
IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Received 19 April 2013; revised 21 October 2013; accepted 22 December 2013. Date of publication 13 April 2014;
date of current version 30 July 2014.

Digital Object Identifier 10.1109/TETC.2014.2316509

A Combined Design-Time/Test-Time Study of
the Vulnerability of Sub-Threshold Devices

to Low Voltage Fault Attacks
ALESSANDRO BARENGHI1, CÉDRIC HOCQUET2, DAVID BOL3,

FRANÇOIS-XAVIER STANDAERT3, FRANCESCO REGAZZONI4,5, (Member, IEEE),
and ISRAEL KOREN6, (Fellow, IEEE)

1Department of Electronics, Information and Biotechnology, Politecnico di Milano, Milan 20133, Italy
2National Instruments, Zaventem 1930, Belgium

3ICTEAM Institute, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
4Delft University of Technology, Delft 2628 CN, The Netherlands

5Alari–University of Lugano, Lugano 6904, Switzerland
6University of Massachusetts at Amherst, Amherst, MA 01003 USA

CORRESPONDING AUTHOR: A. BARENGHI (alessandro.barenghi@polimi.it)

This work was supported in part by the Walloon Region through the EUSER and S@T Skywin Projects, in part by the Nanotera
Program through the SecWear Project, and in part by the Swiss Commission for Technology through KTI/CTI Project

under Grant 12079.1 PFES-ES TRA.S.P.CH.

ABSTRACT The continuous scaling of VLSI technology and the possibility to run circuits in subthreshold
voltage range make it possible to implement standard cryptographic primitives within the very limited
circuit and power budget of radio frequency identification (RFID) devices. However, such cryptographic
implementations raise concerns regarding their vulnerability to both active and passive side-channel attacks.
In particular, when focusing on RFID targeted designs, it is important to evaluate their resistance against
low-cost physical attacks. A low-cost fault injection attack can be mounted, for example, by lowering the
supply voltage of the chip with the goal of causing setup time violations. In this paper, we provide an
in-depth characterization of a chip implementation of the AES cipher. The chip has been designed using
a 65-nm low-power standard cell library and operates in a subthreshold voltage range. We first show that it
is possible to inject faults (through lowering the supply voltage) compliant with the fault models required
to perform attacks against the AES cipher. We then investigate the possibility of predicting, at design time,
which parts of the chip are more likely to be sensitive to such fault injection attacks and produce the desirable
(from the point of view of the attacker) faulty behavior. Identifying such sensitive logic signals allows us to
suggest to the designer a tailored countermeasure strategy for thwarting these attacks, with a minimal impact
on the circuit’s performance.

INDEX TERMS Setup time violation, fault attacks, AES, design simulation.

I. INTRODUCTION

RADIO Frequency Identification (RFID) devices are
nowadays used in a wide range of applications, such

as health care, supply chain management, and pet identifi-
cation. Such a pervasive diffusion raises concerns regarding
privacy as RFID tags often store sensitive information. The
design of RFID devices is commonly constrained by a very
strict power and area budget. Thus, incorporating the circuitry

needed to guarantee a sound security margin against attackers
is a challenging task, as security primitives, if not properly
implemented, are quite demanding in terms of area and power.
A particularly appealing solution to meet the power

consumption constraints is to exploit nanometer CMOS
technologies, while adopting known aggressive power sav-
ing techniques, and operating the device at a subthresh-
old voltage [1]. Typical supply voltages employed in this

VOLUME 2, NO. 2, JUNE 2014

2168-6750 
 2014 IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. 107



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Barenghi et al.: Combined Design-Time/Test-Time Study

context range between 0.3V and 0.5V, significantly lower
than the common ones needed to work in the saturation region
(1-1.2V). Nanometer CMOS technologies also allow to meet
the area constraints when implementing standard crypto-
graphic algorithms such as AES. As the manufacturing pro-
cesses for nanometer CMOS technologies become more
widespread, a larger number of commercial applications will
be able to afford the cost of using RFID tags [2]. Using low
power cell libraries and operating the device at a subthresh-
old voltage, result in a significant reduction of the power
consumption but at the cost of a considerably lower clock
frequency at which the device will operate. This, however,
is acceptable since, even if speed in RFIDs is an important
design parameter, it is not commonly a critical one.

A key concern for every secure cryptographic implementa-
tion is its vulnerability to both active and passive side-channel
attacks. When designing RFIDs, it is particularly important
to evaluate their resistance against low cost physical attacks.
A well-known such attack is a fault injection carried out by
simply decreasing the supply voltage. It has been shown that
cipher implementations may experience functional failures if
the Vdd is reduced below the reference supply voltage. In [3]
we demonstrated the practical feasibility of these attacks
against nanometer CMOS devices working at a subthreshold
voltage. The considered AES co-processor design has a data
path of 8 bits and is implemented using a 65nm low power
library [4]. In particular, it was shown that it is possible to
generate timing faults (violations of the flip-flops’ setup time)
localized within a single byte of the state of the AES cipher.
In the same paper, we also showed that it is possible to inject
such faults even if the effects of process variations may shift
the exact voltage level to which the power supply of the device
should be lowered.

In this paper we address an important question in the design
of secure, low-power, low-area cryptographic implementa-
tions: can the locations of potential setup-time violations
(resulting from lowering the supply voltage) be predicted at
design time, through industry standard EDA toolchains? Such
predictions can allow the designer to assess the vulnerability
of the circuit to fault injection attacks and modify the circuit
design accordingly.We tackle this issue through extending the
fault location and timing characterization of [3] down to the
single bit level, for all the faults which can be used for attack
purposes. By exploiting the detailed results of this analysis we
investigate the feasibility of gathering information regarding
the vulnerability of the chip at design time. In particular,
we consider the feasibility of reproducing the faults, which
we measured experimentally, using simulations that can be
performed prior to manufacturing. In addition, we investigate
the usefulness of static timing analysis to predict which state
bits of the cipher are more likely to be affected by setup time
violation induced faults.

The remainder of the paper is organized as follows.
In Section II we provide background information on the
AES cipher, briefly discuss several previously proposed fault
attacks on AES and describe the one considered in our study.

