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ABSTRACT Increasing energy costs of large-scale server systems have led to a demand for innovative
methods for optimizing resource utilization in these systems. Such methods aim to reduce server energy
consumption, cooling requirements, carbon footprint, and so on, thereby leading to improved holistic
sustainability of the overall server infrastructure. At the core of many of these methods lie reliable workload-
prediction techniques that guide in identifying servers, time intervals, and other parameters that are needed
for building sustainability solutions based on techniques like virtualization and server consolidation for server
systems. Many workload prediction methods have been proposed in the recent paper, but unfortunately they
do not deal adequately with the issues that arise specifically in large-scale server systems, viz., extensive
nonstationarity of server workloads, and massive online streaming data. In this paper, we fill this gap
by proposing two online ensemble learning methods for workload prediction, which address these issues
in large-scale server systems. The proposed algorithms are motivated from the weighted majority and
simulatable experts approaches, which we extend and adapt to the large-scale workload prediction problem.
We demonstrate the effectiveness of our algorithms using real and synthetic data sets, and show that using
the proposed algorithms, the workloads of 91% of servers in a real data center can be predicted with accuracy
> 89%, whereas using baseline approaches, the workloads of only 13%—-24% of the servers can be predicted
with similar accuracy.

INDEX TERMS  Server workload prediction, sustainable server systems, sustainable computing, ensemble-

based learning, machine learning.

. INTRODUCTION

Growing energy consumption by large-scale server systems
like data centers and server farms has caused increased
interest in innovative methods for improving utilization of
resources in these systems. Towards this goal, various meth-
ods based on virtualization, server consolidation, predictive
capacity management, and similar, are proposed in recent
literature [1]-[6]. These methods lead to improved sustain-
ability of IT infrastructure (considered holistically) in many
ways, such as by reducing server energy consumption, cool-
ing requirements, and carbon footprints. Most of these meth-
ods require analyzing historical workload data of servers
and predicting near-future workloads. To illustrate, consider
a scenario where a server consolidation solution needs to
be developed for a data center to reduce the energy costs
and improve sustainability of some data center. In order to
develop this solution, it must be determined which servers
can be safely consolidated without disrupting operations of

end-users. This can be done only by analyzing each server’s
historical workload and predicting its workload, with servers
predicted to have low workloads in the near future being cho-
sen for consolidation. Similarly, other sustainability solutions
based on techniques like virtualization and dynamic capacity
provisioning can be developed for large-scale systems using
robust workload predictions.

Various approaches [7]-[10] have been proposed in the lit-
erature for predicting server workloads, but these approaches
do not adequately deal with issues that arise specifically
in large server systems. In this paper, we bridge this gap
by addressing the problem of server workload prediction
specifically for systems comprising large numbers of servers.
We focus on two key problems in workload prediction for
such systems, i.e., large-scale non-stationarity of workloads,
and massive online data streams. We categorize workload
non-stationarity into non-stationarity over time and non-
stationarity across servers. Non-stationarity of workload over
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time may be said to occur when workload patterns for a given
server change unevenly with time (which may be due to rea-
sons like changes in the ownership of servers, changes in the
application profiles of servers, etc.). These kinds of changes
are non-observable from the workload prediction perspective,
and hence are difficult to capture in workload prediction
models. Non-stationarity of workloads across servers may be
said to occur when workload patterns in a server system differ
greatly across servers due to differences in servers’ utilization
patterns, with the result that it is difficult to generalize one
(or a few) workload prediction models over all servers in a
large server system.

In a large-scale server infrastructure, these kinds of work-
load non-stationarities are observed on multitudes of servers,
which makes it difficult to use statistical time-series based
prediction models. This is so because each time the workload
of a server exhibits non-stationarity, the time-series based pre-
diction model needs to be re-trained to update the parameters
so that the recent changes in workload patterns are taken into
consideration. The retraining process of a prediction model
is cumbersome and computationally expensive, especially
if it requires some kind of manual intervention (e.g., for
servers hosting critical applications). In large server infras-
tructures where workloads of multitudes of servers exhibit
non-stationarity over time and/or across servers, it is not
feasible to frequently retrain individual prediction models for
many servers, due to the computational cost, service disrup-
tions, and/or manual interventions required to perform such
frequent retraining.

Massive online data streams adds another layer of com-
plexity to the workload prediction problem, as it requires a
prediction model to be capable of incrementally learning from
every additional data point in a way that is fast as well as
computationally efficient.

