IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Received 19 May 2013; revised 17 January 2014; accepted 11 July 2014. Date of publication 17 August 2014;
date of current version 4 February 2015.

Digital Object Identifier 10.1109/TETC.2014.2348182

Shielding Heterogeneous MPSoCs From
Untrustworthy 3PIPs Through Security-
Driven Task Scheduling

CHEN LIU', JEYAVIJAYAN RAJENDRAN?, CHENGMO YANG', AND RAMESH KARRI?

1Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716 USA
2Department of Electrical and Computer Engineering, New York University Polytechnic School of Engineering, Brooklyn, NY 11201 USA

CORRESPONDING AUTHOR: C. LIU (liuchen@udel.edu)

ABSTRACT Multiprocessor system-on-chip (MPSoC) platforms face some of the most demanding security
concerns, as they process, store, and communicate sensitive information using third-party intellectual
property (3PIP) cores. The complexity of MPSoC makes it expensive and time consuming to fully analyze
and test during the design stage. This has given rise to the trend of outsourcing design and fabrication of
3PIP components, that may not be trustworthy. To protect MPSoCs against malicious modifications, we
impose a set of security-driven diversity constraints into the task scheduling step of the MPSoC design
process, enabling the system to detect the presence of malicious modifications or to mute their effects
during application execution. We pose the security-constrained MPSoC task scheduling as a multidimensional
optimization problem, and propose a set of heuristics to ensure that the introduced security constraints can be
fulfilled with a minimum impact on the other design goals such as performance and hardware. Experimental
results show that without any extra cores, security constraints can be fulfilled within four vendors and 81%
overhead in schedule length.

INDEX TERMS Security, hardware Trojan, heterogeneous MPSoCs, task scheduling, multi-dimensional

optimization.

I. INTRODUCTION
ETEROGENEOUS Multiprocessor System-on-Chip
(MPSoC) architectures have become a routine way of
building embedded systems such as smart phones, network
routers, storage and web servers, and gaming systems [1].
MPSoC designers typically integrate third-party intellectual
property (3PIP) cores and outsource fabrication and test-
ing steps. This allows designers to quickly respond to the
increasing demands in functionality, power consumption and
programmability without sacrificing design productivity [2].
Heterogeneous MPSoCs are vulnerable to malicious mod-
ifications (also known as Hardware Trojan Horses) in the
3PIPs and in the manufactured IC during fabrication. Tro-
jans may cause system failures at some key point during
application execution or could create backdoors to leak confi-
dential information back to the attacker. Existing techniques
use functional testing [3] and side-channel analysis [4], [5]
to detect trojans inserted in a foundry. The complexity of

MPSoCs makes it expensive and time consuming to fully test
or analyze a system for the presence of trojans, since they are
purposefully inserted in hard-to-detect sites in the design.
Since it is not possible to guarantee trustworthiness
(i.e., 100% trojan free-ness) of 3PIPs, one needs to enable
MPSoC to detect trojans or mute their effects during appli-
cation execution. We propose security-driven MPSoC task
scheduling to account for the untrustworthiness of the 3PIP
cores. Comparing to existing trojan detection and preven-
tion techniques [6]—[8], our main contribution is the incor-
poration of diversity into MPSoC task schedules. As mul-
tiple copies of the same 3PIP are instantiated in the target
MPSoC, diversity is essential to reduce false negatives: on
one hand it prevents two copies of a task from producing
the same incorrect outputs, and on the other hand it iso-
lates potential trojans, preventing them from sending triggers
through undesired communication paths. We will describe
diversity-based scheduling that enables the target MPSoC

2168-6750 © 2014 |EEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 2, NO. 4, DECEMBER 2014

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. 461

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

LIU et al.: Shielding Heterogeneous MPSoCs From Untrustworthy 3PIPs

to (1) detect trojans that maliciously alter task outputs, and
(2) mute trojan effects or prevent collusion between 3PIP
cores from the same vendor.!

Incorporating security constraints into heterogeneous
MPSoCs needs to accommodate the performance, power,
cost, and design complexity constraints. We model the
security-driven MPSoC task scheduling as a multi-
dimensional optimization problem, wherein the level of secu-
rity will be considered along with schedule length, com-
munication overhead, and hardware cost. In our previous
work [37], we built an ILP (integer linear programming)
model for this problem. In this paper, we will outline task
scheduling heuristics which, by exploiting the flexibility
inherent in schedule generation, are able to minimize the
performance, power, and hardware overhead.

The paper is organized as follows. Section II reviews
the security challenges due to hardware trojans. Section III
motivates the proposed technique. Section IV presents
the security-driven scheduling constraints and heuristics.
Section V experimentally verifies the technique, while
Section VI summarizes the paper.

Il. BACKGROUND AND RELATED WORKS

A. SECURITY CHALLENGES IN MPSoC DESIGN
Globalization of the IC design flow allows MPSoC designers
to meet the tight time-to-market deadlines and to reduce the
design, fabrication, and test costs. For example, Apple Inc. is
a fabless integrator that purchases IP cores from third parties
(e.g., ARM and Marvell), integrates these cores, generates the
layout, and sends it to foundries (e.g., Samsung Foundries)
for fabrication. However, outsourcing of the design steps is
making MPSoCs prone to insider attacks.

From the perspective of their insertion method and pay-
load, hardware trojans can be classified into two categories.
A rogue insider in the foundry may make subtle mask
changes, or alter chemical compositions to accelerate fail-
ures in critical circuitry [9]. On the other hand, a rogue
insider in a third-party design house may insert malicious
logic in an IP to modify functionality, deny service, or cre-
ate a backdoor to leak confidential information back to the
attacker [7], [9], [10].

From the perspective of their activation methods, hardware
trojans can be classified as either always-on or conditionally
triggered [11]. To avoid being detected during testing, an
always-on trojan is inserted in rarely accessed places and
its footprint is kept small [11]. An attacker may distribute
trojans across multiple IPs in order to reduce the trojan foot-
print per module and hence reduce the probability of detec-
tion [11]. Conditionally triggered trojans hibernate initially,
and are activated either by the trojan implanter or by on-
chip triggers [7]. Similar to always-on trojans, the triggering
conditions should be relatively hard to reach so as to prevent
detection during testing.

tisless possible for different IP vendors to collude since to do so, arogue
element has to expose itself to other rogue elements.

462

B. RELATED WORKS

1) DETECT TROJANS IN MANUFACTURED ICs

Many trojan detection techniques target malicious mod-
ifications during fabrication. These techniques are based
on functional testing [3] and/or side-channel analysis [4],
[5]. Path delays and power consumption can be charac-
terized. These and similar side channels of manufactured
chips can be measured and compared against the expected
values to detect trojans [4], [5]. Side channel analysis is
usually limited by the measurement capabilities of analog
probes. For small trojans, the subtle differences in power
and delay can be masked by process variations and mea-
surement errors [12]. Non-destructive techniques that detect
hardware trojans in the presence of process variations have
been proposed [12]. These techniques combine algebraic,
numerical, and statistical methods with power and delay
measurements.

2) DETECT TROJANS IN 3PIP CORES

Detecting hardware trojans in 3PIPs is even more challenging
because there is no golden (trojan-free) model for the designer
to refer to. The work closest to that proposed here is an online
trojan detection and prevention scheme for homogeneous
systems [6]. It redundantly executes each program on three
or more cores simultaneously, with their results verified by
voting before being written to memory. This technique also
partitions a program into segments that are executed by differ-
ent sets of cores, aiming at limiting the data access capability
of each core. Our technique not only requires less redundancy,
but also explores vendor diversity to further protect task
execution and communication.