We then present the architecture of our AES design in
Section III. Section IV describes the experimental setup
that we employed to collect the fault measurements on the
chip samples and the bit-level characterization of the faults.
Finally, Section V reports our results concerning the feasi-
bility of predicting the setup time violation faults at design
time by employing an industry grade EDA toolchain, and
discusses an efficient countermeasure which can be applied at
design time. Section VI presents our conclusions and points
out future research directions.

II. BACKGROUND
In this section we provide a brief overview of the standard
block cipher AES that is used as a case study in our exper-
iments and simulations. We then review the known fault
injection attacks against AES, focusing on those that can be
mounted with a limited budget. This section also includes
a detailed description of the basic differential fault attack
that we have mounted in our experiments. We stress the
importance of investigating faults induced through setup time
violations caused by underfeeding the cipher implementa-
tion, as they are, non-destructive and easy to perform, thus
representing a concrete threat to secure digital devices.

A. THE AES CIPHER
The cipher considered in this work is the Advanced Encryp-
tion Standard [5] due to its wide spread adoption. The selected
variants of the Rijndael [6] algorithm that the AES standard
supports include a plaintext block size of 128 bits and three
key sizes of 128, 192 and 256 bits.
AES is based on the iteration of a round function

composed of four primitives: SUBBYTES, SHIFTROWS,
MIXCOLUMNS and ADDROUNDKEY. The number of times the
round function is iterated, Nr , is 10, 12 or 14 times depending
on the key length. The exception to the repetition of the four
primitives are: the last round of the encryption is missing
the MIXCOLUMNS primitive and an extra ADDROUNDKEY is
performed before the first round as a pre-whitening of the
input.
The inner state of the AES cipher after round r , denoted

by Sr , is represented as a 4 × 4 matrix, where each element
is 8-bit wide. We denote the n-th byte, counting from left
to right, from top to bottom as Snr . Each primitive of the
AES cipher contributes either confusion or diffusion effects
to the cipher, or adds a dependency on the value of the
key. The SUBBYTES primitive is a non-linear mapping over
Z28 that introduces a non-linear confusion effect. This map-
ping is applied to a single byte at a time, Snr , and can be
implemented either as a lookup table or computed on the
fly. The SHIFTROWS primitive provides a row-wise diffusion
effect to the inner state of AES. It rotates the four rows of
the state Sr by 0,1,2 or 3 byte positions, respectively. The
MIXCOLUMNS primitive provides column-wise diffusion of
the state by considering the column as a vector of values
over Z28 , and multiplying the vector by a constant matrix.
The last operation, ADDROUNDKEY, combines the state of

108 VOLUME 2, NO. 2, JUNE 2014



Barenghi et al.: Combined Design-Time/Test-Time Study

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

FIGURE 1. Effects of a single fault injected between the MixColumns operations of the eighth and ninth rounds. The fault
propagates to only a quarter of the state, allowing the attacker to detect such a situation.

the cipher with a 4× 4 key matrix through bitwise exclusive
or (xor).

Since ADDROUNDKEY is repeated Nr + 1 times, there
is a need to expand the initial key into Nr + 1 round keys
through a key schedule routine. The key schedule process is
non-destructive, i.e., all the operations performed are bijec-
tive. As a result, if a person is in possession of 4, 6 or 8
contiguous 32-bit words of the key schedule, he is able to
reconstruct the full 128, 192 or 256 bit secret key.

B. ACTIVE SIDE-CHANNEL ATTACKS AGAINST AES
A number of fault injection attacks on the AES cipher
have been reported in the literature. Although some of them
were not experimentally validated at the time they were
presented [7]–[10], several other were successfully mounted
on real world implementations. Among the ones viable with
low cost equipment is the work of Hutter et al. [11] where
the authors were able to mount a successful attack by causing
temporary brown outs and glitches on the power supply line of
an 8-bit microcontroller running a software implementation
of AES. In [12], Schmidt et al. attacked an implementation of
AES by blanking selectively the memory where the SBoxes
are held, effectively reducing the entire AES algorithm to
the last ADDROUNDKEY, performed on a zero-filled state.
A techniquewhich has proven effective in inducing controlled
faults is through causing setup time violations by lowering
the supply voltage below the level the circuit was designed
for. In [13], Selmane et al. report the effects of attacking a
commercial grade ASIC implementation of AES in a smart
card, using this fault induction technique, while in [14] the
authors successfully applied the technique to a full ARM9
core running a software implementation of AES. We refer the
interested reader to a comprehensive survey on fault attacks
and countermeasures in [15]. For the sake of completeness,
we also recall that passive side-channel analysis techniques
have been successful in attacking real world implementations
of RFID chips [16].

C. THE ATTACK UNDER CONSIDERATION
We now present the attack methodology considered in this
paper to determine which faults represent a threat to the secu-
rity of the AES implementation. Dusart et al. [17] have shown
that it is possible to successfully retrieve the whole secret key
of an AES-128 cipher, through the injection of a single byte-
wide fault during the regular functioning of the cipher. The
proposed attack relies on the injection of a single byte fault
between the MIXCOLUMNS operation of the eighth round and
the MIXCOLUMNS of the ninth round, as depicted in Figure 1.
Due to the lack of the MIXCOLUMNS operation during the
tenth round, the effect of the fault is spread only over 4 of
the 16 bytes of the state. Since the key addition is performed
byte-wise, the values of these 4 bytes are influenced only by
4 bytes of the last round key. Exploiting this fact and assuming
that the injected fault has corrupted only one byte, the attacker
may proceed to recover the 4 bytes of the key by comparing
the correct and faulty ciphertexts.
To this end, the attacker makes an hypothesis on the

unknown part of the key and proceeds to invert the effect
of the last ADDROUNDKEY on the part of the cipher
that was affected by the fault (greyed out in the fig-
ure) obtaining four values belonging to the state marked
as I in Figure 1. This operation is performed on both
the erroneous and the correct values of the ciphertext,
yielding two groups of 4-byte values. Subsequently, the
attacker inverts the effect of both the SHIFTROWS and
SUBBYTES primitives, since their effect is fully known,
obtaining successfully a faulty and a correct hypo-
thetical values for four bytes of the state S9, denoted respec-
tively by w̃ = {S̃90 , S̃

9
1 , S̃

9
2 , S̃

9
3 } and w = {S90 , S

9
1 , S

9
2 , S

9
3 }.

