servers, and increasing load fairness among
the servers, i.e., the load balance. From a broad perspective,
the client/server assignment problem can be viewed as a
special class of graph partitioning problems that are harder to
solve. That said, there is a vast literature on graph partitioning
problems [2]-[8] originated from various applications includ-
ing job scheduling and image segmentation. These methods
will be discussed and contrasted with our algorithms in more
detail in the Section II. We note that many of these existing
techniques require centralized processing and are known to
be very computationally expensive and produce local optimal
solutions only. The contributions of this paper include three
heuristic algorithms for solving the user/server assignment
problem: 1) The Centralized Simulated Annealing (CSA)
algorithm, 2) the Distributed Simulated Annealing (DSA)
algorithm, and 3) the Distributed Perturbed Greedy Search
(DPGS). The CSA algorithm produces good solution in the
fastest time, however it relies on timely accurate global sys-
tem information, and is practical only for small and static
systems. In contrast, the two distributed algorithms, DSA and
DPGS, exploit local information at each server during their
search for the optimal assignment. Specifically, in the DSA
and DPGS algorithms, the servers exchange and update infor-
mation about their loads iteratively among themselves. Based
on these, the servers make the decisions to reassign their users
to others in such a way that the final client-server assignment
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is approximately optimal. Simulation results show that the
performance of the distributed algorithms, specifically DPGS
algorithm, is very competitive with that of the centralized
algorithm while providing the advantage of naturally adapting
to time-varying communication patterns of users.

Our paper is organized as follows. In Section II, we
briefly discuss some related work. In Section III, we present
a mathematical model and optimization formulation for
the client-server assignment problem. Key ingredients used
for the proposed distributed algorithm will be derived.
Next, we describe the CSA algorithm in Section IV-A, the
DSA algorithm in Section IV-C and the DPGS algorithm
in Section IV-D. In Section V, we present the simulation
results of the proposed algorithms for different patterns of
user communication. Finally, we provide a few concluding
remarks in Section VI.

Il. RELATED WORK
The client-server assignment problem can be viewed as an
instance of the k-way graph partitioning problem. The k-way
graph partitioning problem is defined as follows: Given a
weighted graph G = (V, E) with w(e) and w(v) denoting
the weight of edge e € E and the weight of vertex v € V,
respectively. The problem is to partition V into k subsets,
Vi, Va,..., Vi suchthat ViNV; = BVi # jand w(V;) &~ 22
The general k-way graph partitioning problem has been
shown to be NP-hard [9]. In other words, there is currently no
known polynomial time algorithm to obtain the exact optimal
solution, and it is likely to remain so. Therefore, a large part
of the literature on the k-way partitioning problem have been
focused on developing heuristic algorithms and determining
special conditions for which exact solutions can be obtained.
Notably, the k-way partitioning problem have been widely
studied in very-large-scale integration (VLSI) applications,
and many heuristic algorithms have been developed. Popular
algorithms include the Kerninghan-Lin algorithm (KL) [10]
and the Fiduccia-Mattheyes algorithm (FM) [2]. Almost all
of these heuristic algorithms can be classified into a num-
ber of approaches, ranging from simulated annealing (SA)
[11]-[13] and genetic algorithms [14], to large-step Markov
chain [15] and spectral methods [3]-[5], to community
structure-based methods [16] and graph combinatoric and
multi level schemes [3], [17]. It is important to note that while
all of these algorithms attempt to solve the general underlying
k-way partition problem, they often exploit the structures
specific to certain applications in order to improve solution
quality or time complexity. In [6], authors emphasized on
minimizing the largest inter-group flow in order to solve
the clustering problem. In [5], [18], [19]-[20], the proposed
algorithms focus on balancing the quantity of elements in
each cluster without considering the effects of edges cut
on weights of elements. Applications of k-way graph parti-
tioning problem in balancing distributed systems have been
proposed in previous works that address the tasks schedul-
ing/allocation problems [7], [8], [21]. In tasks scheduling
and/or allocation problems, however, the total load incurred
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by execution tasks at processors are independent with the
inter-communication load [22]-[24]. In general, existing
graph partitioning and task schedule algorithms focus on the
problem that attempts to balance the size of each partition
while minimizing the weights of the associated edges across
the cuts. For example, Gracelus balances the partition size,
i.e., number of users, but not the total weights of the associ-
ated edges within a partition. The classic min-cut algorithm
finds the cut that results in minimum cut weights but ignor-
ing the weights within a partition. These algorithms are not
appropriate to model the OSN applications. Our work focuses
on the problems in which the load distributed at servers
is effected by the inter-server communication, especially
OSN-like systems. Additionally, our proposed algorithms
are based on iterative methods and can be executed in a
distributed manner.