A register transfer level (RTL) technique for designers
to detect trojan attacks is proposed in [7]. Communications
between different units are monitored to detect malicious
behavior. This work is extended [8] to prevent trojans from
being triggered by obfuscating and scrambling the inputs to
infected units. These techniques require detailed RTL infor-
mation of the procesesing cores and therefore their applica-
tions to 3PIP cores are limited.

Another work does trust verification of 3PIPs using
code coverage analysis [13]. However, one cannot effec-
tively detect non-trivial trojans in the absence of a golden
model [14]. Another approach uses pre-defined agreements
on security-related properties provided by a 3PIP vendor, so
that MPSoC designers can check the 3PIP against these prop-
erties [15]. However developing security-related properties
for a 3PIP is still in its infancy. Further, there may still be
opportunities for a rogue designer to deliver malicious 3PIP
cores that honor these security properties.

3) SECURITY ENHANCEMENTS IN MPSoCs

Previous work in MPSoC security targets software attacks
such as buffer overflow, stack overflow, and software-based
side-channel attacks. Architectural enhancements to MPSoCs
have been proposed to detect software-based attacks through

VOLUME 2, NO. 4, DECEMBER 2014

LIU et al.: Shielding Heterogeneous MPSoCs From Untrustworthy 3PIPs

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

monitoring timing, control flow, and instruction execution
counts at runtime [16], [17]. MPSoCs are protected against
software-based side-channel attacks by creating a trusted exe-
cution environment that isolates the cores that execute critical
tasks from the rest [18]. Support for customizing the security
policies for different applications executing on an MPSoC has
been proposed in [19].

lll. THREAT MODEL AND TECHNICAL MOTIVATION

Our work questions the implicit assumption underlying
MPSoC design, that is, 3PIPs procured from IP vendors are
trustworthy. There may be a rogue insider in a 3PIP house
who may insert malicious logic in 3PIPs coming out of the
IP house. The attacker may modify function, deny service, or
create a backdoor to leak confidential information. The trojan
may cause the task running on the malicious 3PIP either to
produce incorrect output or to generate additional output to
trigger trojans in another 3PIP core from the same vendor.
We assume that the defender is in the design house, knows
the task graph, has the flexibility of binding tasks to cores
and choosing cores from different vendors, and designs glue
logic to improve security.

Existing solutions aim to capture hardware trojans during
testing. These offline techniques are limited not only by their
measurement accuracy, but also by the lack of golden models
[20]-[22]. In constrast, we adopt an online strategy to capture
those attack patterns and the effects that a trojan may have.
We exploit vendor diversity, an inherent in heterogeneous
systems to eliminate false negatives and improve the accuracy
of our solutions.

For trojans that modify functionality, it is highly possi-
ble that the outputs of the infected cores will be altered.
These trojans can be detected by duplicating each task on
two different cores and comparing the two outputs to cap-
ture any mismatch. Vendor diversity is essential to prevent
two copies of a task from producing the same incorrect
outputs. This is because trojans, unlike random faults, are
inherent in 3PIPs. If multiple copies of the same 3PIP are
instantiated in the MPSoC, each instantiation will contain
the same trojan and hence produce the same incorrect out-
put under the same input. To prevent such false negatives,
each task needs to be executed by cores from different IP
vendors.

To keep the trojan footprint small, an attacker may dis-
tribute trojans in multiple 3PIP cores and establish some
secret communication channel between them to leak confi-
dential information or, to trigger hibernating trojans. A con-
crete example is shown in Figure 1, wherein Corel, Core2,
and Core4 share the same trigger value. During normal exe-
cution these cores will receive different inputs and will have
different temperature and power values (also influenced by
process variation) that diversify their triggering conditions.
However, with the secret communication paths, if any core
(e.g., Corel in Figure 1) reaches the triggering condition,
it can send messages to other cores by secretly writing the
trigger value in a memory location (shown in red). As a result,

VOLUME 2, NO. 4, DECEMBER 2014

Core 1 from Vendor A Normal Core 2 from Vendor A
(Memory| Inpu \
Normal operation bl]4—P| Normal operation
Normal Output |
Counter| 1291 E 9 Trojan | | Counter g Trojan
“puc payload 2 payload
Q’igger 1291 Q’igger 1291 Y,
Core 3 from Vendor B — ;::S:im Core 4 from Vendor A
—>1 Normal operation | Y] Normal operation \
Counter m = e Trojan — Counter = Trojan
2 payload| | || = payload
Qrigger 6359 L | @igger 1291 Y,

FIGURE 1. Example of a distributed trojan between cores from
the same vendor. Core1 maliciously writes the trigger value to a
memory location that is accessed by Core2 and Core4,
triggering trojans in them. Core3 does not access this location,
as it is produced by a different vendor.

all trojans of the same type become active within a short time
period.

These distributed trojans may escape the duplication-based
detection as they do not alter task outputs. They can, how-
ever, still be captured by monitoring the communication
paths at runtime and invalidating suspect communications,
if any. Vendor diversity is essential to eliminate false neg-
atives, that is, malicious messages camouflaged as normal
messages. Usually different vendors do not share a backdoor
or a trigger pattern in common since to share this common
element, a rogue element has to expose itself to the other
rogue elements. This is shown in Figure 1, wherein the trig-
gering condition of Core3 is different from the other three
cores. Given this fact, collusion between malicious 3PIPs
can be prevented if all the valid communication paths are
confined to be between 3PIP cores produced by different
vendors. This way, at runtime, even if a core (e.g., Corel
in Figure 1) silently produces unexpected data at runtime,
such data are only accessible to cores from different vendors
(e.g., Core3 in Figure 1) which will not use them for trojan
triggering.

Vendor diversity incurs extra design cost since the designer
needs to purchase licenses from multiple IP vendors. How-
ever, for applications with high security requirements (for
example, banking and military systems), guarding the system
has a higher priority than reducing the design cost. In some
cases, vendor diversity may even reduce design cost. Previ-
ously a designer tends to purchase IPs from a company with a
more established/good reputation, even though the price may
be higher. Yet with vendor diversity, one can use multiple
cheaper IPs without worrying about their individual security
problems.

To summarize, proposed security enhancement adopts an
online strategy to detect and prevent trojans, using vendor
diversity inherent in heterogeneous MPSoC. Two security
constraints are proposed to handle two major types of trojans:
those tampering program outputs and those leaking informa-
tion through undesired communication paths. These security
constraints are incorporated into the MPSoC task scheduling
step, as described next.

463

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

LIU et al.: Shielding Heterogeneous MPSoCs From Untrustworthy 3PIPs

IV. SECURITY-DRIVEN TASK SCHEDULING

Task scheduling binds tasks to cores and coordinates data
accesses, communication, and synchronization among the
tasks [23]. This step determines the performance and power
consumption characteristics of an application, as well as the
types and number of the 3PIP cores needed in the MPSoC.
Whereas, a traditional MPSoC scheduler explores a two-
dimensional design space of performance (modeled as sched-
ule length) and cost (modeled as types and total number of
cores), we explore a third dimension — security.

In this section, we first define a set of security constraints,
which are then embedded into the MPSoC task schedule.
To satisfy these security constraints with minimum perfor-
mance and hardware overhead, we develop heuristics that
exploit the flexibility in task scheduling. The approach is
adopted at the MPSoC design stage, under the assumption that
the task graph information is available and the designer has
the flexibility of binding tasks to cores, procuring cores from
different vendors, and designing glue logic for security.

A. SECURITY-DRIVEN SCHEDULING CONSTRAINTS

As outlined in Section III, the goals of the proposed technique
are to (1) detect trojans that affect task outputs, and (2) detect
and prevent cores from passing undesired messages. These
goals are achieved by imposing two security constraints.

1) DUPLICATION-WITH-DIVERSITY

To detect trojans, every task is redundantly executed on two
3PIP cores each from a different vendor. The same inputs will
be sent to the task and its duplicate, while the outputs of both
copies are compared by a trusted component (not designed by
the third party) to ensure the trustworthiness of the compari-
son step. Techniques to compare results from different cores
have been developed in [24] and [25]. Such techniques are
complementary and applicable to our technique.