Bypassing the effect of the ADDROUNDKEY operation, to
further roll back the cipher, the attacker computes the
exclusive or of w̃ and w. Doing so, the effect of the
ADDROUNDKEY function is canceled since in computing
δ = w ⊕ w̃ the key values are added twice. This
allows the attacker to effectively compute the difference

VOLUME 2, NO. 2, JUNE 2014 109



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Barenghi et al.: Combined Design-Time/Test-Time Study

FIGURE 2. Block diagram of the AES module proposed by Feldhofer et al. [19] and implemented with a 65nm subthreshold cell
library. (a) AES Component. (b) AES Component Datapath.

between the correct and the erroneous state of the
cipher right before the MIXCOLUMNS operation. Since the
MIXCOLUMNS operation is linear with respect to the exclusive
or, it is possible to map the 4-byte difference δ into the dif-
ference before the operation by multiplying the value by the
inverse of the matrix employed in the regular MIXCOLUMNS.
At this point, the attacker may check if the obtained difference
is actually composed of a single byte, as the fault model
required by the attack mandates. Depending on whether the
difference matches the fault model or not, the attacker decides
if the key hypothesis made at the beginning of this rollback
procedure is a valid one or not.

The attacker iterates the same difference analysis proce-
dure for all the possible 232 values of the four unknown bytes
of the key and stores only the ones which produce a single
byte difference before the last MIXCOLUMNS operation. A
single pass of this procedure yields roughly a thousand valid
candidates for the 32-bit wide key slice, and may be repeated
if more than one faulty ciphertext caused by a single byte
fault is available to the attacker. With a second sweep of the
procedure the number of key candidates is reduced to onewith
a reasonably high probability [18]. Since it is possible for the
attacker to discern, looking at the bytes that are affected by the
faults, which slice of the key is the one under consideration, he
can reconstruct the whole last round key with 4 injected faults
and a brute force effort of 10004 ∼ 240 AES encryptions,
which takes about a couple of minutes on a modern desktop
computer, or with 8 injected faults and no brute force effort
at all.

Further reduction of the number of faults needed for the
attack can be achieved by injecting a single fault between the
MIXCOLUMNS of the seventh round and the MIXCOLUMNS of
the eighth round (instead of four single-byte faults injected
simultaneously on each column of the state before the
last MIXCOLUMNS), thanks to the diffusing effect of the

SHIFTROWS operation of the ninth round. This way, it is
possible to retrieve the complete last round key with a single
fault and a modest brute force effort or two faults and no
brute force effort. The main drawback of this method is that
it is not possible to determine whether a faulty ciphertext
has been the result of a fault complying with the required
timing hypothesis, since the entire ciphertext value is altered.
Nonetheless, if a fault which does not match the fault hypoth-
esis is employed in the key recovery procedure, the number
of valid key candidates drops to zero during the first iteration
of the procedure, thus allowing the attacker to be aware of the
issue.
After performing the aforementioned procedure, the

attacker has all the bits of the last round key and is thus able
to reconstruct the original key, in case a key size of 128 bit
is employed. If larger key sizes are used, it is necessary to
recover more key material in order to successfully break the
cipher. An extension of the above attack is reported in [20],
and requires twice the number of faults in order to recover the
entire AES-256 key. The fault model assumed is the same, but
the attacker has to inject faults also during the round before
the one where the aforementioned attack takes place. The
same paper also mentions the possibility of attacking even
an AES cipher where no key schedule has been employed,
and the 1408-bit key material is filled with random key bits.
To this end, the attacker should be able to inject single byte
faults during all the rounds of the cipher, thus retrieving all
the round keys one by one.

III. ARCHITECTURE OF THE COPROCESSOR
In this section we describe the structure of the AES
co-processor chosen to implement the cipher, given the tight
area and power constraints [4].
The selected 8-bit AES implementation is tailored

to be used in low cost, low power devices such as

110 VOLUME 2, NO. 2, JUNE 2014



Barenghi et al.: Combined Design-Time/Test-Time Study

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

RFIDs and follows the high-level structure proposed by
Feldhofer et al. [19], supporting only a 128-bit key. The
block diagram of this design is depicted in Figure 2. The chip
communicates with the user through an 8-bit wide data bus
managed by an I/O interface module. The state and the initial
key of the cipher are stored in a 32-byte wide register file,
connected to the 8-bit wide data-path of the chip, and driven
by the finite-state control unit.

The compute portion of the design is composed of
three components: a module to compute the non-linear
transformation (S-box) that is used by the SubBytes primitive
and the key expansion routine, a module to compute one
quarter of the MixColumn primitive per clock cycle, and
an exclusive-or module to perform the round key addition
and the linear combinations of subkeys which are needed to
execute the AES key schedule. The ShiftRows primitive is
performed through a proper access pattern in the load and
store operations.

The implemented AES co-processor differs from the
one in [19] in terms of the technique used to implement
the S-Box non-linear transformation. To achieve a lower
gate count, we followed the guidelines of the lightweight
S-box implementation proposed by Satoh et al. [21].
This implementation maps the input byte of the S-Box into
the composite Galois field Z(((22)2)2), effectively reducing
the input size of the nonlinear primitives to be computed to
2 bits. Then, it performs an efficient inversion of the four
elements over Z(2) obtained from the previous mapping, and
maps back the resulting inverted elements to Z(28), subse-
quently performing the affine transformation as a sequence
of bitwise xor operations. This design technique that has
a significantly lower gate count, was further optimized by
Mentens et al. in [22], yielding the implementation technique
that we employ.

The HDL code of the described AES design was syn-
thesized for a target clock frequency of 100 kHz using
Synopsys Design Compiler. The target technology was the
STMicroelectronics 65nm LP CMOS technology with seven
interconnect metal layers. Considering the fact that the device
would operate in the subthreshold regime, we manually
removed from the standard-cell library the cells which may
not operate correctly, i.e., the ones with the longest tran-
sistor stack, such as NAND3 or NOR3. We set the timing
condition to the worst-case process corner (slow NMOS and
slow PMOS transistors), low temperature (-15 C), and oper-
ating supply voltage of 0.4V to achieve the desired 100KHz
clock frequency. The optimized design was then placed and
routed using Cadence SoC Encounter and manufactured in
silicon. Twenty dies were encapsulated in a 44-pin Ceramic
Quad Flat Package (CQFP) and were tested to verify the
correct execution of encryption and decryption. All twenty
tested chips were found to operate correctly at a frequency of
1.3MHz with a power supply of 0.45V and 400KHz at 0.4V.
By relaxing the clock frequency further, it is possible to keep
the AES circuit operating correctly down to 0.25 V, which
represents thus the functional limit of the design.