Current OSN and distributed database systems,
i.e., Cassandra [1], use random paritioner schemes [25] to
organize user data in the cluster node ring. The random
paritioner is implemented based on the consistent hashing
algorithm [26] that chooses how data is stored on a particular
node. The random partitioner focuses on the ease of address-
ing user data, assigning a roughly equal number of users
to each server and ignoring the social relationships among
the users. Most relevant to our work is that of Nishida and
Nguyen [27]. In this work, the authors exploit the specific
structures of the client-server problem and reformulate it
as a relaxed convex optimization problem. They then pro-
pose a centralized hierarchical relaxed convex optimization
algorithm for obtaining an approximate solution. Unlike
ours, their work is not focused on distributed algorithms as
well as the network dynamics. An extension of client-server
assignment problem is the replication problem proposed
in [28] and [29]. In this setting, each user is assigned to
more than one server in order to reduce the read and write
costs. Importantly, most of these algorithms are classified as
centralized algorithms since they assume the global knowl-
edge. While centralized algorithms are appropriate for many
applications, in general, they are not suitable in distributed
dynamic settings involving a large number of users.

lll. PROBLEM FORMULATION
Our objective is to find an approximately optimal client-
server assignment that results in small total communication
load while maintaining a certain level of load balance. This
objective will be made precise shortly with a mathematical
optimization formulation. Firstly, we summarize the nota-
tions to be used throughout the paper:
o M: Number of users
o N:Number of servers
¢« G = (V,E): An edge-weighted graph represents
the communication pattern among the users, where
V denotes the set of all users, |V| = M. Each vertex
represents a user. E denotes the set of all communication
among the users. An edge between two vertices v; and v;
represents a communication between two users u and v.
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o AMXM. Ap adjacent matrix induced by the graph G.
A,y = 0 if users u and v never communicate. A,, = 0
since u does not communicate with itself. A,, = A,, =
w(u, v) = w(v, u) as a message sent from u to v incurs
the same load as a message sent from v to u. Without
loss of generality, we can re-normalize A,, such that
0 < A,, < 1 by dividing each A,, by the sum of all
the entries in A. Thus, each normalized A,,, represents a
percentage of the total communication load incurred by
user ¥ communicating to user v.

o X € {0, 1}M*N: An assignment matrix where Xy =1
if user u is assigned to server i, and X,,; = O oth-
erwise. Since a user is assigned exactly to one server,
Zf’vzl Xui= 1.

o LNXN(X): The server load matrix for an assignment X.
L;j(X) represents the communication load from server i
to server j. L;;(X) represents the local load caused by the
communication among all the users assigned to server i
only.

e S(X) and S;(X): The total system load from all the
servers and the load at each server i.

o E(X ): The average server load, i.e., the total load from
all the servers divided by the number of servers.

o The load imbalance at server i is defined as:

ASi(X) = Si(X) — S(X), (M

where S;(X) denotes the total load at server i.
« We now propose to minimize the following objective
function:

F(X) = aSX) + (1 — o)max AS;(X), 2)

where o denotes a pre-specified weighted positive coef-
ficient. o controls the trade-off parameter between total
system load and load balance with 0 < o < 1.
Minimizing F(X) results in reducing the total system
load S(X) while achieving the load balance among the
server by reducing the maximum load imbalance of a server
max; AS;(X)!. We assume that M, N, G, AY*M are given.
Our goal is to find the assignment matrix X that minimizes
F(X). Mathematically, the client-server assignment problem
can be formulated as:

Minimize: F(X)

Subject to:  X,; € {0, 1} 3)
ZiXMi =1
Yue{l,2,.,.M},ie{l,.,N}

Proposition 1: The optimization problem
NP-Hard.
Proof: Please see Appendix A. [ |
To solve the problem above, we will first find the mathe-
matical expressions for LY >N (X), S(X) and S;(X) and F(X)
in terms of X. We begin with the derivation of server load
LN*N(X). Note that L(X) is symmetric due to our assumption
that sending and receiving messages incur the same cost.

in (3) is

I There are several options to choose the imbalance factor. For example the
Gini index [30] can be selected as the imbalance factor.

VOLUME 2, NO. 4, DECEMBER 2014

Now let us define the inter-server load between server i and
Jj # i as the load incurred by the communication between
users assigned to server i and users assigned to server j # i.
Since each entry of X is either O or 1, the inter-server load
between servers i and j can be written as a function of the
assignment matrix X as:

M M

LX) =Y > AuXuXj. )

k=1 I=1

Define the local load of a server i as the load incurred only
by the communication among the users assigned to the server
i only. The local load of server i can be written as a function
of the assignment matrix X as:

A
Li(X) = 5 3> AuXiiXii (5)
k=1 I=1
From (4) and (5), the server load matrix L(X) can be
compactly written as a function of the assignment matrix X
as:

1
LX) =XTAX — EDiag(XTAX), (©6)

where Diag(.) denotes an operator on a matrix X that results
in a diagonal matrix whose diagonal elements are the diagonal
elements of X.

Since the total system load S(X) for an assignment X is the
sum of all the entries in L(X), S(X) can be written as:

SX) = 1xTAXx||; — %Tr(XTAX), (7)

where ||.||; denotes the entry-wise /{-matrix norm, i.e., the
sum of all the entries in the matrix.

As for the load balance metric, it is convenient to consider
the opposite, i.e., the load imbalance. For this, we first define
the average load of all the servers as:

_ S IXTAX|l — ATr(XTAX)
SX)=— = .
N N

Finally, F(X) can be written in terms of the assignment
matrix X as:

®)

FX) =«

N=1 oo 1 g
v UIXTAX| = STr(XTAX)) (€))

1
+ 1 —a)I(XTAX — EDiag(XTAX»lnoo,

where ||x||co 1s max; |x;|, i.e., the maximum magnitude
component in a vector x.