The proposed comparison is at a relatively coarse granu-
larity: instead of performing cycle-by-cycle comparison of
signals and instruction results, our technique compares the
final task outcome. Coarse granularity offers a set of benefits.
First it relaxes the synchronization constraint, allowing tasks
to be executed on cores of different processing speeds and dif-
ferent instruction sets. This also minimizes the amount of data
to be compared, enabling the use of low-cost comparators
which can even be shared among multiple tasks. Moreover,
even if the task produces a big chunk of output (e.g., an
array), the comparison latency can be hidden by speculatively
sending the output of a task to dependent task(s). Later, if the
comparison fails, all the dependent tasks are terminated and
a security flag is raised.

This constraint ensures the detection of any core that pro-
duces an incorrect output (because of a trojan), as long as
attackers in two independent 3PIP design houses will not
collude to develop identical trojans that produce identical
incorrect outputs (which is highly unlikely). Note that this
constraint is stricter than the straightforward duplication used

464

TABLE 1. Solution toward different Trojan classification.

Tamper Output
Isolation w/ Diversity
& Duplication w/ Diversity

Not Tamper Output

Create undesired
communication

Not create undesired
communication

Isolation w/ Diversity

Not critical,

Duplication w/ Diversity Left for future study

for fault tolerance, which assumes that fault behavior is
random and hence the occurrence of two identical faults
in different cores is extremely low (unless these faults are
induced by design errors). In contrast, as trojans are inherent
in 3PIPs, multiple instantiations of the same 3PIP will contain
the same trojan. Therefore, diversity is essential to prevent
two copies of a task from producing the same incorrect
outputs.

2) ISOLATION-WITH-DIVERSITY

This constraint prevents malicious messages from being
passed between 3PIPs from the same vendor. In order to mute
undesired and potentially malicious communication paths
and at the same time isolate a trojan from the rest of the
system, a task and its predecessor need to be scheduled on
3PIP cores from different vendors. This way, all the desired
inter-core communications in the MPSoC will be between
3PIPs from different vendors.

The two security constraints together prevent the triggering
of distributed trojans. The first constraint exposes incorrect
task outputs, preventing them from providing incorrect infor-
mation to any dependent core. The second constraint ensures
that all the valid communication paths are between 3PIPs
from different vendors. During application execution if one
core silently produces unexpected data in addition to valid
task outputs, the dependent cores, as they come from different
vendors and hence are unlikely to collude with this core, will
not use such data for trojan triggering. If two cores from
the same vendor access the same data obje:ct2 (i.e., have
communication), a security flag will be raised indicating an
invalid communication path.

To summarize, our schemes can successfully deal with the
two categories of hardware trojans discussed in Section III.
As illustrated in Table 1, the trojans tampering task outputs
can be detected by duplication with diversity, while the tro-
jans distributed among multiple IPs can be muted by isolation
with diversity. A trojan will escape from our two schemes
only if it neither tampers task outputs nor sends any message
through an invalid communication path. We consider such
trojans less critical.

2This can be detected by monitoring the communication channels. For
shared-memory MPSoCs, an ownership vector (similar to the one used in
directory-based cache coherency protocols [26]) can be used. For MPSoCs
using on-chip networks, the routers can be augmented to check the types of
cores sending and receiving the message. For bus-centralized MPSoCs, the
bus controller can be configured to detect undesired communication paths.

VOLUME 2, NO. 4, DECEMBER 2014

LIU et al.: Shielding Heterogeneous MPSoCs From Untrustworthy 3PIPs

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

> Schedule length
Performance
s Inter-c.ore.
Security | impact “| communication
constraints
> Core count

\ 4

Vendor count

Scheduling problem:

Inputs: 1) an upper bound of processing cores
2) speed of different cores (to model heterogeneity)
3) an application represented as a DAG
* Nodes = tasks, weight = execution time
* Edges = communications, weight = communication cost
Outputs: a start time and a core assignment for each task
Goals: 1) fulfill security constraints
2) minimize the performance, power, and cost at a priority
specified by the designer

FIGURE 2. Security-driven task scheduling—a multidimensional
optimization.

B. REFORMULATION OF MPSoC SCHEDULING

While vendor diversity is essential to the proposed secu-
rity constraints, an increased level of diversity elevates
the design cost. The two security constraints furthermore
contradict the traditional scheduling goals shown in Fig-
ure 2 by requiring more cores, and creating more inter-
core communications that may increase schedule length and
energy consumption. To consider security along with the
traditional scheduling goals, we reformulate the scheduling
problem.

Given an application represented as a weighted directed
acyclic graph (DAG), task scheduling can be formalized as
the association of a start time and the assignment of a core
with each node of the DAG. The inputs, outputs, and the goals
of scheduling are shown in Figure 2. To incorporate security
constraints, we make three modifications:

o Consider the number of vendors as an additional
scheduling metric that impacts hardware and design
cost.

« Inline with existing scheduling algorithms for heteroge-
neous systems [28], [29], focus on modeling the perfor-
mance differences created by heterogeneity, and assign
different speeds to cores from different vendors.

« Fulfill security constraints while minimizing the asso-
ciated overhead in hardware, performance, power, and
cost, at a priority specified by the designer.

The security constraints can be incorporated into various
scheduling algorithms [23], [30], [31]. To demonstrate the
effectiveness and overhead of these constraints, we select a
classic list scheduling algorithm as the baseline, and present
two approaches for incorporating security constraints.

VOLUME 2, NO. 4, DECEMBER 2014

C. A STRAIGHTFORWARD SCHEDULING APPROACH

As security constraints define conflicts between tasks, they
can be incorporated into the task graph. We first color the
task graph to embed security constraints, and then schedule
the colored graph onto the target MPSoC. To ensure security
while maximizing performance, we decouple coloring from
core speed assignment, enabling cores with higher speed to
execute critical tasks. This approach consists of four steps, as
shown in Figure 3(a):

Task graph satisfy security Task

scheduling

satisfy security

coloring minimize vendors minimize vendors

tentative

task col.
ot schedule
trade off’ trade off’
hTESII' performance ?0':6 performance,
schequiing & hardware coloring hardware, & power
= ii’;lt:dt;v[i core colors
Color to core- Rl Color to core- LS
type mapping performance type mapping g erformance

core speeds core speeds

Schedule Schedule

finalization finalization

@ ()

FIGURE 3. Flows of (a) the straightforward scheduling approach
and (b) the cluster-based approach. Each box represents one
step, with its main optimization goals listed to the right.
Arrows show data flow between steps, with the exact data type
listed to the right.

o Task graph coloring enforces security constraints and
determines the number of vendors needed in the target
MPSoC.

o Color-constrained scheduling determines the total num-
ber of cores, the core assignment of each task and its
tentative start time.

o Color to core-speed mapping determines the exact type
and speed of each 3PIP core.

o Schedule finalization determines the start time and finish
time of each task based on core speed.

1) TASK GRAPH COLORING

Given the security constraints, determining the minimum
number of vendors needed in the target MPSoC platform can
be modeled as graph coloring.?

Given the original task graph, a task conflict graph can
be constructed for coloring. Vertices in this graph represent
tasks, while edges represent conflicts. The two security con-
straints can be imposed in this graph:

« To model the duplication-with-diversity constraint, the
task graph is duplicated, and an edge is inserted between
each task and its duplicate.

3Graph coloring (or vertex coloring) is the problem of finding the mini-
mum number of colors and coloring the vertices of a graph such that no two
adjacent vertices share the same color.