To address the aforementioned issues, we propose two
ensemble methods for the large-scale workload prediction
problem. These methods enable workload predictions with
significantly high accuracies in scenarios where multitudes
of servers exhibit extensive non-stationarities of workloads
over time and/or across servers. Also, the proposed methods
compute workload predictions in an online and computa-
tionally efficient way, so that massive scales of data do not
as adversely influence the predictive performances of these
methods. These capabilities make the proposed methods suit-
able for practical use in various solutions for server infrastruc-
ture management (e.g., dynamic capacity provisioning [11],
[12] predictive server consolidation [13]-[15]) that would,
in turn, lead to improved sustainability of server systems by
reducing the total energy consumption by servers and cooling
equipment, improving carbon footprint, reducing floor space
requirements, and the like.

The two ensemble methods that we extend and adapt
to workload prediction are Weighted Majority [16] and
Simulatable Experts [17]. In ensemble methods, a set (or
ensemble) of prediction models (or experts) is formed and
their predictions are compounded in a well-defined way
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to yield a final prediction. Such ensemble methods for
the large-scale workload prediction problem offer three
advantages.

1) Using these methods, workload prediction of all servers
in a server system can be done using one global ensem-
ble of experts (where the number of experts in the
ensemble is much smaller than the number of servers),
thereby avoiding the need to create and fit a separate
prediction model for each server.

2) The ensemble model parameters are updated in an
incremental and computationally-efficient way which
makes these algorithms well-suited to handling massive
online data streams.

3) Unlike conventional time-series forecasting methods
where only one prediction model is used, these ensem-
ble learning algorithms use a set of prediction models
for computing workload predictions, and hence are
more consistent in predictive performance.

We experimentally evaluated the proposed workload pre-
diction algorithms using large and real datasets of an enter-
prise data center, in which we took into consideration the
workload datasets of 1570 actively utilized servers. We also
used synthetic datasets in order to highlight important per-
formance aspects of the proposed algorithms. Our experi-
ments reveal that the proposed workload prediction approach
achieves 91.63-91.95% accuracy, whereas baseline workload
prediction algorithms achieve accuracies of only 69.3-78.3%,
which indicates a gain of 13.65-22.3% in prediction accu-
racy by the proposed algorithms. It is also seen that using
the proposed algorithms, the workloads of approximately
91% of the servers in the data center could be predicted
with accuracies greater than 89%, whereas using baseline
algorithms, the workloads of hardly 13-24% of the servers
can be predicted with similar accuracy. Furthermore, we
observed that increases in the number of servers do not
adversely affect the predictive performance of the proposed
algorithms. These evaluations demonstrate the efficacy of the
proposed approaches in predicting workloads in large-scale
server systems.

The rest of this paper is organized in the following man-
ner. In Section II, we briefly review state-of-the-art meth-
ods for workload prediction and ensemble methods, and
also describe the Simulatable Experts algorithm. Thereafter,
we introduce the large-scale workload prediction problem
in Section III. We present the proposed workload predic-
tion approaches based on Weighted Majority and Simu-
latable Experts, in Section IV and Section V respectively.
We experimentally evaluate the proposed workload predic-
tion algorithms in Section VI, and conclude our work in
Section VII.

Il. BACKGROUND AND RELATED WORK

In this section, we review the literature in workload predic-
tion, and briefly describe ensemble methods and the Simulat-
able Experts algorithm [17] which we extend to the workload
prediction problem.
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A. WORKLOAD CHARACTERIZATION AND PREDICTION
In the past, workload analysis and prediction for server
systems and real-time applications has been attempted in
many ways [10], [18]-[25]. Prediction models for dealing
specifically with bursty or chaotic workloads have also been
proposed and developed [4], [26], [27]. A large body of
work also exists for workload prediction in grid and cloud
computing environments. For instance, there are methods [5],
[28]-[32] for predicting workloads of servers or applications
in grid environments. In similar vein, there also are meth-
ods [2], [3] for resource prediction and allocation in cloud
computing environments. However, none of these models and
frameworks handle extensive non-stationarities of workloads,
especially the non-stationarity across servers that is seen in
large server systems. Thus, these models need retail, per-
server fitting for overall predictions, which is infeasible in
case of large systems. Also, the performance and computa-
tional efficiencies of these methods have not been assessed for
massive online streaming data and their practical applicability
in large scale systems thus remains unknown.

Many energy optimization techniques such as virtual-
ization, server consolidation, and optimal workload place-
ment have been built in recent years for server systems [1],
[33]-[43]. We believe that these energy-optimization tech-
niques for server systems can significantly benefit from our
workload prediction models by better estimating servers’
utilizations in the near-future, which in turn enables effec-
tive decision-making on energy-optimization measures and
policies.