We note that minimizing F (X) implies that minimizing the
total load and the load imbalance. However, as previously
discussed, to obtain the lowest total load (putting all the users
in one server), it is necessary that the load imbalance must
increase. Therefore, the tuning coefficient « allows for the
trade-off between the total load and the load balance. At one
extremity, setting « = 0 implies minimizing the load balance
regardless of the total load, while setting « = 1 implying
minimizing the total load regardless of the load balance.
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Unfortunately, minimizing F(X) over X € {0, 1}Y>V jg
hard. Therefore, we propose heuristic algorithms for solving
the problem in a distributed approach such that global optimal

solutions can be achieved with high probability.

A. ALGORITHMIC OUTLINE
We are interested in a distributed and iterative approach where
servers exchange their "summarized" information among
each other iteratively. Initially, clients are assigned uniformly
at random to the servers. At each iteration, based on the
exchanged information, a pair of servers then decide to move
their users to each other appropriately. Furthermore, each
server is assumed to keep the information about its assigned
users and their immediate neighbors (adjacent vertices in G)
only. No global information is allowed. For example, each
server does not have the matrix A that represents the com-
munication patterns among all the users, but only a portion
of A. One advantage of this approach is that the algorithm
can be viewed as a network protocol, running in real-time.
Servers move their users accordingly at every time step.
Over time, a good distributed algorithm will converge, i.e.,
no user is moved after some number of time steps, and the
resulted assignment X produces approximately minimal F (X)
as defined in (9).
That said, the primary components our proposed
distributed algorithm relies on:
1) What information is to be computed and kept at the
servers?
2) What information is to be exchanged among the
servers?
3) Atevery time step, how to decide which pairs of servers
are involved in moving their users?
4) Within this chosen pair of servers, which users are to
be moved?

Notation Augmentation. Before answering these
questions, we first augment previously defined notations to
include an index ¢ that presents the iteration. This is necessary
since our focus is on how the objective function changes with
each iteration. For example, X becomes X(t) to represent
the assignment at time step ¢; F(X) now becomes F(X(t))
which represents the value of the objective function at time
t. For convenience, we also drop the variable X from all the
functions; for example, S(X(¢)) and F(X(¢)) become S(¢) and
F(t). Next, we summarize a few theoretical results used in
developing our algorithm.

B. TECHNICAL BUILDING BLOCKS
Since our proposed algorithm involves reassigning users at
every iteration and a main component of the objective func-
tion is the total system load, we will consider how the total
system load changes when a user u is moved from server i to
server j.

At time ¢, if user u is moved from server i to server j, then
there are changes in load for servers i and j only; the loads of
other server remain the same. Specifically, load at servers at
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time ¢ + 1 will be:
o The new load in server i is:

N M
Sit+ D =Si)— > > AuXi®)  (10)

s=1|s#i =1
« The new load in server j is:
N M
Sit+ D=8+ > > AuXu®) (1)
s=1|s#j [=1

o The load in any server s # i, j does not change:
Ss(t+ 1) = 84(0) (12)

« Consequently, the new total system load is:

M
St+1) =80+ ZAMI(Xli(t) - X)) (13)
=1

The first assertion in (10) is true because the term with the
double sum represents the load that user u incurred on server
i due to its communication with other users in other servers.
Note that after « is moved from server i to server j, the amount
of load incurred by u on server i due its communication with
the users assigned to server i remain the same before and
after u is moved. Therefore, i is excluded from the index in
the outer sum in (10). The minus sign reflects the amount
of load taken away from server i. By similar reasoning, the
second assertion in (11) is true. The only difference is that
the sign in the double sum term is positive, reflecting a load
increase for server j. The third assertion in (12) is true because
for a server s ¢ {i,j}, the number of messages that it sends
and receives, remain the same before and after the move.
The fourth assertion in (13) is true by summing the changes
in (10) and (11).

In addition to the total load, we also need to consider the
load balance, or more precisely the system load imbalance.
Consider again that a user « is moved from server i to server j
and define:

M
8(t) =Y Au(Xi(t) — Xy(1)). (14)

=1

Intuitively, 6(¢) is the change in the inter-server load. So when
a user is moved from one server to another, only the inter-
server load changes. From (13) and (14), we have:

S+ 1) =S8+ 8@), (15)
— St+1) = 8(t)
St+1)=——"=5S0)+ —. 16

(t+1 N 0+ (16)
The load imbalance at servers i and j are:

N M 5(6)
ASt+ D) = AS0 = Y Y AuXu(®)— <> (D)

k=1|k#i =1
N M 50)
ASj(t +1) = AS;(t) + k 1Xllcjaé;l:fxb,zxzzc(t) -~ U®
= ] =
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Now, the load imbalance at server s ¢ {i, j} is:

ASs(t +1) = Si(1 +1) = St + 1)
8(1)
= ASs(t) — N (19)
The value of the objective function at time 7 + 1 is:

Ft+1)=aS(t + 1)+ (1 — o) max ASi(t + 1). (20)

The results above are used in subsequent algorithm to
compute the new global objective function value at every
iteration when a user is reassigned.

IV. ALGORITHMS

In this section, we introduce three algorithms: The central-
ized Simulated Annealing (CSA) algorithm, the Distributed
Perturbed Greedy Search (DPGS) algorithm, and the Dis-
tributed Simulated Annealing (DSA) algorithm. All of these
algorithms use the mathematical derivations from the preced-
ing sections.

