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ABSTRACT Since it is difficult to deal with big data using traditional models and algorithms, predicting and
estimating the characteristics of big data is very important. Remote sensing big data consist of many large-
scale images that are extremely complex in terms of their structural, spectral, and textual features. Based
on multiresolution analysis theory, most of the natural images are sparse and have obvious clustering and
persistence characters when they are transformed into another domain by a group of basic special functions.
In this paper, we use a wavelet transform to represent remote sensing big data that are large scale in the
space domain, correlated in the spectral domain, and continuous in the time domain. We decompose the big
data set into approximate multiscale detail coefficients based on a wavelet transform. In order to determine
whether the density function of wavelet coefficients in a big data set are peaky at zero and have a heavy
tailed shape, a two-component Gaussian mixture model (GMM) is employed. For the first time, we use
the expectation-maximization likelihood method to estimate the model parameters for the remote sensing
big data set in the wavelet domain. The variance of the GMM with changing of bands, time, and scale are
comprehensively analyzed. The statistical characteristics of different textures are also compared. We find that
the cluster characteristics of the wavelet coefficients are still obvious in the remote sensing big data set for
different bands and different scales. However, it is not always precise when we model the long-term sequence
data set using the GMM. We also found that the scale features of different textures for the big data set are
obviously reflected in the probability density function and GMM parameters of the wavelet coefficients.

INDEX TERMS Big data computing, remote sensing image processing, wavelet, parameters estimation.

I. INTRODUCTION
Big data is a collection of data sets so large and complex that
it is difficult to deal with using traditional data processing
algorithms and models. The challenges include acquisition,
storage, searching, sharing, transferring, analysis and visu-
alization. Scientists regularly encounter limitations due to
large data sets in many areas, such as geosciences and remote
sensing, complex physics simulations, and biological and
environmental research. The three Vs (volume, variety, and
velocity) are three defining properties or dimensions of big
data. Volume refers to the amount of data, variety refers to
the number of types of data, and velocity refers to the speed of

data processing. According to the 3Vs model, the challenges
of big data result from the expansion of all three properties,
rather than just the volume alone.
With the fast increments of the volume or dimensions of

data sets, researchers in different areas face different prob-
lems when they want to deal with big data using traditional
methods. In the remote sensing application area, the size
of data sets is growing, in part because they are increas-
ingly being acquired and gathered by many different satellite
sensors with different resolution and different spectral charac-
teristics. More importantly, the data is often from a long-term
sequence image and a large area of the earth’s surface.
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Assessing the statistical features of a remote sensing data
set is a fundamental task in a lot of data analysis. For example,
in the image clustering method, we often need to estimate
the statistical similarity measure [1]; In many classification
algorithms, we need spatial statistics-based expressions to
create the decision boundary between various classes [2];
In researching of endmember detection, we also need to
consider the spatial distribution of end members [3], [4] using
the statistical characteristics of the data set. For big data, we
often estimate a vector of model parameters given a training
data set. Such statistical feature estimation provides us far
more information than a simple inquiry and can be used
to improve human interpretation of inferential outputs, do
bias correction, perform hypothesis testing, make more effi-
cient use of available resources, perform active learning, and
optimize feature selection, among many more potential uses.

There are a large number of studies that focus on the
statistical features of big data sets [5]–[11]. However, in many
remote sensing applications related to big data sets, we often
do not directly assess their statistical features. In order to
manifest some of the statistical characteristics of the data sets,
we often represent them based on some transforms. How to
represent big data sets is one of the fundamental problems in
researching big data, as most data processing tasks rely on an
appropriate data representation. For many image processing
tasks, the wavelet transform [12] of the data is the preferred
transform. For remote sensing big data, multi-resolution rep-
resentation by wavelet transform is more and more important
for many algorithms such as image segmentation [13], image
de-noising [14], image restoration [15], image fusion [16],
change detection [17], feature extraction [18], and image
interpretation. Therefore, the estimation of statistical features
of big data in the wavelet transform domain is one of the most
important problems.

Many researchers have worked on the statistical features
of the wavelet domain of an image signal or a small data
set. They have been applied in many image processing fields.
Apart from the sparse characteristics, there are two other
characteristics of the coefficients in the wavelet transform
domain. The first is the inter-scale constraint known as the
tree structure [19] and the second is the intra-scale constraints
that are the statistical dependencies of the neighbourhood
coefficients [20].