B. ENSEMBLE METHODS

In ensemble methods, a set (or ensemble) of prediction mod-
els is used to predict future outcomes in a problem domain.
Each prediction model in the ensemble is referred to as an
expert. The experts’ predictions are compounded in a well-
defined way to yield a final or ensemble prediction. It has
been shown that the predictive performance of an ensemble
method is much better than that of any of its constituent
predictive models (or experts). Some of the oldest and yet
most popular off-line ensemble methods are bagging [44]
and boosting [45]. Online ensemble methods learn from one
instance at a time, whereas offline methods require a batch
of instances. A comprehensive survey of ensemble methods
may be seen elsewhere [46], [47].

Online ensemble methods that can handle non-stationarity
in problem environments, such as proposed in [16], [17],and
[48]-[51], are most relevant in our context. In this paper,
we extend and adapt two of these ensemble methods, viz.,
Weighted Majority [16] and Simulatable Experts [17], to
deal with the issues of extensive non-stationarity and massive
online streaming data that are faced in large-scale workload
prediction. Also related to this work are prior papers [52] and
[53] which briefly describe how Weighted Majority can be
used in workload prediction, and the computational efficiency
that can be achieved thereby. In this paper, we elaborate on
the applicability of Weighted Majority to workload prediction
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quantitatively as well as qualitatively, and in addition also
provide a theoretical extension of the Simulatable Experts
model and improve its usefulness in large-scale workload
prediction scenarios.

C. SIMULATABLE EXPERTS FOR BINARY

OUTCOME SPACE

In this section, we describe the Simulatable Expert (SE) [17]
algorithm which we later extend (in Section V) to suit large-
scale workload prediction. In this algorithm, an ensemble
of simulatable experts is used to predict future outcomes.
A simulatable expert is a prediction model that can be sim-
ulated over any sequence of (hypothetical) data in order to
compute its future predictions over that sequence of data. The
SE algorithm simulates such experts in order to hypothesize
about future outcomes and reduce overall prediction loss. In
this algorithm, the ensemble predictions are assumed to be in
the range [0, 1], but the actual outcomes are assumed to be
binary, i.e., they are restricted to {0, 1}. The set of all possible
actual outcomes is called an outcome space and is denoted by
Y = {0, 1}. (Since the actual outcomes correspond to server
workloads in our prediction problem, the usual formulation
of SE is not applicable to the workload prediction problem.
Hence, in Section V, we extend SE to k-outcome space.)

Let P,_1 denote a string of the past n — 1 actual outcomes.
Then, since the outcome space is binary, the sequence of
possible outcomes till # time steps can be represented as either
P,,_10 which denotes a string of n outcomes, with the first
n — 1 outcomes represented by P,_; and the last outcome
as 0; or P,,_11 which denotes a string of n outcomes, with the
first n— 1 outcomes represented by P,_1 and the last outcome
as 1.

Let L,(P,) denote the cumulative absolute loss of ensemble
& for server s at time step n, which is defined as:

LyPy) =Y [Pss — Psil ()
=1

where P, denotes the ensemble workload prediction for
server s at time ¢, and p,; denotes the actual workload for
server s at time t. (Hereafter, we use the terms loss and
prediction error interchangeably.)

Also, let Lﬁe)(Pn) denote the cumulative absolute loss of
expert e for server s at time step n, which is defined as:

n
LOP) = 16 = paal )
t=1

where xs(e,) denotes the workload prediction of expert e for
server s at time step .

Now, given an ensemble £ of simulatable experts, our
objective is to find an optimal prediction at time step n such
that the following worst-case regret Vi ,(E) for server s is
minimized:

Vin(€) = sup (Ly(Py) —min LY(P,)) 3)

P,€{0,1)" ee&
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In order to minimize worst-case regret Vi ,(€), we first
minimize the following:

a@wo+a@mm—igdﬁmqm
e

max ’
Es(Pn—l) + E(ﬁs,m 1) - lggLAEE)(Pn—l 1)
e

“4)

where £(Ds n, 0) and £(Dy,», 1) are absolute losses computed as
[Ps.n — O] and [ps , — 1] respectively. Here, P,_10 is a string
of n outcomes, with the first (n — 1) outcomes as P"~! and
the last (hypothetical) outcome as 0. So, in order to compute
LAEE)(P,,_ 10) (or LAEE)(P,,_ 11)), we simulate the experts in the
ensemble over a hypothetical outcome of O (or 1) at time
step n, so as to minimize the worst-case regret.