A. CENTRALIZED SIMULATED ANNEALING ALGORITHM
We describe the Centralized Simulated Annealing (CSA)
algorithm for the client-server assignment problem. The per-
formance of the CSA algorithm will be used as a baseline
for evaluating distributed algorithms. The CSA algorithm is
based on the simulated annealing (SA) framework which has
been shown highly effective in solving many large scale com-
binatorial optimization problems [12]. The CSA algorithm is
a type of stochastic greedy search in which the probability of
searching in the next configuration is based on the objective
value at the current and the next configuration. Central to
the design of the CSA algorithm is the slowly decreasing
temperature parameter 7b, which allows for the algorithm
to explore many configurations before settling down to the
approximately optimal configuration. Also, the probabilis-
tic search allows the CSA algorithm to overcome the local
minimums.

For the client-server assignment problem, the objective
function is F(X) and the configuration or state is the assign-
ment matrix X. A centralized controller is dedicated to the
optimization process. Users and their communication pattern
are stored centrally at the controller. The controller execute
the CSA algorithm to find an optimum assignment by mini-
mizing the objective function as in (2) and clients will then
be assigned to the servers according to the new configura-
tion X. The pseudo codes for the CSA algorithm is shown
in Algorithm 1.

Initially, the centralized controller computes the global
parameters such as loads (7), imbalances (8) and objective
function value (2) for some random assignment X. Starting at
a random assignment and relatively high temperature 7b, the
centralized controller selects a next assignment by selecting
an arbitrary user u to change its server and computes corre-
sponding objective function value by (20). If the new assign-
ment has a lower objective function value, it will be selected
as the new assignment; otherwise, it will be selected with a
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Algorithm 1 Centralized SA Algorithm (CSA)

1: Calculate global parameters: S, S,AS,F
2: Initialize Th

3: while 7h > ¢ do

4:  Select an user u

5 Select a new server s

6:  Calculate EstimateF

7. if EstimateF < F then
8

9

Switch user u to new server s

. else
10: Switch user u to new server s
11: with probability exp(%)
12:  end if
13 if Th > T, then
14: Decrease Th
15:  endif
16: end while

probability of exp(— %) where AF is the increasing amount
in globally objective function. After each iteration, the tem-
perature Tb is decreased if it is still above a threshold T.
The optimization process stops if 7b reaches a given freezing
value €.

B. DISTRIBUTED DATA STRUCTURES

AND COMPUTATIONS

In this section, we describe the distributed data structures
and computations to be used by the two proposed distributed
algorithms DSA and DPGS. Unlike a centralized algorithm
that uses the global information such as the user communica-
tion pattern matrix A, distributed algorithms require that indi-
vidual servers only employ local information. In our proposed
distributed algorithms, at every time step, each server keeps
track the following local information:

e MD(t): Number of users assigned to server i at
time ¢.

o VO(1): Set of users assigned to server i at time .

o AD®): An MO () x MD(¢) matrix represents the amount
of load incurred at server i at time step ¢ by the users
assigned to server i only. Specifically, A (¢) represents
the frequency of user u sending messages to user v with
both u and v belonging to server i. ‘

o 10(r): An MD x N matrix whose an entry I\(¢) repre-
sents the amount of inter-server load incurred by user u
in server i communicating with all the users in server s.

. Vl(l): Set of users assigned to server i that have friends on
other servers.

It is important to note that often A®(¢) is much smaller
than A. This is due to the fact that the number of users
per server is O(M /N). Similarly, I®)(¢) is small. To illus-
trate AO(r) and I(r), Fig. 3 shows an example of a com-
munication pattern among 10 users that are assigned to 3
servers. The global matrix A representing the communica-
tion graph and the global assignment matrix X are depicted
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FIGURE 3. Example of user graph and 3-server assignment.

100 1 0 1 0
10 25 10 15 100
100 45 40 100
45 30 5 100
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25 75 50 100
55 50 65 010
10 65 35 00 1
15 35 0o 0 1
FIGURE 4. Global matrices of graph in Fig. 3.
2 3 4 7 11 I
2 25 2 110 25
A — 3 45 = 3 140 0
4 45 4 [35 0
7 125 7 L1250
1 5 6 8 1 1
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FIGURE 5. Local matrices at servers for assignment scheme
in Fig. 3.

in Fig. 4. A centralized algorithm would have both A and X.
This is not necessary in our proposed distributed setting
where each server maintains only local corresponding matri-
ces AD(¢r) and I19(r) as shown in Fig. 5. Often, they are small,
easy to maintain, since each server only needs to keep track of
its user activities. Using only A?)(r) and 1®(¢), the total load
of server i at time ¢ can be computed as:

N MO MD A

Si=> Y 1N +Y DAY k). 1)

s=1 u=1 u=1 I=1

The servers then exchange their total loads S;(¢) among them-
selves at each time step. Thus, every server knows the load
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of all other servers at any time step. Based on this, any
server i can compute the globally total load, S = .S,
therefore average load, the load imbalance of every server,
and the globally objective function value are also computed
by using (1), (2) and (8). Finally, the objective function value
is computed distributively at each server as follows:

MO
5(t) = Y AV (1) — 1,(0) 22)
=1
0 8(1)
ASi(t+1) = ASi(t) — Y L= 3
k=1,k#i
AR (1)
ASit+1) = AS;(+ Y .Iu’k(t)—T (24)
k=1,k#j
5(1)
ASy(1 +1) = AS\() = — = (25)

It can be seen that the equations above are identical with
those in (14), (17)-(19), respectively, where the global user
matrix A and the assignment matrix X have been replaced
by the local matrices. Thus, it is completely distributed. We
are now ready to describe our first distributed algorithm:
DSA.