465

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

LIU et al.: Shielding Heterogeneous MPSoCs From Untrustworthy 3PIPs

Algorithm 1 Schedule a Task in the Straightforward Scheme

Algorithm 2 Core Criticality Ranking

Initialization:
1: V =task to be scheduled;
2: Corelist = ¢;
Procedure:
3: for all core; do

4: if (core;j.color = V.color) or (core;.color = blank) then
5: Corelist <= Corelist+{core;};

6: end if

7: end for

8: for core; € Corelist do

9: if V finishTime on core; is the earliest then
10: Schedule V on core;;
11: if core;.color = blank then
12: core;j.color <=V .color;
13: end if
14: end if
15: end for

o To model the isolation-with-diversity constraint, an edge
is inserted between any pair of dependent tasks.

If the original task graph contains V nodes and E edges,
the task conflict graph will have 2V nodes and 2E + V edges.

Standard graph coloring algorithms [32] can be applied to
determine the minimum number of colors needed to color the
graph, which is the minimum number of vendors needed in
the MPSoC.

2) COLOR-CONSTRAINED TASK SCHEDULING

The key difference from standard list scheduling is that col-
oring constraints need to be fulfilled. Only tasks of the same
color can be scheduled on the same core. This is achieved
by assigning colors to cores during the scheduling in the
following way: at the beginning, all the cores are colorless;
at each scheduling step, a task is placed on colorless cores
or cores of the same color as the task to find its early finish
time; if the task is assigned to a colorless core, the core
inherits this color of the task, and only accommodates tasks
of the same color from then on.

Details of the color-constrained task scheduling algorithm
are shown in Algorithm 1. Given the color of a task, the first
loop (steps 3 to 7) identifies all the cores that a task V can be
scheduled on (according to its coloring constraint) and puts
them in Corelist. Then in the second loop (steps 8 to 15), all
the cores in Corelist are iteratively checked to find the core
that minimizes the finish time of V. The time complexity of
Algorithm 1 for scheduling one task is O(C). As a result, the
complexity for scheduling the entire task graph is O(VEC),
with V representing the total number of tasks, E the total
number of edges in the task graph, and C the total number
of cores (for this and the remaining algorithms as well).

3) COLOR TO CORE-SPEED MAPPING

In the prior step, coloring constraints are embedded into the
schedule and the color of each core is determined. Yet the
exact speed of each core is not determined. Since tasks on crit-
ical paths have direct impact on schedule length, we develop

466

1: for all core; do

2 metricy (i), metricy (i), metric3(i) < 0;

3 for T; € all tasks scheduled on core; do
4 if T} is on critical path then

5: metricy (i) <= metric| (i) + 1;

6: if Tj.startTime < metric,(i) then
7 metricy(i) <= Tj.startTime;,

8

: end if
9: for all T;, €Child{T;} do
10: if Ty is on critical path then
11: metric3(i) <= metric3(i) + 1;
12: end if
13: end for
14: end if
15: end for
16: end for

17: for all core; and core; (i # j) do
18: if metricy (i) > metric(j) then

19: core;.priority > corej.priority

20: else if metric| (i) = metricy(j) then
21: if metricy (i) < metric,(j) then

22: corej.priority > core;.priority
23: else if metricy (i) = metric,(j) then
24: if metric3 (i) > metric3(j) then
25: core;.priority > corej.priority
26: end if

27: end if

28: endif

29: end for

a heuristic that assigns a higher speed to a core with more
critical tasks in order to maximize schedule performance.

The heuristic defines critical tasks as the tasks with 0
timing slack in the schedule, and core criticality as the number
of critical tasks a core has. Critical tasks can be identified by
computing the timing slack of each task (i.e., the difference
between its latest and earliest start time) in the schedule
obtained in the prior step. For cores with the same number
of critical tasks, higher criticality is given to the one whose
critical tasks either have more critical child tasks or are on
the upper levels of the task graph. In this way, the benefit of
scheduling critical tasks earlier can be maximized.

Ranking the cores according to their criticality is shown in
Algorithm 2. It uses the following three metrics to measure
criticality:

o metricy(i) is the number of critical tasks on core;.

o metricy(i) is the start time of the earliest critical task on

core;.

o metric3(i) is the total number of critical child tasks of all
the critical tasks on core;. Here the critical child tasks
are the child tasks that are on critical paths.

In Algorithm 2, the three metrics are first calculated
(steps 1 to 16), and then the cores are ranked based on their
criticality (steps 17 to 29). Higher priority is given to the core
with higher values of metric; and metric3 and lower values
of metricy. In this algorithm, the complexity of calculating
the metrics is O(VEC), and the complexity of ranking the
cores is O(C?). Since the number of cores is smaller than

VOLUME 2, NO. 4, DECEMBER 2014

LIU et al.: Shielding Heterogeneous MPSoCs From Untrustworthy 3PIPs

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Algorithm 3 Color to Core-Speed Mapping

Initialization:

1: CoreList = {all cores}, sorted in descending order;

2: SpeedList = {all core-speed}, sorted in descending order;
Procedure:

3. while CoreList # ¢ do

4: Find C,,; € CoreList, the most critical core in CoreList;

5: Find s € SpeedList, the fastest speed in SpeedList;
6: Ceri-speed < s;
7.
8

CorelList <= CoreList—{C¢i};
: SpeedList < SpeedList—{s};
9: for C; € CoreList do

10: if C;.color = C_,i.color then
11: Cj.speed < Cgpi.speed;

12: CoreList < CoreList—{C;};
13: end if

14: end for

15: end while

the number of tasks, the overall complexity of the algorithm
is O(VEC).

After determining the criticality of each core, the color to
core-speed mapping can be performed iteratively as shown in
Algorithm 3. During initialization, all the cores in CoreList
are sorted based on the priority determined in Algorithm 2.
At each iteration, among all the “‘not-assigned-yet™ cores, the
most critical one is selected from the pre-sorted list. This core,
along with the ones that have the same color as it, is assigned
the highest speed among all the ““available” speeds. Then,
that speed is marked as “‘unavailable” and all these cores are
marked as “assigned’. This process iterates until all the cores
have been assigned a specific speed. The complexity of this
algorithm is O(SC), with C denoting the number of cores and
S the number of core speeds (i.e., vendors).

4) SCHEDULE FINALIZATION
Since core speeds assigned in the prior step impact task
execution time, it is necessary to adjust task start time (ST')
and finish time (FT). The start time of task j is constrained
by either the current available time of the core or the ready
time of incoming data as described in Equation (1):
ST; = max(max (FT; + CTy), FTy) (1)
I=<i<p

Here task i is one of the p parent tasks of task j while task k is
the last task scheduled on the same core before task j. CTj; is
the communication time from task i to j.

Meanwhile, the finish time of a task is the sum of its start
time and its real execution time, determined by core speed:

FT, = ST, + — 9 2

/ ! CoreSpeed
Equation (2) shows that the diversity in core speed may
either accelerate or decelerate the execution of task j, while
Equation (1) shows that this effect propagates, influencing all
the descendants of j and all the tasks that are on the same core
as j. Using these two equations, tasks are processed one-by-
one in their scheduling order. The complexity of this process
is O(VE).

VOLUME 2, NO. 4, DECEMBER 2014

D. SCHEDULE QUALITY ENHANCEMENT

Straightforward scheduling fulfills the security constraints at
the finest granularity: duplication-with-diversity constraints
are added to each node in the task graph and isolation-
with-diversity constraints are added to each edge in the
task graph. One disadvantage of this approach is that all
the communications are forced to be between 3PIP cores.
This prohibits the scheduler from putting dependent tasks
on the same core to hide communication latency and save
energy.

To reduce the performance and energy overhead caused
by the security constraints, we explore the possibility of
grouping dependent tasks on critical paths into a cluster and
scheduling the entire cluster to a single core. This will reduce
the number of inter-core communications while satisfying
the security constraints. Unlike the straightforward approach
that schedules dependent tasks across different vendors, the
cluster-based approach schedules dependent tasks either to
the same core (for the intra-cluster cases) or across different
vendors (for the inter-cluster cases).