FIGURE 3. Percentage of faulty outputs at different supply
voltages for a single sample chip.

IV. EXPERIMENTAL SETUP AND
FAULT CHARACTERIZATION
This section describes the measurement setup used and the
experiments conducted in order to profile the behavior of
the low-power AES implementation and investigate the fea-
sibility of low-cost fault injection attacks based on voltage
throttling. It also provides a precise characterization of the
setup time violation faults which can be exploited by an
attacker.

A. EXPERIMENTAL SETUP
To perform the required measurements, the packaged chips
were mounted on suitable sockets and dedicated PCBs were
built. The chips under test were connected to a Keithley K236
tunable voltage generator, which is sufficiently precise to
allow modifying the supply voltage by as little as 0.1mV.
The power supply was connected directly to the power pin
of the chips under test. All the tested chips were clocked at a
frequency of 1.3MHz bymeans of an external clock generator
and each encryption required 1100 clock cycles (less than
1ms). These clock rates and encryption times are within the
typical range of RFID systems.
To carry out the experiments we connected the

inputs/outputs of the PCB to a logic generator/analyzer, the
National Instruments NI6552, which was connected to a PC
where the plaintexts and keys were stored. The entire acquisi-
tion system, including the scaling of the supply voltage, was
controlled by a Labview program, allowing to automate the
acquisition process.

B. PERFORMING THE ATTACKS
The first experiment, with the objective of finding out whether
the performance of the circuit degrades gracefully, was con-
ducted by testing how many different encryptions the chip
was able to perform while lowering the supply voltage by
0.1mV at each step. The voltage reduction was carried out
in order to exactly identify the voltage level at which it is
more likely that only a small number of setup time violations
occur but no functional errors happen, which is the desired
situation for an attacker. At each voltage step, we collected the
results of ten thousand encryption operations and compared
them to the correct ones. Figure 3 depicts the results of
the experiments in terms of percentage of faulty ciphertexts

VOLUME 2, NO. 2, JUNE 2014 111



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Barenghi et al.: Combined Design-Time/Test-Time Study

FIGURE 4. Comparison of the voltage threshold of the first appearance of faults among different sample chips implementing the same AES
co-processor design. The five chip degradation curves are depicted in black. The impact of temperature variations on the degradation curve of the chip
marked by round plotmarks is depicted by the blue (T = 25C), green (T = 50C), and red (T = 75C) curves.

versus supply voltage. As can be seen from the figure, there
is a 0.8mV interval where the fault occurrence is limited to
less than 10% of the encryptions and the fault occurrences
gradually increase when the voltage is further lowered. The
0.8mV zone where the probability of a fault occurrence is
low is relevant when performing fault attacks as it maximizes
the likelihood of injecting a single fault into the computation,
as opposed to the catastrophic behavior experienced when
the supply voltage is considerably lower, as reported in
[13] and [23]. The 0.8mV supply voltage interval is well
within the reach of the precision of the employed tunable
voltage generator.

Circuits implementations in current CMOS technologies
are known to experience process variations. These variations
may have a noticeable impact on the behavior of the chip
especially when it is operated at subthreshold voltage lev-
els. An important question here is whether these process
variations significantly reduce the already small exploitable
voltage interval (where very few faults occur). To this end,
we tested the impact of process variations on the position
and width of the desired voltage interval. Figure 4 reports
the results of conducting the same campaign on five dif-
ferent sample chips with the same AES design. As can be
seen, process variations result in a noticeable offset of the
fault injection threshold for the sampled chip, due to their
significant impact on subtreshold timing characteristics [1].
However, it can be noticed that the rate of the degradation
of the circuit performance is similar for all the samples and
consequently, the width of the voltage interval stays about
the same. This in turn implies that, regardless of the different
offsets in the fault onset zone, it is possible to inject success-
fully single byte faults with the same low cost equipment.
Note that an attacker may identify the proper voltage interval
by lowering the supply voltage of the device using first large
steps, and then much smaller steps once a faulty behavior is
exhibited.

A related question is whether operating the chip at different
temperaturesmay impact the success rate of the fault injection
attacks since temperature changes are known to affect the
working voltage of a circuit. Figure 4 also shows the effect of
operating a chip instance at different temperatures achieved

by placing the chip in a thermostatic chamber. As it can be
seen, raising the working temperature of the chip lowers the
voltage point where a significant amount of faults starts to
happen. However, the degradation curve shows that it is still
possible to identify a reasonable interval where the faults are
exploitable by an attacker.
After characterizing the graceful degradation of the chips,

in terms of fault occurrence frequency, we investigated the
actual fault patterns to find out whether single byte faults were
present in the erroneous ciphertexts which were collected. To
this end, we collected roughly 670k faulty ciphertexts while
running the chip under test within the 10% faulty ciphertext
regionmentioned before. In order to uniformly stress the AES
implementation, the plaintexts used during this campaign
were selected from the NIST standard AES test vectors. The
goal of this analysis was to understand the variations in the
observed fault patterns. By examining the faulty ciphertexts
produced by the device, we found out that the errors induced
by setup time violations caused only 822 unique faults. This
implies that the positions where the faults occur are very
regular, since therewas an approximate repetition rate of 1000
for each fault pattern. The fault repetition rate was uniform
with respect to the different plaintexts.
The last step in the characterization of attacks on this AES

implementation was to find out how many faults out of the
ones obtained, were practically usable for carrying out the
attack. To this end, we computed all the correct inter-state
values for the ten thousand plaintext/key pairs employed in
the experiments and the ones resulting from the decryption
of the faulty outputs with the correct key. The inner states
of the cipher at the beginning of each round obtained in this
way were compared with the correct values and all the per-
state differences were analyzed. We identified which faults
were likely to have been generated by a single byte difference
between the correct inner state and the faulty one. We note
that, although we are not able to record the actual inner state
of the chip, it is very unlikely that a multi-byte difference
induces the same effect as a single byte fault in an AES
encryption, due to the fast diffusion properties of the cipher.
We also note that an attacker does not need to perform this
analysis (which would be impossible for him due to the lack