Some early research about the intra-scale statistical char-
acteristics modelled the wavelet coefficients as Gaussian
distributions. The theoretical formalization of filtering addi-
tive i.i.d Gaussian noise (with zero-mean and standard devi-
ation) via thresholding wavelet coefficients was pioneered
by Donoho [21]. However, a single Gaussian model is in
conflict with some natural properties of the signal. Jointly,
Gaussian models can efficiently represent the linear correla-
tions between wavelet coefficients. A typical wavelet coef-
ficient probability density is much more ‘‘peaky’’ at zero
and heavy-tailed than the Gaussian distribution [19]. In ref-
erence [22], a framework for a near-optimal threshold is pro-
posed. This approach can be formally described as Bayesian

estimation, and it was pointed out that the wavelet coeffi-
cients in a subband of a natural image can be summarized
adequately by a generalized Gaussian distribution (GGD).
In [23], a bivariate probability density function is proposed
to model the statistical dependence between a coefficient
and its parent, and the corresponding bivariate shrinkage
function is obtained. This method maintains the simplic-
ity, efficiency, and intuition of soft thresholding. In ref-
erence [24], a de-noising method is proposed based on
the statistical model of the coefficients of an overcom-
plete multiscale oriented basis. In this method, neighbor-
hoods of coefficients at adjacent positions and scales are
modelled as the product of two independent random vari-
ables: a Gaussian vector and a hidden positive scalar multi-
plier. Under this model, the Bayesian least squares estimate
of each coefficient reduces to a weighted average of the
local linear estimates over all possible values of the hidden
multiplier variable. It obtained very good image reconstruc-
tion results, both visually and in terms of mean squared error.
More recently, some propose using the product Bernoulli
distributions (PBD) [25] for modeling coefficient histograms
of wavelet subbands. For large filter outputs where the dis-
tribution of filter outputs peaked at zero, the PBD model has
been shown to perform similarly to the GGDmodel. In partic-
ular, the bit-plane probability (BP) signature induced by the
PBD model was applied successfully to supervised texture
classifications [25]. In [26], the authors propose adopting
three-parameter generalized Gamma density for modeling
wavelet detail subband coefficient histograms. The advantage
of generalized gamma density over the existing generalized
Gaussian density is that it provides more flexibility to con-
trol the shape of the model, which is critical for practical
histogram-based applications [26]. To measure the discrep-
ancy between generalized Gamma densities, the symmetrized
Kullback-Leibler distance (SKLD) is used to derive a closed
form for the SKLD between generalized Gamma densities,
which makes the proposed scheme particularly suitable for
image retrieval systems with large image databases.
While modeling the wavelet coefficients in a dependent

or joint Gaussian distribution without considering inter-scale
constrains or tree structures, methods such as wavelet-based
statistical signal processing techniques are unrealistic for
many real world signals or data. To solve the problem, in ref-
erence [19], a wavelet-domain hiddenMarkov model (HMM)
is developed as a framework for signal processing. It con-
cisely models the statistical dependencies and non-Gaussian
statistical characteristics using real signals or data. Wavelet-
domain HMM well represent the intrinsic properties of the
wavelet coefficients and provide a powerful and tractable
model for signals. Therefore, it was quickly adopted by awide
range of applications, including de-noising [27], [28], detec-
tion, classification [29], segmentation [30], texturing [31],
and compressive sensing [32], [33]. However, when using
the expectation-maximization algorithm in reference [19],
a potential drawback to the HMM framework is the compu-
tationally expensive iterative training. For the reduction of
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the computation, in the reference [34], the HMM model is
simplified by exploiting the inherent self-similarity of real-
world images. Also introduced is a Bayesian universal HMM
that fixes a few of the parameters no training is required.
In reference [35], the authors propose a new ‘‘upward-
downward’’ algorithm, in which a Viterbi-like algorithm for
global restoration of the hidden state tree is introduced.