C. DISTRIBUTED SIMULATED ALGORITHM (DSA)

In Section I'V-A, we describe the CSA algorithm to be used for
small systems in relatively static settings. In many practical
systems, the number of users can be thousands or even
millions. Thus, we propose a Distributed Simulated
Annealing (DSA) algorithm as follows. Assume that each
server has local information on its users as described
in Section I'V-B. Using the DSA algorithm, the servers keep
track of their local information such as the total load, the inter-
server communication loads, and exchange these information
with all other servers. Once a server receives all information
of other servers, it will compute the global parameters and
be able to anticipate the change in the global objective
function value for moving a user from one server to another.
Just as in CSA algorithm, DSA algorithm moves one user
from one server to another probabilistically according to
the simulated annealing method. To perform the simulated
annealing process in a distributed manner, at each iteration,
a server is selected uniformly at random. Next, the chosen
server selects its users and reassigns them to another server
probabilistically based on local computation as in (22)—(25).
The only difference between DSA from CSA is that for DSA,
only users (V?) belonging to the chosen server i can be
moved while for CSA, any user can be moved. Consequently,
the CSA algorithm has the potential to converge to a good
assignment faster than the DSA algorithm since at each
iteration, it has the potential to take a better move due to more
options. This intuition is in fact confirmed by the simulation
results in Section V. On the other hand, the DSA algorithm
does not need a centralized controller to keep track of all the
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Algorithm 2 Distributed SA Algorithm (DSA)

Algorithm 3 Distributed Perturbed Greedy Search (DPGS)

1: for Each server s do

2:  Vy = set of users being assigned to current server
Estimate communication load
Update local matrices: A, 1
Calculate local load: S
Sends/Receives Sy/Sy to/from server k, Vk # s
Calculate global parameters: S, S.AS,F

end for

. Initialize Th

10: while 7b > ¢ do

11:  Select an active serveri

12: foreachuseru € VO \ V), do

R A A

13: Select a new server s # i

14: Calculate EstimateF

15: if EstimateF < F then

16: Switch user u to new server s

17: else

18: Switch user u to new server s

19: with probability exp(£=Lsmatet )

20: end if

21:  end for

22: if Th > T, then
23: Decrease Th
24:  end if

25: end while

global information. Algorithm 2 lists the pseudo code for the
DSA algorithm.

D. DISTRIBUTED PERTURBED GREEDY SEARCH (DPGS)
In this section, we propose another distributed algorithm
called Distributed Perturbed Greedy Search (DPGS) with
better performance using the two phases: the greedy search
phase and the perturbation phase. The greedy search phase
is a deterministic procedure that allows for the algorithm
to reach a local optimal assignment quickly. Once a local
optimal assignment is reached, the perturbation phase begins.
The perturbation phase is a probabilistic procedure that moves
a small number of users from one server to another to prevent
the algorithm from getting stuck in the local minimum. The
process then repeats again with the greedy and perturbation
phases alternating until a good solution is obtained. In this
sense, the greedy phase allows the algorithms finds a good
starting point quickly, and the perturbation phase avoids local
minimum similar to the standard simulated annealing process.
We note that the simulated annealing process is done at
every iteration which can take a long time to reach a good
solution due to a large number of random search directions.
On the other hand, in the proposed DPGS, the perturbation
is only performed when a local minimum is reached, thus
the search is more directed. In addition, instead of select-
ing the servers uniformly at random as is done in the DSA
algorithm, the DPGS algorithm chooses the most overloaded
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1: for Each server s do

2: Vs = set of users being assigned to current server
Estimate communication load
Update local matrices: A, )
Calculate local load: S
Sends/Receives S;/S). to/from server k, Vk #£ s
Calculate global parameters: S, S,AS,F

end for

while 7b > ¢ do

10.  for each server i do

11: Execute Algorithm 4

12:  end for

13:  if No moves have been made then

14: Execute Algorithm 5

15:  end if

16:  Sends/Receives S,/Sj to/from server k, Vk # s

17:  if Th > T, then

18: Decrease Th

19:  end if

20: end while

R A A

server for moving its users. We now elaborate on the two
phases:

Choosing user in the greedy phase.

Proposition 2: If user u who is being assigned to server i
has no friend on other servers, the global objective function
will not decrease if u is reassigned to a new server.

Proof: We have

AuXj=0 Vj#£i
)
M
3(1) = ) AuXii >0
=1
SE+1)=S8@)+80)
)
ASS(I + 1) = ASs(t) - ﬁ
)
AS;(t + 1) = AS;(t) — N
)
ASi(t +1) = AS;(1) +6(t) — ]V
Therefore

Fe+1)=8S¢t+1)
+ max{AS;(t + 1), ASj(t + 1), ASy(t + 1)}

> F@)+6(t) — min{%, () — %}

> F(t) [ |

A direct result of this proposition is that only users who
have friends being assigned to different servers will be con-
sidered to be reassigned in the greedy phase of Algorithm 3
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Algorithm 4 Greedy Phase
1: if iis an overloaded server then
2:  foreachuin V ) do

3: fors—ltoN s #Zido

4: Calculate EstimateF by (22)

5: if EstimateF < F then

6: Reassign user u to new server s
7: Update F

8: end if

9: end for

10:  end for
11:  Send updated S; to other servers
12: end if

Algorithm 5 Perturbation Phase

. for eachu € VO \ v, do
: Select a new server s # i

1
2
3 Calculate EstimateF

4 if EstimateF < F then
5: Switch user u to new server s
6 else

7 Switch user u to new server s
8 with probability exp(%)
9: end if

10: end for

(step 2 of Algorithm 4). This helps reducing the computa-
tions by skipping users who only have local communication.
Especially, in a good assignment, most friendships are located
on the same server.