Now, minimizing (4) is equivalent to minimizing the
following:

Pon — inf L(P,_,0),
ecE

max 5
1 —Pon — inf L (Py_1 1) ®
ect
If we define A, (P,) by:
An(Py) = — inf L (Py), (6)
ect
and Xl(flo_l) by:
— Ay(Py_11) —Au(P—10) + 1
X1(’101)= n(Pn—11) n(Pp-10) + ’ 7

2

then the optimal prediction Py, for server s at time step n, that
minimizes the worst-case regret V; ,(€), can be computed as
follows:

0 if Ay(Pp—10) > Ap(Pp—11) + 1,
Pn=1 1 if Ay(Pu_10) + 1 < Ap(PayiD),  (8)
Xl("(; D otherwise

lll. LARGE SCALE WORKLOAD PREDICTION PROBLEM
Large-scale workload prediction poses challenges concerning
extensive non-stationarity in workloads and massive online
streaming data, that are not seen in case of workload pre-
dictions for small-scale server infrastructures. Due to these
challenges, the applicability of conventional workload predic-
tion methodologies, which do perform well on small scales,
becomes very limited in large-scale server systems. We pro-
ceed by describing these challenges in detail in the following
sections.

A. NONSTATIONARITY OF WORKLOAD OVER TIME

Non-stationarity of workload over time may be said to occur
when the workload of a server changes unpredictably with
time, due to reasons like changes in the ownership of servers,
changes in the dominant applications of servers (like a web
server reconfigured as a database server), etc. Such changes
are non-observable from the workload prediction perspec-
tive and can be interpreted as hidden context in the work-
load prediction problem. Any change in this hidden context,
in turn, induces a change in the underlying distribution of
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server workloads, which leads to non-stationarity in server
workloads over time.

In small-scale server systems, this kind of non-stationarity
can be handled by cherry-picking those servers that exhibit
such workload non-stationarity, and then retraining only
their workload prediction models. However, such retraining
of prediction models is computationally expensive, which
makes this process infeasible for large-scale server infras-
tructures, where multitudes of servers may exhibit workload
non-stationarity.

Example 1: We illustrate this phenomenon using sam-
ple workloads of three servers, s1, s» and s3, displayed in
Fig. 1 wherein we plot time steps on the x-axis and server
workloads on the y-axis. For server s1, we see that initially,
from time #( to 10, the workload follows a gaussian distri-
bution, denoted by N7, with mean as 5 and variance as 2.
At t19, due to changes in the hidden context, the server
utilization increases such that until 9, the corresponding
distribution N>, though still gaussian, shifts to have a mean
of 20 and variance of 15. At fy9, the underlying distribu-
tion of server workload again undergoes a change so that
it now follows a beta distribution 3. For server s;, the
workload exhibits similar non-stationarity at time step ?s
and 9, whereas for server s3, the underlying distribution
of workload changes from B to N, at time step 719, and
from N, to N] at time step ty. This scenario indicates
that in order to predict workloads for servers s1, s» and s3,
retraining of prediction models would have to be done at
different times for each server, which clearly becomes a cum-
bersome task as the number of servers under consideration
increases.

It is of note that though certain workload non-stationarity
over time (e.g., seasonal or cyclical) may be handled using
time-series based prediction models like ARIMA, other non-
stationarity such as caused by changes of underlying distribu-
tions (as from A to BB in Example 1) cannot be sufficiently
approximated using such models.

Our proposed ensemble-based workload prediction models
address this issue of extensive non-stationarity of workloads
over time, by adapting to the non-stationarity through auto-
matic update of its learning parameters, thereby avoiding any
need for re-training of ensemble prediction models and/or
manual intervention.

It is also of note that online learning problems in general,
especially those that involve predictions of time-series data,
are difficult. An important reason for this is that time-series
data are generally non i.i.d. [54], so standard tools such as
gradient methods (which require the i.i.d. assumption) do
not work with them. Large-scale workload prediction is an
instance of online learning, and it is further known that server
workloads are characterized by data streams that are chaotic
and change frequently with time [4], [27]. Hence also, clas-
sical machine-learning methods with the i.i.d. assumption do
not work in this domain, and none of our methods make the
assumption.
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TABLE 1. Notations used in WMC, SE and kSE prediction models.