Almost all the methods that model the statistical
characteristics of wavelet coefficients are only applicable
to a small data set. Most of them are related to de-noising,
texture analysis, segmentation, classification, and retrieval
algorithms. For big data sets, such as space-temporal remote
sensing data sets, we also need to model their wavelet coef-
ficients to find the changing trends, discover the intrinsic
mechanisms, and represent the rules of their evolution pro-
cess. In this paper, we use the GMM to denote the statistical
properties of wavelet coefficients of a remote sensing big data
set. Our contribution is to estimate the model parameters of
a big data set using different aspects or dimensions such as
time, spectral bands, scales, and textures.

II. MULTIRESOLUTION ANALYSIS AND
THE WAVELET TRANSFORM
For the convenience of narration, before estimating the model
parameters of wavelet coefficients of the remote sensing big
data set, we first simply review the multiresolution analysis
theory and the wavelet transform. A multiresoluiton analysis
(MRA) consists of a collection of nested subspaces {Vj}j∈Z ,
satisfying the following four properties [12]:

1)
⋂

j∈Z Vj = {0},
⋃

j∈Z Vj is dense in L
2(R)

2) Vj⊂Vj−1
3) x(t)∈Vj↔x(2jt)∈V0
4) There exists a function φ0(t) in V0, which is called the

scaling function, such that the collection {φ0(t − k), k∈Z } is
an unconditional Riesz basis for V0.
Similarly, there are scaled and shifted functions like

{φj,k (t) = 2−j/2φ0(2−jt − k), k∈Z }, (1)

where j is the dilation parameter about dilation, and k is the
position parameter. Equation (1) constitutes the Riesz basis
for the space Vj. Performing a multiresolution analysis of
signal x means successively projecting it into each of the
approximation subspaces Vj to get

approx_xj(t) =
∑

ax(j, k)φj,k (t), (2)

where ax(j, k) is the approximation coefficient for the basic
function φj,k (t). Since Vj⊂Vj−1, approx_xj(t) is a coarser
approximation of x(t) than approx_xj−1(t); therefore, the
main idea of the MRA consists of measuring the loss of
information. They could be seen as the detail detail_xj(t) =
approx_xj−1(t)−approx_xj(t) when going from one approxi-
mation to the next coarser one. The MRA analysis shows that
detail_xj as the detail signals can be directly obtained from
projections of x onto a collection of subspaces, theWj, called
the wavelet subspaces. Moreover, inMRA theory, there exists

a function ψ0, called the mother wavelet, derived from φ0,
such that its templates {ψj,k (t) = 2−j/2ψ0(2−jt − k), k∈Z }
constitute a Riesz basis for Wj. We then get

detail_xj(t) =
∑
k

dx(j, k)ψj,k (t). (3)

In practice, wemaywant to see all the data with the ‘‘desired’’
resolution, that is for some resolution j. We define the sub-
space

Vj = Span{φj,k (t)} and (4)

Wj = Span{ψj,k (t)}. (5)

Once we combine infinite wavelet sets, the sets are equal to
the set L2(R) = {f (x)|

∫
|f (x)|2dx < ∞}. In mathematical

terms,

L2(R) = V0⊕W0⊕W1 · · · (6)

Based on MRA theory, we represent the signal x as a col-
lection of details at different resolutions and a low-resolution
approximation.

x(t) = approx_xj(t)+
j=J∑
j=1

detail_x j(t)

=

∑
k

ax(J , k)φJ ,k +
J∑
j=1

∑
k

dx(j, k)ψj,k (t) (7)

The approx_xj is essentially coarser and a coarser approx-
imation of x means that φ0 is a low-pass function. The
detail_xj, being an information ‘‘differential,’’ indicates
rather that ψ0 is a bandpass function and therefore a small
wave called a wavelet. MRA theory also shows that the
mother wavelet function must satisfy

∫
ψ0(t)dt = 0, and its

Fourier transform obeys |90(ν)| ∼ νN , ν→0, where N is a
positive integer called the number of vanishing moments of
the wavelet.