Clustering of critical tasks necessitates information of
task criticality. We develop a cluster-based scheme that first
generates a performance-driven schedule and then colors
the schedule to fulfill security constraints. As shown in
Figure 3(b), the revised scheme includes four steps: task
scheduling, core coloring, color to core-speed mapping, and
schedule finalization. As the latter two steps are identical to
the straightforward approach, we explain the first two steps
next.

1) TASK SCHEDULING

This step generates a schedule and determines the total num-
ber of cores needed in the target MPSoC. To maximally
explore the scheduler’s ability in grouping critical tasks on
a single core, we impose a loose constraint in this step
to preclude false negatives during trojan detection, that is,
a task v and its duplicate V' are scheduled on the same
core.

2) CORE COLORING

This step embeds security constraints into the schedule, deter-
mining the exact color of each core and the number of vendors
needed in the target MPSoC.

Since tasks are grouped into clusters, security constraints
are imposed between cores instead of tasks. We construct
a core conflict graph based on the schedule generated in
the prior step. Each vertex in this graph is a core and each
edge represents a conflict. An edge is inserted between cores
i and j in two cases: (1) there exists one or more pairs
of duplicated tasks on i and j (to satisfy duplication-with-
diversity); (2) there exists one or more communication paths
between i and j (to satisfy isolation-with-diversity).

Standard graph coloring algorithms [32] are first used to
color the core conflict graph, and then each task inherits the
color of the core it is scheduled on.

467

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

LIU et al.: Shielding Heterogeneous MPSoCs From Untrustworthy 3PIPs

Algorithm 4 Schedule a Task in the Cluster-Based Scheme

Algorithm 5 Estimate the Maximum Clique Size

Initialization:
1: v =task to be scheduled;
: v/ = duplicate of v;
: N = current max-clique size;
CCG = current core conflict graph;
: UpperBound = the given upper bound of clique size;
. Corelisty = ¢;
7: Corelistg = ¢;
Procedure:
8: for all core; do
9: if (/ not on core;) then

10: if Putting v on core; increases maximum clique size then
11: Corelisty<=Corelists + {core;};

12: else

13: Corelistp<=Corelistg + {core;};

14: end if

15: end if

16: end for

17: for all core € Corelisty do

18: Find corey that allows v to have earliest start time 4;
19: end for

20: for all core € Corelistp do

21: Find corep that allows v to have earliest start time 7g;
22: end for

23: if (N > UpperBound or t4 > tg) then

24: Schedule v on corep;

25: else

26: schedule v on corey;

27: N <N +1;

28: end if

29: update CCG;

E. HEURISTIC FOR VENDOR COUNT CONTROL

While the cluster-based approach is capable of placing crit-
ical tasks on a single core to boost performance, it may
potentially increase the number of vendors needed in the
MPSoC. This is because for the cluster-based approach, the
number of vendors is bounded by the maximum clique size*
of the core conflict graph. Unfortunately, maximum clique
size is not considered during traditional performance-driven
list scheduling. To solve this problem, we propose a heuristic
to exploit the flexibility in prioritizing scheduling decisions.
A traditional scheduler randomly picks a core assignment if
a task has the same earliest start time on multiple cores. In
contrast, the proposed scheme evaluates the different options
based on their impact on the maximum clique size of the
corresponding core conflict graph and selects the one with
the smaller impact. In this way, the scheduler is able to
minimize the number of vendors without degrading schedule
performance.

Details of this clique-size-aware scheduling heuristic are
shown in Algorithm 4. Step 9 is to identify the set of cores
that satisfy the constraint of separating a task and its duplicate
on different cores. Then, all the identified cores are clas-
sified into two lists, such that scheduling Task v on cores
in Corelisty4 will increase the maximum clique size of the

4The maximum clique of a graph is its largest complete subgraph. A graph
with a maximum clique size k needs at least k colors to color it.

468

Initialization:
1: vy = The task to be scheduled,
: core; = Core that v, to be scheduled on;
¢ Vparent = {all the parent tasks of v;, };
. E. = {all the edges in core conflict graph};
N = current max-clique size;
6: count = 0;
Procedure:
7: for all v, € Vpupen: do
8: corej <= the core that vy is scheduled on;
9: ife;; ¢ E. then

A RS)

10: Ec<Ec + {ej);

11: corej.degree++;

12: corej.degree++;

13: for all core;, = common neighbor of core; and core; do
14: corej.triangle++;

15: corej.triangle++;

16: corey.triangle++;

17: end for

18: endif

19: end for

20: for all core do

21: if (core.degree > N) and (core.triangle > W) then
22: count++;

23: end if

24: end for

25: if count > N + 1 then

26:. N <&N+1;

27: end if

entire graph while scheduling v on cores in Corelistg will not
(steps 10-14).

Given the two lists of cores, if the current maximum
clique size already reaches the upperbound, the best core
from Corelistp will be selected, ensuring that scheduling of
v would not increase the maximum clique size. On the other
hand, if the current maximum clique size is smaller than the
upperbound, both Corelists and Corelistg will be examined,
and the core that allows v to have the earliest start time
will be selected. This process is shown in steps 17-28. After
determining the core assignment, the corresponding commu-
nication graph and maximum clique size will be updated if
needed. Overall, Algorithm 4 has the same time complexity
of O(VEC) as Algorithm 1.

Computing the maximum clique size of a graph is NP-
complete. However, as the scheduler processes one task at a
time, an efficient heuristic can be developed. The observation
is that scheduling a task on core i may add one or more
edges® into the core conflict graph. As these edges share
the same vertex i, they at most may increase the maximum
clique size by 1. Based on this obervation, we develop a
heuristic, shown in Algorithm 5. This algorithm computes
a tight upper-bound of the maximum clique size based on
the number of triangles in the conflict graph. It contains two
major loops. The first loop (steps 7 to 19) iteratively updates
two critical metrics, the degree (i.e., the number of edges)

SIf no edge is added, the maximum clique size retains intact.

VOLUME 2, NO. 4, DECEMBER 2014

LIU et al.: Shielding Heterogeneous MPSoCs From Untrustworthy 3PIPs

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

TicC1l T1'C2
0-10 0-12
- 0

T8 C2 T7'C1 T8’ C1
72-84 64-74 76-86
10%, S 10 10%, .10

. . o

R
T9C1 T9' C2
94-104 96-108|

(a) (b)

RIS
105 %10 108 % 10
T2’ C1 T3'C3
22-32 22-32
10 8 106, 10 %, 10 10 & 106, & 10%, 10
> » > 4
T4C1 T5C3 T6CL T6' C2
42-52 42-52 52:62 54-66
. S ; " SIS 5
10,207 %10 510 0% 107 20 10

cluster 6

(c) (d)

FIGURE 4. Scheduling Gaussian elimination (task graph). (a) Baseline schedule without security constraints, C1 and C2 have fastest speed. (b) Schedule
generated by straightforward approach. It uses four cores from two vendors, with dark nodes 1.2x slower than light nodes. (c) Schedule generated by
cluster-based approach. Six clusters are scheduled on four cores from two vendors. Scheduling a cluster on one core allows 30% speed up than (b). (d) Core

conflict graph of (c). Cores connected with an edge have different colors.

of each node and the number of triangles that each node is
involved in. During every iteration, upon inserting an edge e¢;;
into the core conflict graph, the degrees of core;, core;j, and
the triangle information of core;, core;j, and their common
neighbors are updated. Then, in the rest of the algorithm
(steps 20 to 27), based on these updated metrics a tight
upper-bound of the maximum clique size is computed using
a heuristic introduced in [33]. This heuristic is based on the
observation of two necessary conditions for a graph to have
a maximum clique size of N + 1. First, there should be at
least N + 1 nodes with a degree of N. Second, each of these
N + 1 nodes should be involved in at least N(N — 1)/2
triangles. Same as Algorithms 1 and 4, the time complexity of
Algorithm 5 is O(EC) for each task and O(VEC) for the entire
task graph.