Algorithm 4 shows the pseudo code for the DPGS
algorithm. Initially, each server computes its local infor-
mation: total load, inter-server communication loads, and
exchanges with all other servers. Once a server receives all
information of other servers, it will be able to compute the
global parameters and decide whether it is an overloaded
server. If it is an overloaded server, it will execute the greedy
phase of the algorithm where it selects an user which has
friends being assigned to different servers and computes gain
if the chosen user will be reassigned to another server. Server
only reassigns its user(s) to another server if it achieves the
gain in the global objective function value (Algorithm 4).
This process will lead the system to a local optimal assign-
ment where no further reassignment can be made in order to
achieve gain. Next, the algorithm changes to the perturbation
phase. In the perturbation phase, all servers move users proba-
bilistically similarly to a single iteration in the CSA algorithm
(Algorithm 5).

All servers exchange updated information after each itera-
tion. The temperature 7b is used to control the rate of moving
users in the perturbation phase. The threshold values T, and
€ also determine whether the configuration of the system is
freezed or keep running in order to make the system adapt
with the changes in the communication pattern of users.
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E. CONVERGENCE ANALYSIS OF DPGS
In this section, we present the convergence analysis of the
DPGS algorithm. There are two phases in the proposed DPGS
algorithm: the greedy and perturbation phases. The perturba-
tion phase is similar to simulated annealing process whose
convergence rate is proved [31]. In this section, we concen-
trate on the convergence of the greedy phase.

We first define a quantity that will be used for the conver-
gence analysis.

Definition 1: Let w(A) be the overall system load if all
users are assigned to a single server.

w(A) = ZZA[M l]——lTAl = Zdeg(v) (26)

u=2 l=1
To bound the number of steps to the convergence of the

greedy phase, we need two following propositions:
Proposition 3: Bounds on the objective function

aw(A) < F(X) < 2aw(A)+ (1 — a)N 1w(A) 27
Proof: See Appendix B. [ |
Intuitively, the lower bound can be reached when the graph
of user communication patterns has connected components
and can be assigned such that any connected component
is assigned to a single server and all servers are perfectly
balanced. The first term in the upper bound is the global load
of the system when every friendship is split into different
servers; the second term is the global imbalance when all
users are assigned into a single server.
Proposition 4: 1If user u being assigned to server i at time
t (an overload server) switches to server j at time ¢ + 1 if and
only if F(t + 1) < F(t), the worst gain in global objective
value is

N—-—(1-
A= N -U-o (28)
N
where m is the smallest non-zero entry in A.
Proof: See Appendix C. [ |

Convergence. At every iteration of the greedy phase, the
users are moved to another servers if and only if the value
of the global objective function F(X) decreases. This fact
together with the Proposition 3 which shows that F(X) has
a lower bound, show that the Algorithm 4 always converges.
The proposition below shows the maximum number of time
steps for greedy phase to converge to a local minimum.

Proposition 5: Denote T as the number of time steps until
the algorithm converges in greedy phase, we have:

Fo —aw(A)
T < Ww (29)
N

where Fy is the value of the objective function at the begin-
ning of each (distributed) optimization iteration.

Proof: The maximum number of steps in the greedy
phase is equal to the maximum accumulated gain divided by
the minimum gain per iteration step. The numerator is the
upper bound of the accumulated gain which is the difference
between the upper and lower bounds of the objective function
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shown in Proposition 3. The denominator is the minimum
gain per iteration which is stated in the Proposition 4. [ ]

We note that the convergence rate depends on the initial
assignment, and importantly on the characteristics of user
communication patterns matrix A.

Non-stopping optimization and adaptiveness to changes.

In many scenarios, it is preferable to continuously optimize
in order to respond to the environmental dynamics. In general,
the design of the simulated annealing algorithm will ensure
the algorithm convergence due to the decreasing of the tem-
perature parameter 7b to zero (freezing). To avoid freezing so
that the system can adapt to network dynamics, we ensure that
Tbh will never goes below certain temperature threshold 7.
Choosing an appropriate temperature is an important matter
in order to help system operate optimally. One suggested
value is:

F —Fp,

"Fuo—F1

where F are the current global objective function value,
Fy, F, are its upper bound and lower bound in Proposition 3
respectively; and u € (0, 1) is an empirical coefficient
depending on user communication pattern and the chang-
ing rate. With such design, the DPGS algorithm is highly
adaptive to the dynamic changes of the systems. Since each
server keeps updating local load information according to any
change such as adding/removing links, users and even servers.
These changes are automatically reflected in local matrices
such as A, 1D and their values are used in the successive
optimization iterations no matter whether the system is cur-
rently in the greedy or perturbation phase.

Complexity. Each server needs to store matrices A®, 1@,
On average, each server has an approximate number of
users of X the expectation of space complexity will be
O((M /N )é\;. At each time step, the most overloaded server
tries moving users to other servers until no more gain is
achieved, so the time complexity for each step is O(MN).