Given a scaling funtion φ0 and mother wavelet ψ0, the
discrete (or non-redundant) wavelet transform (DWT) is a
mapping from L2(R)→l2(Z ) given by

x(t)→ {{ax(J , k),k ∈ Z }, {dx(j, k), j=1, . . . , J , k ∈ Z }}. (8)

These coefficients are defined using the inner products of
x with two sets of basis functions:{

ax(j, k) = 〈x, φj,k 〉
dx(j, k) = 〈x, ψj,k 〉,

(9)

where ψj,k (respectively, φj,k ) are shifted and dilated tem-
plates ofψ0 (respectively, φ0), called the dual mother wavelet
(respectively, the dual scaling function). Their definitions
depend on whether one chooses to use an orthogonal, semi-
orthogonal, or bi-orthogonal DWT [36]. Using a fast recursive
filterbank-based pyramidal algorithm, they can be computed
with extremely low computational cost [36].

What we next deal with is 2-D remote sensing image data.
We define x(t1, t2) ∈ L2(R2), which is a 2-D signal or
image, where t1 and t2 are the coordinates of two directions.
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The transform coefficient becomes two variable functions
as well as the 2D wavelet transform. In reference [37], the
scaling and wavelet functions are two variable functions,
denoted as φj,k1,k2 (t1, t2) and ψj,k1,k2 (t1, t2). The scaled and
translated basis functions for the jth level are defined as

φij,k1,k2 (t1, t2) = 2−j/2φi0(2
−jt1 − k1, 2−jt2 − k2) and (10)

ψ i
j,k1,k2 (t1, t2) = 2−j/2ψ i

0(2
−jt1 − k1, 2−jt2 − k2), (11)

where k1, k2∈Z , and i = {H ,V ,D} in which H is horizontal,
V is vertical, and D is diagonal.
Similar to the representation of a 1-D signal, based on the

MRA, the information in x(t1, t2) is written as a collection of
details at different resolutions and a low-resolution approxi-
mation. For each level, there are three different wavelet func-
tions,ψH (t1, t2),ψV (t1, t2), andψD(t1, t2). Conceptually, the
scaling function is the relatively low-frequency component.
Therefore, there is one 2D scaling function. However, the
wavelet function is related to the order to apply the decompo-
sitions. If the wavelet function is separable, that is, f (x, y) =
f1(x)f2(y), these functions can be easily rewritten as

φ(t1, t2) = φ(t1)φ(t2), (12)

ψH (t1, t2) = ψ(t1)φ(t2), (13)

ψV (t1, t2) = φ(t1)ψ(t2), and (14)

ψD(t1, t2) = ψ(t1)ψ(t2). (15)

Based on the definition of a 2-D basis function, performing
a multiresolution analysis of 2-D image x means successively
projecting it into each of the approximation subspaces Vj

approx_xj(t1, t2) =
∑
k1,k2

ax(j, k1, k2)φj,k1,k2 (t1, t2). (16)

If we define the functions as separable functions, it is
easier to analyze the 2D function. The analysis and synthesis
equations are modified to

x(t1, t2) = approx_xj(t1, t2)+
J∑
j=1

detail_x j(t1, t2)

=

∑
k

ax(J , k1, k2)φJ ,k1,k2

+

∑
i=H ,V ,D

J∑
j=1

∑
k1,k2

dx(j, k1, k2)ψ i
j,k1,k2 (t1, t2). (17)

Based on the research on small image or data sets, the
coefficients of the scale function in the wavelet transform
domain are not easy to characterize using an analytic density
function. However, as previously mentioned in the intro-
duction, there have been much research on how to model
the wavelet detail coefficients of detail_x j(t1, t2). For big
data sets, the coefficients of a wavelet function, as well as
the detail coefficients, could also be subject to an obvious
distribution, such as a Gaussian mixture model a generalized
Gaussian model, or generalized gamma density. In this paper,
we model the detail coefficients using a Gaussian mixture

model and employ the expectation-maximization likelihood
method (EM) to estimate the set of parameters in the next
section.

III. PARAMETER ESTIMATION OF
WAVELET COEFFICIENTS
To analyze the intra-scale correlation feature of wavelet coef-
ficients of remote sensing big data, we use a GMM to denote
its detail coefficients distribution. For arbitrary scales or for
several scales, drawing samples y1, · · · , yn from details of
x (such as dx(j, k1, k2)), we assume that they are subject to
a GMM with k components. Without loss of generality, we
assume y1, · · · , yn are vectors, but actually, in our experi-
ments, when we focus on a certain scale, they are scalars. Our
goal is to estimate the parameter set θ = {(ωj, µj, 6j)}kj=1
using the EM method. For any sample yi and parameters
µj and 6j, we denote the Gaussian distribution as

p(yi|µj, 6j)=
1

2πd/2|6j|
1/2 exp(−

1
2
(y−µj)T6j

−1(y−µj)).