112 VOLUME 2, NO. 2, JUNE 2014



Barenghi et al.: Combined Design-Time/Test-Time Study

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

FIGURE 5. Per-round distribution of the single byte faults in the
states of the cipher on a chip sample. Round 0 indicates the
faults occurring before the cipher started, allegedly during the
load operations. Each line is obtained with a fixed voltage
range, sweeping the [426.6 − 427.7]mV interval in 0.1mV steps,
fainter colors represent lower voltages.

of the key knowledge), since all the mentioned fault attack
techniques on AES are able to successfully discard faults that
do not fit the desired fault pattern.

In order to avoid possible fault pattern repetitions due
to the same plaintext or key, 10000 different plaintext and
key combination were used as input to each experiment. We
performed 10 different measurements lowering the voltage
level by 0.1mV each time, while keeping the voltage within
the low fault rate region, to determine how wide is the actual
voltage window to achieve usable single bit faults. Based on
these results we found out that, out of 39881 faulty results
collected over the 10 runs, 30386were the outcome of a single
byte fault, thus resulting in an average 76% of the injected
faults fitting the desired fault model (single byte modifica-
tion). The percentage of exploitable faults ranges from 61%
(lowest voltage) to 82% (highest voltage), supporting the
observation that a bigger voltage drop induces gradually more
catastrophic faults in the computation. This result implies that
the actual exploitable window for the fault injection is at least
1mV wide.

The last step to confirm the feasibility of mounting fault
injection attacks on the chip is to verify that the faults are
hitting the specific round positions required by the attack
of [17]. Figure 5 shows the distribution of the single byte
faults in the state of the cipher for each voltage level employed
in the measurements.

As can be seen, the faults tend to hit all the rounds of the
cipher, albeit in larger numbers for the earliest rounds. This
different sensitivity to single byte faults can be ascribed to
the critical paths in the control unit allowing slightly different
slack times among different rounds due to the specific encod-
ing of the state register.

The very low fault rate for the first state of the cipher is to
be attributed to the fact that the architecture has just loaded
the values and has not performed any significant operation
on the plaintext yet. These results show that it is possible to
generate successfully the required faults in order to attack the
AES implementation under consideration. In particular, since
the position of the single byte fault in the inner state is almost
uniformly distributed, the hypotheses made in [17] and [18]
on the required number of faults hold.

To confirm the feasibility of an attack on the chip we
executed the aforementioned attacks on an ad-hoc C software
implementation of the algorithm on a Core 2 Quad Q6600
based desktop.
To provide an in-depth characterization of the faults, we

examined all the single byte faults which we were able to
measure, counting the number of their occurrences on a bit-
level. Figure 6 shows a bit-level characterization of the single
byte faults which we have observed in our chips. In particular,
the state bit flips that occurred during the computation of each
round of the AES are shown. Figures 6(a) and 6(b) depict the
number of single bit flips, split into bit flip-ups (effectively a
transient bit set fault) and bit flip-downs (transient bit reset).
As shown in the figure, both flip-ups and flip-downs are
present, thus yielding a fault model which differs from the
one observed on a software-based AES by [23], where only
bit resets were reported. We are not able to compare with
the fault patterns obtained through setup time violations on
a smart card in [13] as the paper does not report them.
Figures 6(c) and 6(d) show the cumulative single bit

flipping statistics for two different chips of our design, to
examine the impact of process variations on the fault patterns.
As can be seen from the figures, the values of some state
bytes are consistently more sensitive to faults across differ-
ent instances of the chip (e.g., byte 12), while some bytes
are never hit by a fault, namely bytes 1, 5, 9 and 13. The
observations regarding the fault immunity of these four bytes
were consistent in all the results we collected, and point to
the possibility that the paths driving these bytes are effectively
shorter than the other ones. However, we note that, among the
fault-sensitive bytes, the amount of sensitivity may vary sig-
nificantly: for instance, byte 7 is affected by a large number of
faults in Chip 1, while it is almost never hit by them in Chip 2.

V. FAULT PREDICTABILITY AT DESIGN TIME
This section describes the EDAflow used to design the circuit
under test and discusses how an early assessment of the
potential fault attacks is carried out. In particular, we discuss
how an early prediction of the points in the circuit which
are more sensitive to setup-time violations can be identified
using static timing analysis. Finally, we discuss to what extent
the results obtained in simulations match the ones measured
on the real chip, and we exploit them to propose efficient
countermeasures against this attack strategy.

A. DESIGN TOOLCHAIN DESCRIPTION
The design flow used to assess the viability of fault attacks
against the device under test is composed of common EDA
tools, and is depicted in Figure 7. The inputs of the design
flow are an HDL definition of the cipher implementation,
in our case described in VHDL, and the target standard-
cell library, in the STMicroelectronics 65nm LP CMOS
technology.
As previously mentioned, we first recharacterized the

library at the desired voltage, then we synthesized our design
setting the appropriate target frequency.

VOLUME 2, NO. 2, JUNE 2014 113



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Barenghi et al.: Combined Design-Time/Test-Time Study

FIGURE 6. Bit level characterization of the single byte faults in the state of the cipher. (a) Single bit flip-downs - Chip 1. (b) Single bit flip-ups - Chip 1.
(c) Single bit flips - Chip 1. (d) Single bit flips - Chip 2.

The synthesized netlist was then placed and routed using
Cadence Design Systems SoC Encounter. Also produced
were a parasitics file (in spef format), the final netlist of the
circuit (in verilog format), and the back annotation of the
delay (in sdf format).

Once the design was completed, we carried out a post
place-and-route simulation using the netlist as well as the cor-
responding delays. This simulation is used to produce the test
vector, in VCD format, which will be used in the following
steps of the evaluation process. We performed two different
analyses with the aim of discerning if the tools available in the
common EDA flow for transistor level simulation and static
timing analysis are effective in predicting the fault patterns of
the chip under test.