T, =

V. SIMULATION RESULTS

In this section, we present simulation results and compare
three proposed algorithms. The evaluations were done with
two types of data sets: synthetic networks and real-world
online social networks. In all our simulations, we seta = 0.5,
allowing equal weight for load balance and total load.

A. SMALL SYNTHETIC GRAPHS
First, we test the distributed optimization algorithms with
small synthetic graphs and compare solutions with exhaustive
search results. Simulations were done for random graphs,
regular graphs, and power-law graphs which were generated
using the Barabasi’s algorithm. We note that many types
of social networks have been observed to follow power-law
graphs [32].

Entries of A are generated uniformly at random between
0 and 1, and then normalized by the sum of all the entries in A.
To determine the solution quality of an algorithm, we define
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FIGURE 6. An example of an optimal assignment and the
convergence rate of the proposed algorithm. (a) Assignment
result. (b) Convergence of F.

the optimality as %, where F' is the optimal value
produced by the algorithm, F,,. and Fp,g correspond to the
worst and the best assignments obtained from the exhaustive
search algorithm on a given graph. A larger optimality indi-
cates a better solution, e.g., % = 1 implies that the
algorithm always obtains the best solution. Unfortunately, the
exhaustive search is only feasible for small problem instances
since our problem is NP-hard. Therefore, in Fig. 6a, we show
a small problem instance where the DPGS algorithm found
the same value of the global optimal value for a graph of
16 users assigned to 3 servers (F = Fpeyy = 0.6375, Opt. =
100%, Spax /Smin = 1.3205, S1/S = 0.0919). Fig. 6(b) shows
an example of convergence of the global function objective
value. The local optimal values are reflected in steady region.
After some small perturbations, the DPGS algorithm is able to
escape from the local point (which might be a greater value)
and the system continues the optimization process.

We examine the average solution quality of the proposed
algorithm and a random partitioner. To do so, we generate
100 graphs of each type at random. We applied the two
algorithms to find the solutions, then averaged all solu-
tions and compare to the results from the exhaustive search.
Table 1 and Table 2 show the average optimality, the average
objective function, the average ratio of the highest load to the
lowest load of servers (S;qx/Smin), and the average ratio of
total inter-server load to the total server load for cases when
(M,N) = (20,3) and (30,2) respectively. Two algorithms are
compared by the values of F and S;/S.

As seen in Tables 1 and 2, our proposed distributed
algorithm gives better solutions consistently over the equal
assignment algorithm in term of F, and other metrics. The
proposed algorithm also approximates the optimal solutions
very well as seen by the optimality ranging from 97% to 100%
for the case (M, N) = (20, 3), and 92% to 97% for the case
(M,N) = (30,2).

B. LARGE GRAPHS

For larger size problems, we can only rely on the per-
formance comparison among algorithms. Simulations are
performed on two social network datasets: Facebook [33],
BlogCatalog [34], and a synthetic network generated by
Barabasi-Albert model [35]. The properties of these graphs
which include centralizability, distributability, dynamical
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TABLE 1. Solution quality metrics for (M,N) = (30, 2).

Graph type Foorat Be;t values _ DPGSS . Rand par;itioner - Improvemen:
Foeot | gmex [ 3F F op. | gme= [ A F opt. | Fmaz T3 F F
Power-law 0.9934 0.5917 1.0066 0.0768 0.6009 | 97.73% 1.0343 0.0804 0.8021 | 47.62% 1.3775 0.3311 25.09% | 75.72%
Regular 0.8500 0.6834 1.0000 0.1342 0.6834 100% 1.0000 0.1342 0.7856 | 38.64% 1.2168 0.3340 13.02% | 59.82%
Random 0.9207 0.6282 1.0104 0.0907 0.6364 | 97.23% 1.0422 0.1030 0.7899 | 44.72% 1.2778 0.3314 19.44% | 68.92%
TABLE 2. Solution quality metrics for (M,N) = (20, 3).
Graph type Foorat Be;t va/l'ues . DPGSS : _ Random parStitio?er _ Improvemen]t
Fl)ESﬁ TIL(‘L.L T F Opt “"L(?,l T F Opt ‘NLL?.‘L T F T
JILLTL TLLTL 1L
Power-law 1.1642 0.6803 1.0812 0.1279 0.6936 | 97.27% 1.0132 0.1386 0.8030 | 74.65% 1.3779 0.3314 13.62% | 58.18%
Regular 1.0351 0.7179 1.0112 0.1521 0.7429 | 92.10% 1.0555 0.1353 0.9065 | 40.55% 1.8934 0.3989 18.04% | 66.08%
Random 1.0860 0.7218 1.0795 .14947 0.7377 | 95.64% 1.0684 0.1584 09140 | 47.22% 1.2489 0.4003 19.29% | 60.43%

Comparison algorithms on Facebook data

Comparison algorithms on BlogCatalog data

Comparison algorithms on Synthetic data
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FIGURE 7. Performance comparison among algorithms. (a) Facebook. (b) BlogCatalog. (c) Synthetic.

adaptability, space complexity and time complexity, are sum-
marized in Table 3.

TABLE 3. List of datasets.