(18)

In the GMM, we have the probability density

p(Yi = yi|θ ) =
k∑
j=1

ωjp(yi|µj, 6j), (19)

where ωj > 0,
∑k

j=1 ωj = 1, and θ = {(ωj, µj, 6j)}kj=1.
Let γmij be the estimate at the mth iteration of the proba-

bility that the ith sample was generated by the jth Gaussian
component, that is,

γmij =P(Zi = j|yi, θ (m))=
ω
(m)
j p(yi|µ

(m)
j , 6

(m)
j )∑k

l=1 ω
(m)
l p(yi|µ

(m)
l , 6

(m)
l )

, (20)

which satisfies
∑k

j=1 γ
(m)
ij = 1.

Because we assume the samples are i.i.d., we can apply

Qi(θ |θ (m)) = EZi|yi,θ(m) [logp(yi,Zi|θ )]

=

k∑
j=1

P(Zi|yi, θ (m))logp(yi,Zi|θ )

=

k∑
j=1

γ
(m)
ij log(ωjp(yi|µj, 6j))

=

k∑
j=1

γ
(m)
ij (logγj −

1
2
log|6j|

−
1
2
(yi − µj)T6j

−1(yi − µj))+ C, (21)

where C is a constant that does not depend on θ and that can
thus be dropped without affecting the M-step. Then

Q(θ |θ (m)) =
n∑
i=1

k∑
j=1

γ
(m)
ij (logγj −

1
2
log|6j|

−
1
2
(yi − µj)T6j

−1(yi − µj)), (22)
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which completes the E-step. For notational simplicity we
denote the total membership weight of the jth Gaussian as

n(m)j =

n∑
i=1

γ
(m)
ij .

Then Q(θ |θ (m)) can be rewritten as

Q(θ |θ (m)) =
k∑
j=1

n(m)j ((logγj −
1
2
log|6j|)

−
1
2

n∑
i=1

k∑
j=1

(yi − µj)T6j
−1(yi − µj)). (23)

The M-step is to solve

maximize Q(θ |θ (m))

subject to
k∑
j=1

ωj = 1, ωj > 0

6j > 0, j = 1, · · · , k, (24)

where 6j > 0 means that 6j is positive definite.
From equation (23), we can independently maximize the

Q-function with respect to the weights, which requires maxi-
mizing the term

∑k
j=1 n

(m)
j logγj. The solution is:

ωm+1j =
nmj∑k
j=1 n

m
j
=

nmj
n , j = 1, · · · , k. (25)

The optimalµj and6j can be found by setting the correspond-
ing derivatives to zero. To solve for the means µj, we let

0 =
∂Q(θ |θ (m))

∂µj
= 6−1j , (26)

which yields

µ
(m+1)
j =

1

n(m)j

n∑
i=1

γmij yi, j = 1, · · · , k. (27)

To solve for covariance matrices 6j, we let

0 =
∂Q(θ |θ (m))

∂6j

=
1
2
n(m)j

∂log|6j|

∂6j
−
1
2

n∑
i=1

γ
(m)
ij
∂((yi−µj)T6j

−1(yi−µj)))
∂6j

=
1
2
n(m)j 6−1j −

1
2

n∑
i=1

γ
(m)
ij 6j

−1((yi − µj)T (yi − µj)))6j
−1,

(28)

and thus

6
(m+1)
j =

1

n(m)j

n∑
i=1

γ
(m)
ij (yi − µ

(m+1)
j )(yi − µ

(m+1)
j )T . (29)

Now, for a GMMwith k components, we could estimate its
model parameters θ = {(ωj, µj, 6j)}kj=1 using equations (25),
(27), and (29). In the next section, we will model the wavelet
coefficients of big data sets for different bands, different
scales, long-term sequences and different textures.