B. PREDICTING FAULTS WITH TRANSISTOR
LEVEL SIMULATIONS
The first analysis was aimed at understanding if a transistor
level simulator is capable of correctly predicting the fault
patterns we havemeasured in practice. To this end, a transistor
level simulation campaign was carried out using Synopsys

Nanosim, a fast SPICE simulator, employing the aforemen-
tioned data files as input. In addition to the data files describ-
ing the circuit, Nanosim requires a transistor-level model of
the gates available in the library. The device behavior was
simulated for a working voltage between 0.3V and 0.5V,
in 1 mV steps. The simulation resolution was set to 100ns,
and we employed a clock signal with the same frequency as
during the real measurements, yielding a number of faulty
ciphertexts reasonably close to the numbers observed in the
experiments. We can thus speculate that Nanosim is an effec-
tive tool to predict the setup time violations which we were
able to measure in practice.
However, performing an extensive characterization of the

chip through transistor level simulation, to find which are the
paths that are more likely to fail through setup time viola-
tions, is very time consuming. In fact, such a characterization
would require to perform a significant amount of simulations
with different input-key pairs in order to provide a good
circuit coverage. As one transistor level simulation requires
10 minutes in our case, performing a simulation matching the
experimental collection campaign would exceed 10k hours of

114 VOLUME 2, NO. 2, JUNE 2014



Barenghi et al.: Combined Design-Time/Test-Time Study

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

FIGURE 7. Outline of the full simulation flow employed for both SPICE simulations and static timing analysis.

computation time. We therefore, followed another methodol-
ogy to predict which paths are more likely to fail using static
timing analysis.

C. PREDICTING FAULTS WITH STATIC TIMING ANALYSIS
To perform the static timing analysis, Synposys PrimePower
was used, employing the spef and sdf files, the relative Verilog
netlist, and the file describing the timing characteristics of the
library used during the synthesis.

The technology library file is not the original one, but the
one storing the power consumption and the timing informa-
tion of the library after the recharacterization at the appropri-
ate voltage.

The result of a static timing analysis is a very detailed
timing characterization of the paths inside our design. We
extracted the worst-case delays associated with the input con-
nections of the state and key registers. Examining the delays,
we noticed that the ones characterizing the cipher state and
the ones characterizing the key bytes were the same, bitwise.
We ascribe this behavior to the fact that both the cipher state

and the key are stored in the same 32-byte SRAM bank,
making it thus likely for them to have the same delays.
Figure 8(a) depicts the delays characterizing the input lines
of the latches storing the cipher state: it can be noticed that
the bytes in position 1, 5, 9 and 13 have a significantly lower
worst-case delay for their input signal. Figure 8(b) shows the
number of faults per bit measured on chips 1 and 2, adding
together all the faults occurring throughout the whole 10
rounds of the cipher, with fainter colors representing lower
input voltages. It can be seen that while lowering the voltage,
the number of faults per bit increases, but the percentage of
faults hitting a single bit are roughly the same. This in turn
points to an increase in the number of single byte faults when
lowering the voltage, while maintaining the faulty bit pattern
even at lower voltages. Comparing the two figures, one can
notice that the bits having an input delay very different from
the critical path delay (e.g., in bytes 1, 5, 9 and 13) are
completely fault-free. In contrast, the bits characterized by
an input delay close to the critical path are affected by a
significant amount of faults. Also notice that, among them,
the number of faults hitting a bit is strongly influenced by

VOLUME 2, NO. 2, JUNE 2014 115



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Barenghi et al.: Combined Design-Time/Test-Time Study

FIGURE 8. Input delays (worst-case) for all the bits of the cipher 8(a); state and amount of faults hitting every state bit 8(b). (a) Worst case
propagation timings and hold propagation timings for all the input lines of the state register. b) Fault rates measured on Chip 1 (green) and
Chip 2 (blue), adding together all rounds.

process variations in some cases. For instance, the bits in the
eighth byte of the state are affected by only a few faults in
chip 2, while they are the second most affected in chip 1.

Based on these results we can conclude that static timing
analysis provides an effective way for the designer to predict
circuit paths which are likely to not experience setup time
violations upon an attack, while among the ones at risk, the
effective success rate of an attack is influenced by chip-to-
chip process variations. In an attempt to propose an effective
approach to prevent setup-time violation based fault attacks,
we note that the attacker relies on the early failures of some
particular lines to achieve a meaningful faulty result. A viable
approach for a designer to protect the chip against such attacks
could be through introducing an extra logic path, having a
total delay sensibly longer than the critical path of the chip.
Such a path will be acting as a canary, due to its extra length,
in case a setup time violation is induced by the attacker. If
a setup time violation on the canary path is detected, proper
countermeasures against the fault attack, e.g., output random
values as the ciphertext, and/or erase the key, can be activated.
According to the delays reported in Figure 8(a) and the fault
rates depicted in Figure 8(b), we note that paths shorter than
20% with respect to the critical path, are never hit by setup
time violations, regardless of the process variations. It is thus
sensible to assume that a canary path longer than the critical
path by about 20% will be adequate.

VI. CONCLUSIONS
In this paper we have presented a detailed characterization
of an AES coprocessor realized with 65nm technology and
operating in a subtreshold voltage region. The characteriza-
tion showed that it is possible to effectively perform setup
time violation attacks on the implemented ciphers through
reducing the supply voltage in 0.1mV steps. We were able

to provide a bit-level description of the fault frequencies and
provide insights regarding their predictability with common
EDA tools. In particular, we report that by employing static
timing analysis tools, it is possible to obtain reliable estimates
of the worst case timings for the input lines of the cipher
state registers and pinpoint which ones are more likely to
be vulnerable to setup time violation attacks. Finally, we
proposed a countermeasure that designers can use in order
to protect their design against these attacks.

ACKNOWLEDGEMENTS
François-Xavier Standaert is an associate researcher of
the Belgian Fund for Scientific Research (FNRS-F.R.S.).
We acknowledge the support of Lubos Gaspar and
François Stas from Université Catholique de Louvain,
Louvain-la-Neuve, for performing the temperature-controlled
measurements.