Common notations

£ Global ensemble of experts
S Set of servers
5 Server in given set of servers
& Global ensemble of experts
e Expert in global ensemble
t,n Time steps
Dg,f ) Subset of Dy containing workload data of single server s for past T' time steps
T Total number of time steps in training workload dataset Dr
Dr Training dataset containing workload of all servers under consideration for past T" time steps
Ni, N2 Gaussian distributions from which sample server workload is drawn
B Beta distribution from which sample server workload is drawn
:cget) Workload prediction of expert e for server s at time ¢
Ds,t Final or ensemble workload prediction for server s at time ¢
Ds,t Actual workload of server s at time ¢
WMC-specific notations
M Number of experts in global ensemble £
wget) Weight of expert e in the ensemble for server s at time ¢
B Fixed parameter between 0 and 1
F, Update factor which determines the rate at which experts” weights are updated for server s
§i{ Total loss of expert e for server s till time step n
Qs Total loss of the ensemble for server s till time step n
SE and kSE-specific notations
y Outcome space
P, String of outcomes till time step n
Pp—®  String of past o outcomes from time step (n — «) to time step n

n
P~%y; String of a4 1 outcomes with first a outcomes as P;}~* and last (hypothetical) outcome as

Yi

outcomes P,

Cumulative absolute loss of ensemble £ for server s at time step n, given string of past

L (P,) Cumulative absolute loss of expert e for server s at time step n, , given string of past outcomes

P,

Vsn(E) Worst-case regret of ensemble £ for server s at time step n

B. NONSTATIONARITY OF WORKLOADS

ACROSS SERVERS

Another kind of workload non-stationarity seen in server sys-
tems is non-stationarity across servers, which occurs when
the utilization patterns differ across servers causing the work-
loads to vary from one server to another. Due to this, a predic-
tion model that is effective for one server may not be so for
another. Furthermore, even if a prediction model does seem to
hold for different servers, its parameters may differ for each
server and hence may need to be hand-tuned individually for
each server.

Example 2: As an illustration, consider two different
servers s1 and s2, each of which has workload that is strongly
auto-correlated. Assume that the workload of s1 has signif-
icant positive auto-correlation with lag 4, and the workload
of s> has significant positive auto-correlation with lag 7.
This implies that autoregressive models [55] serve as good
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prediction models for s; and s, but the parameters, or more
specifically, the order of the autoregressive models, are differ-
ent for each server, i.e., 4 for s; and 7 for s,. Consider another
server s3 for which a support vector regression model [56]
fits the workload data best. In this example scenario, different
prediction models need to be identified and fitted for servers
s1, s2 and s3 due to non-stationarities in workloads across
servers. This is clearly a difficult task, especially in large
systems where this must be done for multitudes of servers.
In the proposed ensemble-based workload prediction mod-
els, we create a global ensemble of experts for the entire
server system, with the number of experts being significantly
less than the number of servers. Using this global ensemble,
the proposed prediction models would predict the workload of
each server by compounding workload predictions of experts
in the ensemble, thereby obviating the use of a separate
prediction model for each server in large server systems.
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FIGURE 1. Sample workload demonstrating non-stationarity in workload over time due to changes in the underlying distribution. (a) Workload of server s1.

(b) Workload of server s,. (c) Workload of server s3.

C. MASSIVE ONLINE STREAMING DATA
With increases in the number of servers, the scale of the
workload data increases at a rapid pace and continues to
grow with time. For instance, consider a server system with
10000 servers, wherein for each server, a workload data point
in collected by software/monitoring agents every 5 minutes.
In this case, (60/5)x24x 10000 = 2.8 x 10° data points are
collected every day in the system. It is easy to see that in such
a system, the size of the workload dataset would reach a truly
large size within a very short time.

Learning from this kind of massive online streaming data
requires prediction models that satisfy the following two
conditions:

1) The learning and prediction methods must be fast and
computationally efficient, so that increasing sizes of
streaming workload datasets does not negatively affect
the performance of the prediction model.

2) Learning/update of model parameters, if needed, must
be done in an incremental or online way on receiving
additional streams of workload data.

The proposed ensemble-based workload prediction models
meets both conditions, and hence are well-suited to the large-
scale workload prediction problem.

IV. LARGE SCALE WORKLOAD PREDICTION USING
WEIGHTED MAJORITY BASED ENSEMBLE LEARNING
In this section, we propose an online workload prediction
approach based on ensemble learning, which addresses the
issues of extensive workload non-stationarity and massive
online data in the large-scale workload prediction problem.
Specifically, we adapt a variant of the Weighted Majority
algorithm [16], called as WMC, to workload prediction
(Section IV-A), specify its error bounds (Section IV-B),
show how it can be efficiently implemented for large-
scale workload prediction (Section IV-C), and discuss
the advantages of using this algorithm for our purpose
(Section IV-D).