IV. EXPERIMENTS AND RESULTS
In the experiments, we use the image data set from the Land-
sat satellite, which represents the world’s longest continu-
ously acquired collection of space-based moderate-resolution
land remote sensing data. Over the past four decades, the
imagery data set has provided a unique and extremely
rich resource for research on agriculture, geology, forestry,
regional planning, education, mapping, and global change.
Since July 23, 1972, there has been a series of Landsat

satellites missions, from Landsat1 to Landsat8. In our exper-
iments, different data sets from different Landsat satellites
are included. The first is the data set from Landsat1 through
Landsat5. The Landsat Multispectral Scanner (MSS) sensor
was onboard Landsat1 through Landsat5 and acquired images
of the earth nearly continuously from July 1972 to October
1992. Of the Landsats, Landsats 1, 2, and 3, which had
4–7 bands, had an 18-day revisit cycle. However, Landsats
4 and 5, which had 1–4 bands, maintained a 16-day revisit
cycle. Their resolution is 60 m, and they have different spec-
tral characteristics. The second is the image data set acquired
by the Landsat Thematic Mapper (TM) sensor carried on
Landsats4 and 5 with a 16-day repeat cycle. The TM images
from Landsats 4 and 5 consist of seven spectral bands. The
resolution is 30 m for bands 1–7 (thermal infrared band 6
was collected at 120 m, but was re-sampled at 30 m). The
third is the image data set acquired by the Landsat Enhanced
Thematic Mapper Plus (ETM+) sensor carried by the Land-
sat 7 satellite with a 16-day revisit cycle. Landsat 7 ETM+
images consist of eight spectral bandswith a spatial resolution
of 30 m for bands 1–7. The panchromatic band 8 has a
resolution of 15 m. All the images use the map projection
of UTM-WGS84 with polar stereographic for the continent
of Antarctica.
Because the series of Landsat satellites have continuously

acquired image data for four decades, the image data volume
is large enough to be big data. Furthermore, the remote sens-
ing big data set exhibits different characteristics in different
dimensions, such as time, spectral, space, and textual dimen-
sions. In general, it is hard to precisely model the statistical
characteristics of remote sensing big data. In the following
experiments, we estimate their statistical characteristics by
randomly selecting some subsets of the big data and trans-
forming them into a wavelet domain. In all experiments, the
db1 [36] wavelet basis function is employed. Based on some
research results for small image data [19], we assume that
there are two components in the GMM model for wavelet
coefficients. Therefore, the parameters to be estimated are
θ = {(ωj, µj, 6j)}2j=1. 6j will be the variance not covariance
variance because it is more intuitive in visuals to show the
statistical characteristics by sampling in low dimension data
or in a certain scale or one band.

A. EXPERIMENTS 1
In this experiment, we separately decompose the different
bands of the remote sensing image data set using a wavelet
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transform andmake some comparisons. A subset of the Land-
sat global image data set is selected for the validation. The
subset data used in this experiment is from the 2008 whole
year data, which cover all China, with more than 9,000,000
square kilometers. In this data subset, only one multispectral
image set is selected for every location on earth’s surface.
Some image data that are defective or that have too many
clouds are not included in the test data set. The volume of
the data set is about 70 GB.

The data set are transformed into six scales, which have
horizontal, vertical, and diagonal directions. We selected
results from the first, third, fifth, and seventh bands of the
data subset and show them in Fig. 1. The statistical features
of the fourth and fifth scales of this multiresolution analysis
are shown in Fig. 1. Figure. 1 (a) shows the distribution
density of wavelet coefficients in three directions and in two
scales, which come from the first band of the image data
set. Figure. 1 (b) shows the distribution density of wavelet
coefficients in three directions and in two scales, which come
from the third band of the image data set. Figure. 1 (c) and (d)
have a similar definition and meaning as Fig. 1 (a) and (b)
except for the fifth and seventh bands. In each curve graph of
Fig. 1 (a–d), the GMMmodel estimated using the EMmethod
are shown on the left, while the real distribution density
of wavelet coefficients calculated and counted by random
sampling are show on the right.

Whenwe compare the results of the EMestimationwith the
real statistical features of thewavelet coefficients, we find that
for every band data subset of the big data the GMMcould well
represent the distribution in most cases. Therefore, it is still
relatively reasonable to believe that the wavelet coefficients
follow the GMM for different bands of a remote sensing big
data set.