REFERENCES
[1] D. Bol. (2011). Robust and energy-efficient ultra-low-voltage circuit

design under timing constraints in 65/45 nm CMOS. J. Low Power
Electron. Appl. [Online]. 1(1), 1–19. Available: http://www.mdpi.com/
2079-9268/1/1/1

[2] D. Bol, R. Ambroise, D. Flandre, and J. Legat, ‘‘Interests and limitations of
technology scaling for subthreshold logic,’’ IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 17, no. 10, pp. 1508–1519, Oct. 2009.

[3] A. Barenghi, C. Hocquet, D. Bol, F.-X. Standaert, F. Regazzoni, and
I. Koren, ‘‘Exploring the feasibility of low cost fault injection attacks on
sub-threshold devices through an example of a 65 nm AES implementa-
tion,’’ inRFIDSec (LectureNotes in Computer Science), vol. 7055, A. Juels
and C. Paar, Eds. New York, NY, USA: Springer-Verlag, 2011, pp. 48–60.

[4] C. Hocquet et al., ‘‘Harvesting the potential of nano-CMOS for lightweight
cryptography: An ultra-low-voltage 65 nm AES coprocessor for passive
RFID tags,’’ J. Cryptograph. Eng., vol. 1, no. 1, pp. 79–86, 2011.

[5] K. H. Brown, ‘‘Announcing the advanced encryption standardAES,’’ NIST,
Gaithersburg, MD, USA, Tech. Rep. 197, 2001.

[6] J. Daemen and V. Rijmen, The Design of Rijndael: AES—The Advanced
Encryption Standard. New York, NY, USA: Springer-Verlag, 2002.

116 VOLUME 2, NO. 2, JUNE 2014



Barenghi et al.: Combined Design-Time/Test-Time Study

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

[7] C.-N. Chen and S.-M. Yen, ‘‘Differential fault analysis on AES key sched-
ule and some countermeasures,’’ in Proc. Information Security Privacy,
2003, pp. 217–219.

[8] C. Giraud, ‘‘DFA on AES,’’ in Proc. 4th Int. Conf. AES, vol. 3373. 2005,
pp. 27–41.

[9] C. H. Kim and J.-J. Quisquater, ‘‘New differential fault analysis onAES key
schedule: Two faults are enough,’’ in Proc. Int. Conf. Smart Card Research
and Advanced Applications, 2008, pp. 48–60.

[10] A. Moradi, M. T. M. Shalmani, and M. Salmasizadeh, ‘‘A generalized
method of differential fault attack against AES cryptosystem,’’ in Proc.
Int. Workshop Cryptographic Hardware and Embedded Systems, 2006,
pp. 91–100.

[11] M. Hutter, T. Plos, and J.-M. Schmidt, ‘‘Contact-based fault injections
and power analysis on RFID tags,’’ in Proc. IEEE ECCTD, Aug. 2009,
pp. 409–412.

[12] J.-M. Schmidt, M. Hutter, and T. Plos, ‘‘Optical fault attacks on AES:
A threat in violet,’’ in Proc. Workshop Fault Diagnosis and Tolerance
Cryptography, 2009, pp. 13–22.

[13] N. Selmane, S. Guilley, and J.-L. Danger, ‘‘Practical setup time violation
attacks on AES,’’ in Proc. 7th EDCC, 2008, pp. 91–96.

[14] A. Barenghi, G. M. Bertoni, L. Breveglieri, M. Pellicioli, and G. Pelosi,
‘‘Low voltage fault attacks to AES,’’ in HOST, M. Tehranipoor and
J. Plusquellic, Eds. Los Alamitos, CA, USA: IEEE Comput. Soc., 2010.

[15] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, ‘‘Fault injection
attacks on cryptographic devices: Theory, practice, and countermeasures,’’
Proc. IEEE, vol. 100, no. 11, pp. 3056–3076, Nov. 2012.

[16] T. Kasper, M. Silbermann, and C. Paar, ‘‘All you can eat or breaking a real-
world contactless payment system,’’ in Financial Cryptography (Lecture
Notes in Computer Science), vol. 6052, R. Sion, Ed. New York, NY, USA:
Springer-Verlag, 2010, pp. 343–350.

[17] P. Dusart, G. Letourneux, and O. Vivolo, ‘‘Differential fault analysis on
A.E.S,’’ in Applied Cryptography and Network Security. Berlin, Germany:
Springer-Verlag, 2003.

[18] G. Piret and J.-J. Quisquater, ‘‘A differential fault attack technique against
SPN structures, with application to the AES and KHAZAD,’’ in CHES
(Lecture Notes in Computer Science), vol. 2779, C. D. Walter, Ç. K. Koç,
and C. Paar, Eds. Berlin, Germany: Springer-Verlag, 2003, pp. 77–88.

[19] M. Feldhofer, J. Wolkerstorfer, and V. Rijmen, ‘‘AES implementation on
a grain of sand,’’ IEE Proc. Inf. Security, vol. 152, no. 1, pp. 13–20, Oct.
2005.

[20] A. Barenghi, G. M. Bertoni, L. Breveglieri, and G. Pelosi, ‘‘A fault
induction technique based on voltage underfeeding with application
to attacks against AES and RSA,’’ J. Syst. Softw., vol. 86, no. 7,
pp. 1864–1878, 2013.

[21] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, ‘‘A compact
Rijndael hardware architecture with S-box optimization,’’ in ASIACRYPT1
(Lecture Notes in Computer Science), vol. 2248. New York, NY, USA:
Springer-Verlag, 2000, pp. 239–254.

[22] N. Mentens, L. Batina, B. Preneel, and I. Verbauwhede, ‘‘A systematic
evaluation of compact hardware implementations for the Rijndael
S-box,’’ in CT-RSA (Lecture Notes in Computer Science), vol.
3376, A. Menezes, Ed. New York, NY, USA: Springer-Verlag, 2005,
pp. 323–333.

[23] A. Barenghi, G. Bertoni, E. Parrinello, and G. Pelosi, ‘‘Low voltage fault
attacks on the RSA cryptosystem,’’ in Proc. Workshop Fault Diagnosis and
Tolerance Cryptography, 2009, pp. 23–31.