A. WMC ALGORITHM

The Weighted Majority variant that we adapt to the workload
prediction problem is referred to as WMC [16]. One of the
key features of WMC that makes it particularly suitable for
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handling non-stationarity is that it does not assume the data
to be independently and identically distributed [16], [54].
It is due to this feature that non-stationarity scenarios such as
those described in Example 1 can be easily handled by WMC.
The WMC algorithm consists of three phases: building a
global ensemble of experts; compounding experts’ predic-
tion using an ensemble combination rule; and incremental
parameters/weights update—each of these is described in the
following subsections.

1) BUILDING A GLOBAL ENSEMBLE OF EXPERTS

This is the first phase of WMC, in which we form a fixed-
size global ensemble £ of experts for a large-scale server
system. As the name suggests, a global ensemble of experts is
a common ensemble for all servers in the system. Experts are
chosen in the global ensemble by analyzing servers’ historical
workload data, and identifying salient statistical properties
of servers’ workloads in the server system. For example, if
workloads of significant fractions of servers show distinct
increasing or decreasing trends, then experts could be built
based on exponential smoothing methods [55] with different
parameters. Such experts based on exponential smoothing
methods would be capable of tracking any recent trends in
workloads. In cases where workloads of significant frac-
tions of servers exhibit complicated seasonal and/or non-
seasonal patterns, appropriate ARIMA (Autoregressive Inte-
grated Moving Average) models [55] could be identified
after doing necessary data transformations like logging and
differencing, and thereafter the experts could be created based
on these models, with different statistical parameters. A fixed
number M of experts are chosen in this way based on salient
statistical properties of servers’ workloads in the system
and/or prior knowledge about workload patterns of servers,
if available.

2) COMPOUNDING EXPERTS’ PREDICTIONS USING
ENSEMBLE COMBINATION RULE

After forming the global ensemble £ consisting of M experts,
we proceed to use this ensemble to predict the workload of
each server in a large-scale server system. In order to do so,
for each server s in the system, we associate a weight w(ft) with
each expert e in the global ensemble at time ¢. This weight
indicates the accuracy of expert e in predicting the workload
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of server s at time #, and is initially set equally (i.e., as 1/M)
for each expert in €.

For server s, expert e in the ensemble provides work-
load prediction xs(’e,) at time step ¢. These expert workload
predictions are compounded using the following ensemble
combination rule of WMC in order to compute the final or
ensemble workload prediction pg ;:

IREH
Por = eegz " ©)
ec&

In (9), the ensemble workload prediction Py ; for server s
at time step ¢ is computed as the weighted average of the
workload predictions of all M experts in the ensemble. In
this way, we compute an ensemble workload prediction for
each server under consideration. Recall that for each server s,
we had initialized the weight w(f? associated with expert e in
the global ensemble as 1/M. In the next phase, we proceed
to update these experts’ weights for server s based on the
accuracy of each expert in predicting the workload of server s.

3) INCREMENTAL PARAMETERS OR WEIGHTS UPDATE
For each server s, after computing the ensemble workload
prediction p; ; at time step ¢, we observe the server’s actual
workload p; ; and calculate the absolute loss (or prediction
error) IxS(f,) — ps.:| made by each expert e. Using this abso-
lute loss, we determine an update factor F for server s that
satisfies the following condition:

pRirul < B <1 — (1= KD —pol  (10)

where f is a fixed parameter between 0 and 1. The factor
F determines the rate at which the weight of an expert
e is updated in response to changes in expert’s prediction
accuracy. Thereafter, for server s, the weight of each expert
e is updated in accordance with WMC as follows:

Wgez)+1 stiez) (11)

In (10) and (11), the selection of Fs and multiplication of
an expert’s weight by factor F has the net effect of decreas-
ing the relative weight of a low-performing expert, thereby
decreasing its influence on the final or ensemble workload
prediction of server s.

The updated weights are then normalized to sum to one, as
follows:

(e)
W© Werr1

Wst+1 = — (0 (12)
Z WA t+1
In this way, for each server in the server system, we
incrementally learn and update the learning parameters, i.e.,
the weights of experts in the global ensemble. Using these
updated parameters, we can then predict the workload of
server s for future time steps, and continue to incrementally
update the learning parameters of WMC.
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It may be appear that WMC is similar to gradient boost-
ing [46], [57], an existing machine learning technique for
regression problems, which produces a prediction model in
the form of an ensemble of weak prediction models. However,
there is an important difference between these methods, viz.,
gradient boosting assumes the data distribution to be indepen-
dently and identically distributed (i.i.d) whereas WMC makes
no such assumption. The implication of this assumption is that
the gradient boosting method cannot handle non-stationarity
in data, which is key in our large scale workload prediction
problem. Detailed analyses of WMC and gradient methods
may be seen elsewhere [58].