F ILLUSTRATIVE EXAMPLE

A comparison between the two schemes shows that they
have the same granularity in detecting trojans but different
granularity in preventing trojans. To illustrate the differences
between the two schedules, an example of applying them to
the standard task graph of Gaussian Elimination is shown in
Figure 4. Each node includes four values: 77 denoting its task
ID i, Cj denoting that it is assigned to core j, and m-n denoting
its start time m and finish time n. For simplicity, the original
task execution time and the inter-core communication over-
head are 10. The dark nodes are tasks assigned to the slower
core, resulting in an execution time of 12. The solid arrows
represent intra-core communication (with O overhead), while
the bold, dashed arrows represent inter-core communication
(with 10 overhead).

The baseline schedule in Figure 4(a) does not satisfy the
security constraints. Tasks are not duplicated, and cores from
the same vendor (C1 and C2) directly communicate. The
schedule in Figure 4(b) satisfies both security constraints at
the task level. Every task is duplicated on two distinct cores,
and every communication is between distinct cores, resulting
in a 50% longer schedule than Figure 4(a). The schedule
in Figure 4(c) is obtained by duplicating the performance-

VOLUME 2, NO. 4, DECEMBER 2014

driven schedule in Figure 4(a) and then coloring it to fulfill
security constraints. The schedule contains 6 clusters, and
50% of all the communications are intra-cluster, resulting in
a 30% improvement in schedule length over Figure 4(b).

V. EXPERIMENTAL RESULTS

A. METHODOLOGY

We select a standard list scheduling algorithm as the base-
line [34]. Three approaches — baseline, straightforward, and
cluster-based — are implemented with C language.

TABLE 2. Configurations of random generated task graphs.

High-comm. | Low-comm.
Task Graphs | Task Graphs
Number of tasks 50, 100, 150 | 50, 100, 150

Number of start nodes 1-10 1-10

Task input/output degree 4/4, 8/8 4/4, 8/8
Average of comp/comm overhead 50/50 50/5
Variation of comp/comm overhead 20/20 20/2

The test set is composed of both standard parallel task
graphs and random task graphs. Standard task graphs include
fork-join, LU decomposition, Laplace equation solver,
Gaussian elimination, and FFT [35]. We use TGFF [36] to
generate 100 random task graphs. Table 2 reports the configu-
rations for critical parameters in TGFF. High-communication
and low-communication task graphs are generated by adjust-
ing computation and communication overhead parameters.

TABLE 3. Security-induced schedule length overhead.

Ration of Schedule Length Increase A sz
Duplication | Straight Cluster
only -forward -based
Standard 0.371 0.653 0.500
Random, low-comm, 3-vendor 0.738 1.095 0.956
Random, low-comm, 4-vendor 0.726 1.196 1.079
Random, high-comm, 3-vendor 0.497 0.979 0.667
Random, high-comm, 4-vendor 0.573 1.205 0.857
Average 0.581 1.026 0.812

We assumed that the underlying MPSoC platform can
accommodate up to 16 cores. Typically the cores pro-

469

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

LIU et al.: Shielding Heterogeneous MPSoCs From Untrustworthy 3PIPs

duced by different vendors exhibit variations in many
parameters (e.g., speed, area, and power consumption).
However, since performance is the main concern of schedul-
ing, we focus on speed variations across 3PIP cores, in
line with most scheduling approaches of heterogeneous
systems [28], [29]. We set the step of speed differences equal
to 10% of the fastest core speed in our experiments. The core
speed only affects task execution time, while the inter-core
communication overhead remains intact.

B. RESULTS

1) NUMBER OF VENDORS NEEDED

Our first set of experiments explores the minimum number
of vendors required for incorporating the proposed security
constraints. As this impacts both the design cost and the
hardware cost, our goal is to control this factor within a
reasonable range.

Ratio

0.7 1 = straightforward
0.6 -

05 4 = cluster-based w/o

clique constraint

04 -
/ cluster-based w/
0.3 - clique constraint

0.2 +

01 - :
4)
0 - 4 —S SN D D N

2 3 4 5 6 7 8 9 10+ #of vendors

FIGURE 5. Ratio distribution of minimum number of vendors
required to fulfill the security constraints

Figure 5 shows the ratio distribution of the minimum num-
ber of vendors required for all the task graphs. Data of both
approaches are reported, while the cluster-based approach is
scheduled with and without optimizing the maximum clique

size. The ratio is calculated using the following formula:
of task graphs requiring i vendors

ratio; = 3)
total # of task graphs

The results show that for straightforward scheduling, 4 ven-
dors are sufficient for most of the tested task graphs (105 out
of the 107 graphs, including 7 standard and 100 random). For
the cluster-based approach, more vendors are required when
the maximum clique size is not restrained during schedul-
ing. However, when Algorithms 4 and 5 are applied, the
cluster-based approach has almost the same distribution as the
straightforward approach, with 2 task graphs performed even
better. This clearly confirms the effectiveness of the proposed
clique size minimization heuristic, which is adopted consis-
tently in the rest of our study. Overall, we believe that this
extra cost for vendors is acceptable for building a trustworthy
MPSoC, especially when it is used in critical infrastructure.

2) LENGTHS OF TWO SECURITY-DRIVEN SCHEDULES
We evaluate the performance of the straightforward and the
cluster-based schemes by comparing their schedule lengths to

470

the baseline list scheduling scheme [34]. To ensure fairness
in comparison, the three schemes use the same number of
cores (the one that allows the baseline scheme to deliver
best performance), and the two security-driven schemes use
the same number of vendors. For the two security-driven
schemes, their ratio of schedule length increase (Agz) over
the baseline is calculated using the following equation:

n

_ SL(i)
B Z SLbase(l) @

where 7 is the number of task graphs and SL(i) stands for the
schedule length of the ith task graph. The lower the Agy is,
the better the performance.

The results of schedule lengths are shown in Table 3. We
tested a duplication-only scheme to reflect the impact of the
first security constraint individually. Both the standard and
the random task graphs are reported, with the random task
graphs divided into four categories based on the number
of vendors needed and the different communication over-
head. With the same number of cores, duplicating every task
increases the schedule length by 58%. When both security
constraints are imposed, the cluster-based scheme always
outperforms the straightforward scheme. The straightforward
approach has 21%-40% degradation on top of duplication-
only, while the cluster-based approach only has 9%-20%.
This confirms that by grouping critical tasks together and
scheduling them to a single core, inter-core communication
latency can be largely hidden, and hence schedule length can
be sizably reduced. This benefit is more notable for high-
communication cases because the profit of hiding communi-
cation overhead is higher. Task graphs requiring 4 vendors
have larger overhead in schedule length than those with 3
vendors. This is because slower cores need to be used for
execution when the number of vendors increases.

3) COMMUNICATION BREAKDOWN

Finally, we evaluate the impact of the two security-driven
scheduling schemes on inter-core communications. There
are three types of communication paths: intra-core, inter-
core&intra-vendor, and inter-vendor. The second type vio-
lates the isolation-with-diversity constraint, while a higher
ratio of the third type implies that more communication
paths satisfy this security constraint (while the detection-
with-diversity constraint is always guaranteed). The inter-
vendor ratio is obtained using the following formula:

1 <~ Comm; dor (0)
inter-vendor = — Z inter—vendor 5
ni Commy (i)

with Comminser —vendor(i) denoting the number of inter-
vendor communication paths for task graph i and Commgy; (i)
denoting the total number of communication paths for i.
The ratio of the other two types of communications can be
calculated in the same way.