ALESSANDROBARENGHI is currently a Post-
Doctoral Research Assistant with Dipartimento di
Elettronica e Informazione, Politecnico di Milano,
Milano, Italy, where he received the Ph.D. degree
in 2011. His main area of interest for his researches
is computer, embedded, and network security. He
is currently tackling the issue of providing secu-
rity at design time for embedded systems through
the use of compiler techniques. In addition, he
is involved in formal languages and compilers

employing operator precedence for efficient deterministic parallel parsing.

CÉDRIC HOCQUET received the M.S. degree in
electrical engineering from Université Catholique
de Louvain, Louvain-la-Neuve, Belgium, in 2009,
where he was a Researcher until 2012. His
main research subjects were ultralow-power dig-
ital circuit design and design automation. He has
authored more than 10 papers and conference con-
tributions. He is currently with National Instru-
ments, Zaventem, Belgium.

DAVID BOL received the M.Sc. degree in elec-
tromechanical engineering and the Ph.D. degree
in engineering science from Université Catholique
de Louvain (UCLouvain), Louvain-la-Neuve, Bel-
gium, in 2004 and 2008, respectively. In 2005,
he was a Visiting Ph.D. Student with the CNM
National Centre for Microelectronics, Sevilla,
Spain, where he was involved in advanced
logic design. In 2009, he was a Post-Doctoral
Researcher at intoPIX, Louvain-la-Neuve, where

he was involved in low-power design for JPEG2000 image processing.
In 2010, he was a Visiting Post-Doctoral Researcher with the UC Berkeley
Laboratory for Manufacturing and Sustainability, Berkeley, CA, USA, where
he was involved in life-cycle assessment of the semiconductor environmental
impact. He is currently an Assistant Professor at UCLouvain, where he is
conducting researches in green VLSI and SoCs for a sustainable Internet-of-
Things. He has authored and co-authored more than 50 technical papers and
conference contributions. He holds one patent. He was a recipient of the Best
Paper and Best Poster Awards from the IEEE International Conference on
Computer Design and the IEEE International SOI Conference, respectively,
in 2008. He also serves as an Editor of MDPI J. Low-Power Electronics and
Applications, a TPC Member of the IEEE SubVt and S3S conferences, and
a reviewer for various journals and conferences, such as the IEEE Journal
of Solid-State Circuits, the IEEE Transactions on VLSI Systems, the IEEE
Transactions on Circuits and Systems I/II, and ACM Design Automation
Conference. Since 2008, he has presented several invited keynote tutorials
in international conferences.

FRANÇOIS-XAVIER STANDAERT was born
in Brussels, Belgium, in 1978. He received the
Degree in electrical engineering and the Ph.D.
degree from the Universite Catholique de Louvain,
Louvain-la-Neuve, Belgium, in 2001 and 2004,
respectively. From 2004 to 2005, he was a Ful-
bright Visiting Researcher with the Network Secu-
rity Laboratory, Department of Computer Science,
ColumbiaUniversity, NewYork, NY,USA, and the
Center for Bits andAtoms,MITMedia Laboratory,

Cambridge, MA, USA. In 2006, he was a Founding Member of IntoPix s.a.,
Mont-Saint-Guibert, Belgium. From 2005 to 2008, he was a Post-Doctoral
Researcher with the UCL Crypto Group, Louvain-la-Neuve, and a Regular
Visitor of the two aforementioned laboratories. Since 2008, he has been
an Associate Researcher with the Belgian Fund for Scientific Research,
National Fund for Scientific Research, Belgium, and a Professor with the
UCL Institute of Information and Communication Technologies, Electronics
and Applied Mathematics, Universite Catholique de Louvain. In 2010, he
was a Program Co-Chair of CHES (IACR’s flagship workshop on crypto-
graphic hardware). He was a recipient of the Starting Independent Research
Grant from the European Research Council in 2011. His research interests
include digital electronics, FPGAs and cryptographic hardware, low-power
implementations for constrained environment, the design and cryptanalysis
of symmetric ciphers, physical security issues in general, and side-channel
analysis, in particular.

VOLUME 2, NO. 2, JUNE 2014 117



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Barenghi et al.: Combined Design-Time/Test-Time Study

FRANCESCO REGAZZONI (M’05) is a Post-
Doctoral Researcher with the ALaRI Institute of
University of Lugano, Lugano, Switzerland. He
received the M.Sc. degree from Politecnico di
Milano, Milano, Italy, and the Ph.D. degree from
the ALaRI Institute of University of Lugano.
Previously, he has been an Assistant Researcher
with the Crypto Group, Universit Catholique de
Louvain, Louvain-la-Neuve, Belgium, and the
Technical University of Delft, Delft, The Nether-

lands, and a Visiting Researcher at several institutions, including NEC Labo-
ratories America, Inc., Princeton, NJ, USA, the Ruhr University of Bochum,
Bochum, Germany, and École Polytechnique Fédérale de Lausanne, Lau-
sanne, Switzerland. His research interests are mainly focused on embedded
systems security, covering, in particular, side channel attacks, cryptographic
hardware, electronic design automation for security, and random number
generators.

ISRAEL KOREN (M’76–SM’87–F’91) is cur-
rently a Professor of Electrical and Computer
Engineering with the University of Massachusetts,
Amherst, MA, USA. He has been a Consultant
to numerous companies, including IBM, Armonk,
NY, USA, Analog Devices, Norwood, MA,
USA, Intel Corporation, Santa Clara, CA, USA,
Advanced Micro Devices, Inc., Sunnyvale, CA,
USA, and National Semiconductors, Lewisville,
TX, USA. His research interests include fault-

tolerant systems, computer architecture, VLSI yield and reliability, secure
cryptographic systems, and computer arithmetic. He has authored over 250
publications in refereed journals and conferences. He is an Associate Editor
of the VLSI Design Journal and Sustainable Computing: Informatics and
Systems. He served as a General Chair, a Program Chair, and a Program
CommitteeMember for numerous conferences. He has authored the textbook
Computer Arithmetic Algorithms–2nd Edition (Natick, MA, USA: A.K.
Peters, 2002), and co-authored a bookFault Tolerant Systems (San Francisco,
CA, USA: Morgan-Kaufman, 2007).

118 VOLUME 2, NO. 2, JUNE 2014