B. ERROR BOUNDS
It can be proved that for any value of F; that satisfies the
condition specified in (10), the total prediction error made by
WMC for each server s is bounded, as stated in the following
theorem of Littlestone and Warmuth (see [16] for a detailed
proof).

Theorem 1: Let & be an ensemble of M experts. For server
s, let Q denote the total loss of expert e till n time steps, i.e.,

=y, — Ps.t| assuming that experts’ predictions

in the range 0f[0,]]. Also, let Qg , denote the total prediction
error made by the ensemble for server s till n time steps, i.e.,
Qsn = Y41 Ds.t — Psil- Then, for server s, if WMC is
applied to ensemble € with equal initial weights assigned to
each expert, then the total prediction error Qy , made by the
ensemble for server s satisfies the following inequality:

InM + 0 In
1-p

This theorem implies that using WMC, the total workload

prediction errors for server s at time step n never exceed

InM+0%) In %
- :

C. IMPLEMENTATION

‘We now describe a high-level implementation of the proposed
WMC-based workload prediction mechanism in Algorithm 1.
The inputs to this algorithm are: a set of servers § =
{s1,52,...,sn}, a training dataset Dr containing workload
data of each server in S for the past T' time steps, and a fixed
parameter B such that 0 < B8 < 1. For simplicity of notation,
we may omit the subscript of servers and denote a server
simply by s (instead of s, 52, and so on).

In Algorithm 1, we analyze training dataset Dr to identify
salient statistical properties and patterns in servers’ work-
loads, based on which we form a global ensemble of experts
(lines 1-2). Lines 3—19 describe how ensemble parameters,
i.e., the weights of the experts, can be learned for each server
s, which can then be used for predicting workloads of server s
for future time steps. For each server s, we begin by extracting
a subset D(Ts) from training dataset Dr such that D;‘f) contains

sn =

, forl<e<M (13)

workload data of server s for past T time steps, i.e., Dgf) =
{Pe1.Ps.2s - ps.) (Line 4). We initialize the weight w')
of each expert e for server s as 1/M (Line 5-7).
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Algorithm 1: WMC Workload Prediction Algorithm

Input: Set of servers S, training dataset D7, fixed
parameter
1 Perform statistical analysis of training dataset Dr;
2 Construct global ensemble £ of M experts based on
statistical analysis results;

3 foreach s € S do
4 Extract workload dataset D(Ts) of server s from D7,
5 foreach ¢ € £ do
6 Set initial weight w'*) to 1/M;
7 end
8 foreachr =1,2,...,T do
9 Compute workload prediction x§f2 of each expert
e
> win
10 Compute ensemble prediction py ; = ‘ES—(E)
1 Obtain actual server workload p; ; from Dg‘f);
12 foreach e € £ do
13 Calculate absolute loss as: |xs(f,) — Psitls
14 Select F' such that the following condition is
satisfied:
Bl < Fo < 1— (1= B — pysl;
15 Update weight of expert e as:
ngﬂ =F SWSI) ;
16 end
17 Compute sum of weights of all experts
2 W.(fz)+1§
ecE
18 Normalize weight of each expert e as:
WO M
s 2 Wif)t)Jrl ’
ee€
19 end
20 Repeat Steps 816 for predicting workload of s for
future time steps T + 1, T + 2, and so on;

21 end

In lines 8-19, we learn the parameters of the WMC-
based prediction model (i.e., the weights of the experts in
ensemble &) for server s, using historical data D(Ts). We begin
the learning procedure for server s by computing workload
predictions of each expert e for time step ¢ included in the
historical time-series D(Tf) (line 9). The predictions of all
experts are then compounded using the ensemble combina-
tion rule specified in (9), to constitute the ensemble workload
prediction P ; (line 10) for server s at time step 7. Thereafter,
we obtain the actual workload of server s at time step ¢ from
D(T‘Y) (line 11) and use it to evaluate the absolute loss of each
expert (line 13). Using this absolute loss and fixed parameter
B, we determine the update factor F such that the condition
in (10) is satisfied (line 14). We then update the weight of
each expert e based on Fs using (11) (line 15). Finally, the
weights of all experts are normalized to add to 1 (lines 17-18).
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This learning procedure is repeated for each time step in the
training set DTS) of server s. Having learned these ensemble
parameters, we then predict workloads of server s for future
time steps T+ 1, T+2, and so on (line 20) using the procedure
outlined in lines 8-19.