In Fig. 1 (a–d), we can observe that in a certain scale,
the statistical characteristics of the three directions such as
horizontal, vertical, and diagonal details, do not show very
obvious differences. It is because that in a large data set, all the
directions almost have similar possibility in global. However,
there are indeed some small differences in the statistical
features of the wavelet coefficients for different directions;
their degrees of concentration or clusters are different. The
diagonal wavelet coefficients concentrate more on the center
part when compared to the other two directions, which means
that there are more small or near zero coefficients in diagonal
wavelet coefficients. This phenomenon is more obvious in the
fifth or larger scale of each band.

In Fig. 2, we compare the changing trend of the model
parameters of the wavelet coefficients with the different
scales in decomposition. Figure. 2(a) shows the two variances
of the two components in the GMM and their changing scales
for the first band. The variance of the first component is
on the left and the variance of the second component is on
the right. Similarly, Fig. 2 (c–d) shows the variance of the
wavelet coefficients from the third, fifth, and seventh bands.
We do not show all the variances of all the directions, but only
the variance of the diagonal direction. We find that for the

Landsat image big data set, the model parameters of the first
and seventh bands in the multispectral image vary obviously,
but the model parameters of the third and fifth band data
are relatively similar. It is hard to explain this based only
on the characteristics or properties of the wavelet transform,
but it may be related to the spectral response function of the
multi-spectral sensor on Landsat satellites and the spectral
characteristics of terrestrial objects.

B. EXPERIMENTS 2
In the experiment, we mainly focus on the statistical char-
acteristics of long-term sequence data set of remote sensing
images. Remote sensing big data from Landsat satellites con-
tain many long time sequence data sets for many locations
on the earth’s surface. The data subset for the Beijing area in
northern China, which covers 16411 square kilometers, was
selected for the tests. The time period is from 1983 to 2013,
and some of the data with too much cloud coverage was
removed from the data set. There are many forests, cities, and
mountains in this area, which makes the textual information
very rich. The high degree of climatic seasonality is another
characteristics of the data subset. The volume of the tested
data subset is about 110 GB. Figure. 3 shows the GMM esti-
mation and distribution density by real sampling of long-term
sequence data set for different scales and different subband
directions. Figure. 4 shows the changing trends of the GMM
parameters with the changing of time.
Figure. 3 shows graphs of the distribution density of

wavelet coefficients in the fourth scale, fifth scale, and sixth
scale. In each scale, the probability density distribution esti-
mated by EM on the left and the histogram counted by
sampling on the right are shown on every graph. Further-
more, the statistical characteristics of subband wavelet coef-
ficients in three directions are sampled, estimated, and shown
separately for every scale. We can observe that there are also
cluster characteristics similar to the those of the different
band image data set in Fig. 1. However, the concentration
or cluster characteristics of the wavelet coefficients are not
as regular as in Fig. 1. There are obvious estimation errors
in Fig. 3 (a) regarding the horizontal direction of the fourth
scale in Fig. 3 (b) regarding the vertical direction of the
fourth scale Fig. 3 (d) regarding the horizontal direction of
the fifth scale, and in Fig. 3 (g) regarding the horizontal
direction of the sixth scale. In the long-term sequence data set,
there are often highly redundant image features. Therefore,
in some scales and in some directions, there could be too
many similar wavelet coefficient values that are not zeros
but concentrate together and become a new cluster center.
These wavelet coefficients near the new cluster centers make
the GMM inapplicable to denote the distribution density of
wavelet coefficients of the long-term sequence data set. We
can observe that in Fig. 3 (a–i), these errors are more obvious
in the horizontal and vertical directions of small scales than
in the diagonal direction of large scales.
In Fig. 4, the x-axis is the time and the y-axis is the value

of the variance in the GMM. There are two variances in
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FIGURE 1. Wavelet coefficients distribution in different scales and in different bands. (a) Band-1. (b) Band-3.
(c) Band-5. (d) Band-7.

our GMM. Figure. 4 (a) is the variance vs. time of the fourth
scale, Fig. 4 (b) is the variance vs. time of the fifth scale, and
Fig. 4 (c) is the variance vs. time of the sixth scale. We can

observe that the curve of variances in different scales is not
smooth. It illustrates that the changing of the texture in the
long-term sequence data set is relatively obvious. For Landsat
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FIGURE 2. The variation of wavelet coefficients with different bands and different scales.
(a) Band-1. (b) Band-1. (c) Band-3. (d) Band-3. (e) Band-5. (f) Band-5. (g) Band-7.
(h) Band-7.

satellites, their revisit cycle is more than half a month, so there
are many differences between the multitemporal image data
sets. This is why there is no obvious continuity, as in the scale
dimension of Fig. 2.