[ [ #modes | #edges | Avg. deg. | Max deg. |
Facebook[33] 63,731 817,090 25.64 1,098
BlogCatalog[34] 88,784 | 2,093,195 47.15 9,444
Synthetic 25000 | 394,743 31.58 7432
TABLE 4. Algorithm comparison.
[ [ Centr. [ Distr. | Adapt. [ Space Compl. | Time Compl. |
Hashing | yes yes no O(M) OoM)
Metis | yes | no no O(M?) O((M + |E])log(N))
DSA no | yes | vyes o()?» O(MN)
CSA | yes | no yes o(M?) O(MN)
DPGS no yes yes O(( %)2) O(MN)

‘We compare our proposed algorithms with the random par-
titioner and Metis - a multilevel graph partitioning which runs
fast and produces high quality partition for large graphs [36].
The random partitioner implements consistent hashing algo-
rithms [26] which is used widely in practical system such as
Cassandra [1]. Since M >> N, consistent hashing algorithm
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often produces equal size partitions. Table 4 compares the
theoretical properties of our proposed algorithms with the
other two algorithms.

Figure 7 shows the performance comparison of our pro-
posed algorithm DPGS and the other two algorithms. Since
DSA and CSA will converge to the same result, we just show
the performance comparison between DPGS, CSA, random
partinioner and Metis. It can be seen that DPGS and CSA
produce the best performance among evaluated algorithms.
In convergence mode, DPGS slightly perturbes the result
hence it might produce a little worse result compared to CSA.

To test the effect of network dynamics on the algorithms,
we initialize graphs with a random edge weights, and then we
change the edge weights over time so that it will converge to
a stationary graph structure which is the same as the graph
in the "no change’ case. The network dynamics are reflected
by the weight changing rate E and the fraction of graph
edge changes F. For example, (E = 0.01, F = 0.2) means
20% of edges change their weights at the rate of 1% after
each iteration until the overall graph converges to the finally
stationary graph.

Figures 8 and 10 show convergence behaviors of proposed
algorithms for Facebook data with N = 4 and N = 8 servers
respectively. The convergence of the objective function of
different algorithms on the synthetic graph are shown on
Figures 12 and 14 respectively. The high fluctuations at the
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FIGURE 8. Obijective functions values; Facebook data with
N = 4 servers. (a) No change. (b) E = 0.01; F = 0.2.
(c)E=0.1; F=0.5.
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FIGURE 9. Number of moves; Facebook data with N = 4 servers.
(a) No change. (b) E = 0.01; F = 0.2. (c) E = 0.1; F = 0.5.
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FIGURE 10. Objective functions values; Facebook data with
N = 8 servers. (a) No change. (b) E = 0.01; F =0.2. (¢) E =0.1;
F =0.5.
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FIGURE 11. Number of moves; Facebook data with N = 8 servers.
(a) No change. (b) E = 0.01; F =0.2. (¢c) E = 0.1; F = 0.5.

early stages are the effect of high temperature controlling
the perturbation rates. The curves become smoother over
time because the controlling temperatures decrease. It can
be seen that the DPGS, which is feasible for many practical
systems, performs quite well compared to CSA algorithm and
outperforms the DSA algorithm in term of convergence rates.

Figure 9, Figure 11, Figure 13, Figure 15 compare the over-
heads of the three algorithms. The overhead of an algorithm
is the total number of moves (user reassignments) that each
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FIGURE 12. Objective functions values; Synthetic data with
N = 4 servers. (a) No change. (b) E = 0.01; F =0.2. (c) E =0.1;
F =0.5.
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FIGURE 13. Number of moves; Synthetic data with N = 4 servers.
(a) No change. (b) E = 0.01; F =0.2. (c) E =0.1; F = 0.5.
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FIGURE 14. Objective functions values; Synthetic data with
N = 8 servers. (a) No change. (b) E = 0.01; F =0.2. (c) E = 0.1;
F = 0.5.
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FIGURE 15. Number of moves; Synthetic data with N = 8 servers.
(a) No change. (b) E = 0.01; F =0.2. (c) E =0.1; F = 0.5.

algorithm has to make in order to evolve the system to the
optimal state. The figures show the logio of the total moves
made by algorithms. As seen, the DPGS algorithm results in
a substantially fewer number of reassignments than the other
two algorithms.

Figure 8(b) and Figure 12(b) also show the effectiveness
of letting the system remain at a low ’temperature’ rather
than stopping after reaching freezing temperature. The DPGS
algorithm allows the system to adapt to the network dynamics
(due to changes in weights of user graph) and to adjust accord-
ingly so that it always stays at an optimal configuration. This
property is reflected in the magnified segments of the curves
in the stable regions.
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VI. CONCLUSION

In this paper we proposed three heuristic algorithms for solv-
ing the client-server assignment problem: 1) The Centralized
Simulated Annealing (CSA) algorithm, 2) the Distributed
Simulated Annealing (DSA) algorithm, and 3) the Distributed
Perturbed Greedy Search (DPGS). The CSA algorithm pro-
duces good solution in the fastest time, however it relies on
timely accurate global system information, and is practical
only for small and static systems. In contrast, the two dis-
tributed algorithms DSA and DPGS exploit local information
at each server during their search for the optimal assignment,
and thus can scale well with the number of users and servers
as well as adapting to the system dynamics. Simulation results
show that the performance of the distributed algorithms,
specifically the DPGS algorithm, is competitive with that of
the centralized algorithm while providing the advantage of
naturally adapting to time-varying communication pattern
of users. Theoretical results on convergence rate are given.
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