The results are shown in Table 4. For each scheme, the
intra-core, inter-core&intra-vendor, and inter-vendor ratios

VOLUME 2, NO. 4, DECEMBER 2014

LIU et al.: Shielding Heterogeneous MPSoCs From Untrustworthy 3PIPs

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

TABLE 4. Communication ratio of the three schemes. For each scheme, the ratios of intra-core, inter-core&intra-vendor, and

inter-vendor communications are listed from left to right.

Baseline Straightforward Cluster-based

Intra- Intra- Inter- Intra- Intra- Inter- Intra- Intra- Inter-

core vendor | vendor | core vendor | vendor core vendor | vendor

Standard 0.395 0.605 0 0 0 1 0.354 0 0.646
Random, low-comm, 3-vendor 0.266 0.734 0 0 0 1 0.267 0 0.733
Random, low-comm, 4-vendor 0.236 0.764 0 0 0 1 0.240 0 0.760
Random, high-comm, 3-vendor | 0.267 0.733 0 0 0 1 0.271 0 0.729
Random, high-comm, 4-vendor | 0.258 0.742 0 0 0 1 0.253 0 0.747
Average 0.284 0.716 0 0 0 1 0.278 0 0.722

are listed from left to right. As expected, only the base-
line has the second type of communication paths, implying
that security is guaranteed for the two proposed schemes.
In the straightforward scheme, all the communication paths
are forced to be inter-vendor. For the cluster-based scheme,
the ratio of inter-vendor communications is about at the
same level as the ratio of inter-core&intra-vendor communi-
cations in the baseline scheme. This is because the cluster-
based approach first generates a performance-driven schedule
(in the same way as the baseline) and then imposes security
constraints to protect these inter-core communication paths
and hence results in a trustworthy MPSoC design.

TABLE 5. Overhead comparsion of different schemes.

Scheme in [6] Straight Cluster
Performance overhead 230% 65.3%-121% | 50%-108%
Hardware overhead 30 cores 16 cores 16 cores
Vendor overhead 0 1-3 1-3

C. COMPARISON WITH RELATED WORK

Table 5 summarizes the overheads of our schemes and the
scheme in [6]. Both of our schemes are over 100% better
than the scheme in [6] in performance. Also, regarding to
the hardware overhead, our schemes use the same number
of cores with the baseline as mentioned before. So there is
no hardware overhead in our schemes. In comparison, the
scheme in [6] needs to use 30 Leon processors whereas the
baseline can execute the entire program with just one 1 Leon
processor. Regarding the vendor count, our schemes require
1 to 3 extra vendors while the scheme in [6] is applied to
homogeneous MPSoCs and therefore needs no extra vendors.

VI. CONCLUSIONS

We have presented a task scheduling approach to protect
MPSoCs against malicious modifications in 3PIPs. We pro-
posed two security constraints: the duplication-with-diversity
constraint allows the detection of trojans that cause tasks to
produce incorrect output, while the isolation-with-diversity
constraint prevents collusion between 3PIPs from the same
vendor. We proposed two approaches to incorporating the
constraints into task scheduling, one at the task level and
the other at the core level. The results show that using these
scheduling heuristics, security constraints can be fulfilled
within 4 vendors. By scheduling dependent tasks on the same
core, the overhead due to the two security constraints can be
reduced to 81% of schedule length without any extra core.

VOLUME 2, NO. 4, DECEMBER 2014

Future work will focus on the following directions:
(1) constructing precise and detailed models of core process-
ing speeds and power consumption, task execution time and
variations, (2) extending the security constraints to protect
MPSoCs against collusion even between different vendors,
(3) reducing the hardware overhead by selectively protecting
only security-sensitive tasks.

REFERENCES

[1] International Technology Roadmap for Semiconductors. [Online].
Available: http://www.itrs.net/, accessed Aug. 2014.

[2] W. Wolf, “The future of multiprocessor systems-on-chips,” in Proc. 41st
Design Autom. Conf. (DAC), Jun. 2004, pp. 681-685.

[3] M. Banga and M. S. Hsiao, “A novel sustained vector technique for the
detection of hardware Trojans,” in Proc. 22nd Int. Conf. VLSI Design,
Jan. 2009, pp. 327-332.

[4] S. Narasimhan et al., “Multiple-parameter side-channel analysis: A non-
invasive hardware Trojan detection approach,” in Proc. 3rd Int. Symp.
Hardw.-Oriented Security Trust (HOST), Jun. 2010, pp. 13-18.

[5] F. Koushanfar and A. Mirhoseini, “A unified framework for multimodal
submodular integrated circuits Trojan detection,” IEEE Trans. Inf. Foren-
sics Security, vol. 6, no. 1, pp. 162-174, Mar. 2011.

[6] M. Beaumont, B. Hopkins, and T. Newby, “SAFER PATH: Security archi-
tecture using fragmented execution and replication for protection against
Trojaned hardware,” in Proc. Design Autom. Test Eur. (DATE), Mar. 2012,
pp. 1000-1005.

[71 A.Waksman and S. Sethumadhavan, “Tamper evident microprocessors,”
in Proc. 31st Int. Symp. Security Privacy (SP), May 2010, pp. 173-188.

[8] A. Waksman and S. Sethumadhavan, ““Silencing hardware backdoors,” in
Proc. 32nd Int. Symp. Security Privacy (SP), May 2011, pp. 49-63.

[9] S. Bhunia et al., “Protection against hardware Trojan attacks: Towards
a comprehensive solution,” IEEE Des. Test., vol. 30, no. 3, pp. 6-17,
Jun. 2013.

[10] C. Sturton, M. Hicks, D. Wagner, and S. T. King, “‘Defeating UCI: Building
stealthy and malicious hardware,” in Proc. Int. Symp. Security Privacy
(SP), May 2011, pp. 64-77.

[11] X. Wang, M. Tehranipoor, and J. Plusquellic, “‘Detecting malicious inclu-
sions in secure hardware: Challenges and solutions,” in Proc. IEEE Int.
Workshop Hardw.-Oriented Security Trust (HOST), Jun. 2008, pp. 15-19.

[12] M. Potkonjak, A. Nahapetian, M. Nelson, and T. Massey, ‘“‘Hardware
Trojan horse detection using gate-level characterization,” in Proc. 46th
Design Autom. Conf. (DAC), Jul. 2009, pp. 688—693.

[13] X. Zhang and M. Tehranipoor, “Case study: Detecting hardware Trojans
in third-party digital IP cores,” in Proc. IEEE Int. Symp. Hardw.-Oriented
Security Trust (HOST), Jun. 2011, pp. 67-70.

[14] H. G. Rice, “Classes of recursively enumerable sets and their decision
problems,” Trans. Amer. Math. Soc., vol. 74, no. 2, pp. 358-366, 1953.

[15] E. Love, Y. Jin, and Y. Makris, ‘“Proof-carrying hardware intellectual

property: A pathway to trusted module acquisition,” IEEE Trans. Inf.

Forensics Security, vol. 7, no. 1, pp. 25-40, Feb. 2012.

K. Patel, S. Parameswaran, and R. G. Ragel, “Architectural frameworks for

security and reliability of MPSoCs,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 19, no. 9, pp. 1641-1654, Sep. 2011.

[17] K. Patel and S. Parameswaran, “SHIELD: A software hardware design
methodology for security and reliability of MPSoCs,” in Proc. 45th Design
Autom. Conf. (DAC), Aug. 2008, pp. 858-861.

[16

471

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

LIU et al.: Shielding Heterogeneous MPSoCs From Untrustworthy 3PIPs

[18] L.A.D.Bathenand N. D. Dutt, “TrustGeM: Dynamic trusted environment
generation for chip-multiprocessors,” in Proc. 4th Int. Symp. Hardw.-
Oriented Security Trust (HOST), Jun. 2011, pp. 47-50.