C. EXPERIMENTS 3
In this experiment, we decompose the different texture data
sets, such as cities, mountains and vegetables into different
scales using a wavelet transform. The subsets of data for city
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FIGURE 3. The wavelet coefficients distribution in different scales and in a long time
sequence (a) The fourth scale, Horizontal. (b) The fourth scale, Vertical. (c) The
fourth scale, Diagonal. (d) The fifth scale, Horizontal. (e) The fifth scale, Vertical.
(f) The fifth scale, Diagonal. (g) The sixth scale, Horizontal. (h) The sixth scale,
Vertical. (i) The sixth scale, Diagonal.

and mountain textures were randomly selected from the area
north of the Yellow River in northern China, which is about
2,000,000 square kilometres. The images in the subset data

for vegetable texture are mostly from the area of the Great
Lakes on the US-Canada border. The total volume of the three
types of textures is about 5 GB.
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FIGURE 4. The variation of wavelet coefficients in different scales and in a long-term sequence.
(a) The fourth scale. (b) The fifth scale. (c) The sixth scale.

Figure. 5(a-c) shows the statistical characteristics
of wavelet coefficients of city textures in different
scales, different directions. Figure. 5(d-f) shows the statistical
characteristics of wavelet coefficients of mountain textures
in different scales and different directions. Figure. 5(g-i)
shows the statistical characteristics of the wavelet coefficients
of vegetable textures in different scales and different direc-
tions. We find that these coefficients of texture more likely
concentrate to zeros in small scales than in large scales. The
values of coefficients of mountain texture in the fourth scale

mostly range from −380 to +380, the values of coefficients
of city texture in the fourth scale mostly range from −200 to
+200, and the values of coefficients of vegetable texture in
the fourth scalemostly range from−100 to+100. These scale
features agree well with vegetable textures that have smaller
image features than the city texture, while buildings in cities
have smaller image features than mountains. Therefore, it is
reasonable to infer some natural characteristics of the textures
using the statistical characteristics of wavelet coefficients for
big data sets.
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FIGURE 5. The distribution of wavelet coefficients in different scales and in different
textures. (a) City, the fourth scale. (b) City, the fifth scale. (c) City, the sixth scale.
(d) Mountain, the fourth scale. (e) Mountain, the fifth scale. (f) Mountain, the sixth
scale. (g) Vegetable, the fourth scale. (h) Vegetable, the fifth scale. (i) Vegetable, the
sixth scale.

Figure. 6 shows the variances in the GMM and their chang-
ing scales. We can observe that in Fig. 6 (a), for city textures,
the two parameters change smoothly and synchronously.

In Fig. 6 (b), for mountain textures, the two parameters do
not change regularly. However, due to the complexity of the
big data, we cannot conclude they are the rules of the city
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FIGURE 6. The variation of wavelet coefficients in different scales and in different textures. (a) City.
(b) Moutain. (c) Vegetable.

textures and mountain texture in the wavelet domain because
of the uncertainly of the two components from the EM esti-
mation. What we can conclude is that, for big data, there are
more large wavelet coefficients in large scales and the cluster
characteristics are more obvious in small scales.

V. CONCLUSION
In this paper, we sampled and transformed the remote sensing
big data set into a wavelet domain. The statistical charac-
teristics of wavelet coefficients in terms of the scale, time,
and band of the data set were comprehensively analyzed and

compared. The data set of different textures was decomposed
into different scales, and the parameters of the GMM of the
wavelet coefficients were estimated. The statistical charac-
teristics of different textures were also compared. We found
that the cluster characteristics of the wavelet coefficients are
still obvious in the remote sensing big data set for different
bands and different scales. However, it is not always well
estimated when we modeled the long-term sequence big data
set using a GMM.We also found that the features of different
textures for the big data set are obviously reflected in the
probability density function and model parameters of wavelet
coefficients.
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