[19] L. A. D. Bathen and N. D. Dutt, “PoliMakE: A policy making engine for
secure embedded software execution on chip-multiprocessors,” in Proc.
5th Workshop Embedded Syst. Security (WESS), 2010, pp. 1-10.

[20] M. Tehranipoor et al., “Trustworthy hardware: Trojan detection and
design-for-trust challenges,” IEEE Comput., vol. 44, no. 7, pp. 66-74,
Jul. 2011.

[21] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor, ‘“Trustworthy
hardware: Identifying and classifying hardware Trojans,” IEEE Comput.,
vol. 43, no. 10, pp. 39-46, Oct. 2010.

[22] A. Waksman, M. Suozzo, and S. Sethumadhavan, “FANCI: Identification
of stealthy malicious logic using boolean functional analysis,” in Proc.
ACM Conf. Comput. Commun. Security (CCS), Nov. 2013, pp. 697-708.

[23] H. Orsila, T. Kangas, and T. D. Hamalainen, “Hybrid algorithm for map-
ping static task graphs on multiprocessor SoCs,” in Proc. Int. Symp. Syst.-
Chip, Nov. 2005, pp. 146-150.

[24] D. Gizopoulos et al., “Architectures for online error detection and recov-
ery in multicore processors,” in Proc. Design Autom. Test Eur. (DATE),
Apr. 2011, pp. 533-538.

[25] N. Foutris, D. Gizopoulos, M. Psarakis, X. Vera, and A. Gonzalez, “Accel-
erating microprocessor silicon validation by exposing ISA diversity,”
in Proc. 44th Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO),
Dec. 2011, pp. 386-397.

[26] D. E. Culler, J. P. Singh, and A. Gupta, Parallel Computer
Architecture: A Hardware/Software Approach. San Mateo, CA, USA:
Morgan Kaufmann, 1999.

[27] MIPS. MIPS Licensees. [Online]. Available: http://www.imgtec.com,
accessed Aug. 2014.

[28] G. C. Sih and E. A. Lee, “A compile-time scheduling heuristic for
interconnection-constrained heterogeneous processor architectures,” IEEE
Trans. Parallel Distrib. Syst., vol. 4, no. 2, pp. 175-187, Feb. 1993.

[29] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund,
“Dynamic matching and scheduling of a class of independent tasks onto
heterogeneous computing systems,” in Proc. 8th Int. Heterogeneous Com-
put. Workshop (HCW), 1999, pp. 30—44.

[30] Y. Cho, S. Yoo, K. Choi, N. E. Zergainoh, and A. A. Jerraya, ““Scheduler
implementation in MP SoC design,” in Proc. Ist Asia South Pacific Design
Autom. Conf. (ASP-DAC), Jan. 2005, pp. 151-156.

[31] Y.-K. Kwok, I. Ahmad, and J. Gu, “FAST: A low-complexity algorithm
for efficient scheduling of DAGs on parallel processors,” in Proc. 25th Int.
Conf. Parallel Process. (ICPP), vol. 2. Aug. 1996, pp. 150-157.

[32] D.Brelaz, ‘“New methods to color the vertices of a graph,” Commun. ACM,
vol. 22, no. 4, pp. 251-256, Apr. 1979.

[33] K. Kim, “A method for computing upper bounds on the size of
a maximum clique,” Commun. Korean Math. Soc., vol. 18, no. 4,
pp. 745-754, 2003.

[34] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating
directed task graphs to multiprocessors,” ACM Comput. Surv., vol. 31,
no. 4, pp. 406-471, Dec. 1999.

[35] Y.-K. Kwok and I. Ahmad, “Dynamic critical-path scheduling: An effec-
tive technique for allocating task graphs to multiprocessors,” IEEE Trans.
Parallel Distrib. Syst., vol. 7, no. 5, pp. 506-521, Jun. 1996.

[36] R.P.Dick, D. L. Rhodes, and W. Wolf, “TGFF: Task graphs for free,” in
Proc. Workshop Hardw./Softw. Codesign, Mar. 1998, pp. 97-101.

[37] C. Liu and C. Yang, “Exploiting heterogeneity in MPSoCs to prevent
potential Trojan propagation across malicious IPs,” in Proc. 24th Great
Lakes Symp. VLSI (GLSVLSI), May 2014, pp. 335-340.

CHEN LIU received the B.S. degree in commu-
nication engineering from Southeast University,
Nanjing, China, in 2010. He is currently pur-
suing the Ph.D. degree with the Department of
Electrical and Computer Engineering, University
of Delaware, Newark, DE, USA. His research
interests include hardware security and computer
architecture.

He was a recipient of the Best Student Paper
Awards in the IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems in 2013.

472

JEYAVIJAYAN RAJENDRAN is currently pur-
suing the Ph.D. degree with the Department of
Electrical and Computer Engineering, Polytech-
nic Institute of New York University, New York,
NY, USA. His research interests include hardware
security and emerging technologies.

He was a recipient of the Best Student
Paper Awards in the ACM Conference on Com-
puter and Communications Security in 2013, the
IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems in 2013, and the
IEEE International VLSI Design Conference in 2011.

He organizes the annual Embedded Systems Challenge, a hardware secu-
rity competition. He was a co-organizer of the Army Research Office’s

‘Workshop on Trustworthy Hardware in 2013.
Delaware, Newark, DE, USA. Her research inter-
ests include fault resilience, hardware support for
system security, multi/many-core architectures, power- and thermal-aware
systems, embedded system design, compile-time and run-time optimizations,
scheduling and resource management, and nonvolatile memories.
She was a recipient of the University of Delaware Research Foundation
Award and the National Science Foundation CAREER Award.

CHENGMO YANG received the B.S. degree in
microelectronics from Peking University, Beijing,
China, in 2003, and the M.S. and Ph.D. degrees
in computer engineering from the University of
California at San Diego, La Jolla, CA, USA, in
2005 and 2010, respectively. She is currently an
Assistant Professor with the Department of Elec-
trical and Computer Engineering, University of

RAMESH KARRI is a Professor of Electrical and
Computer Engineering at Polytechnic School of
Engineering, New York University. He has a Ph.D.
in Computer Science and Engineering, from the
University of California at San Diego. His research
interests include security and reliability.

He was the recipient of the Humboldt Fel-
lowship and the National Science Foundation
CAREER Award. He is the area director for cyber
security of the NY State Center for Advanced
Telecommunications Technologies at NYU-Poly; Hardware security lead of
the Center for research in interdisciplinary studies in security and privacy
-CRISSP (http://crissp.poly.edu/), co-founder of the Trust-Hub (http://trust-
hub.org/) and organizes the annual red team blue team event at NYU,
the Embedded Systems Challenge (http://www.poly.edu/csaw2014/csaw-
embedded).

He cofounded the IEEE/ACM Symposium on Nanoscale Architectures
(NANOARCH). He is the Program Chair (2012) and General Chair (2013)
of IEEE Symposium on Hardware Oriented Security and Trust (HOST). He
is the Program Co-Chair (2012) and General Co-Chair (2013) of IEEE Sym-
posium on Defect and Fault Tolerant Nano VLSI Systems; General Chair of
the 2009 and 2013 NANOARCH; General co-chair of ICCD 2015, RFIDSEC
2015 and WISEC 2015. He serves on several program committees.

He was the Associate Editor of IEEE Transactions on Information
Forensics and Security (2010-2014), IEEE Transactions on CAD (2014-
present), ACM Journal of Emerging Computing Technologies (2007-present)
and ACM Transactions on Design Automation of Electronic Systems
(2014-present).He is an IEEE Computer Society Distinguished Visitor
(2013-present).

VOLUME 2, NO. 4, DECEMBER 2014