D. DISCUSSION

The proposed WMC-based workload prediction model offers
three advantages in large scale workload prediction, which
indicate the efficacy of WMC-based workload prediction
model in practical settings.

First, it inherently handles the non-stationarity in work-
loads over time by dynamically updating the learning param-
eters, i.e., the weights of experts, in response to changes in the
underlying distributions of server workloads. For instance, in
Example 1 in Section III-A, when the underlying distribution
of workload of server s1 changes from one gaussian distribu-
tion V] to another gaussian distribution AV, the weight update
rule of WMC causes changes in experts’ weights such that
the weight of experts based on (or approximately following)
N distribution is reduced and the weight of expert(s) based
on (or approximately following) A distribution is increased.
This obviates the need to retrain the prediction model of
each server individually, and likewise renders hand-tuning
and manual intervention unnecessary.

Second, the proposed workload prediction model also han-
dles non-stationarity across servers, by forming a global
ensemble and maintaining a set of experts’ weights for each
server so that experts with higher accuracies in workload
predictions are assigned greater weights. Thus, the need to
create and fit a separate prediction model for each server in a
large scale system is avoided.

Third, the learning/update of experts’ weights, and the
predictions of workload of each server, are done in an incre-
mental and computationally efficient way, as and when new
workload data for servers are available.

V. WORKLOAD PREDICTION USING SIMULATABLE
EXPERTS BASED ENSEMBLE LEARNING

In this section, we propose another ensemble-based workload
prediction model by extending the Simulatable Experts (SE)
algorithm [17] described in Section II-C. In previous work,
SE is only formulated for problem scenarios in which the
actual outcomes are binary, i.e., the outcome space ) is
denoted by {0, 1}. (It may be mentioned that in workload
prediction scenarios, outcomes correspond to actual server
workloads).

In this work, we extend SE in two ways to make it
applicable to the large-scale workload prediction problem.
(Hereafter, we call the extended SE as kSE). First, since the
outcome space in the workload prediction problem is not
limited to 0 and 1, we extend SE to a k-outcome space. In this
setting, the outcome space can be denoted as )V = {yi}i.:ol,
yi € [0,1], and y; = 5 Vi = 0,...,(k — 1). Second,
we limit the workload instances that would be considered
for minimization of the worst-case regret function in such a
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way that in (3), only the most-recent « instances would be
considered (as opposed to all n instances in SE).

A. KSE ALGORITHM

We now proceed to mathematically formulate kSE with these
proposed extensions. The first step in kSE remains the same
as that in WMC, i.e., building a fixed-size global ensemble
E of M experts based on statistical analyses of historical
workload data of servers in a system. At time step n, let P, *
denote the most-recent & outcomes, i.e., from time step n — «
to time step n. Let L(P)~“) denote the cumulative absolute
loss of ensemble &£ for server s at time step n for the last «
outcomes, which is defined as:

n
L(Py*)y =Y [Pos — Psl (14)
tI=n—uo
where D;; denotes the ensemble workload prediction for
server s at time ¢, and p,; denotes the actual workload for
server s at time 7.
Also, let Ls(e)(PZ_"‘) denote the cumulative absolute loss of
expert e for server s at time step n, which is again defined
using the most-recent o outcomes as:

n
LOPI = > 1) — pol (15)
I=n—uo

where xi‘? denotes the workload prediction of expert e for

server s at time step .

The worst-case regret function in kSE, denoted by V; ,(E),
remains the same as in SE, except that the outcome space Y
now consists of k outcomes (as opposed to binary outcomes in
SE), and we now consider only « instances (as opposed to n in
SE) in computing the cumulative loss of the global ensemble
and of its experts. So, the worst-case regret function can now
be written as:

Ven(E) = sup (LX(P',:—“)—migLﬁ”(P’,:—“» (16)
ec

Py ey
In order to determine the optimal workload prediction py, , for
server s at time step n that minimizes the worst-case regret
Vi.n(E), we first minimize the following:

L(P"~1 %) + 6@y y0) — inf LOP=17oy),
e
LAPLZT) + Lo y1) = inf L P71
e
Ly(P 1) + @i Yi—1) — in LOP=1 "y )
e

Minimizing this equation, in turn, is equivalent to minimiz-
ing the following:

@m—m%ngWﬁj”mx
Pon — 1| — inf L@ 7172y,

max eet (17)
Pen = yeo1| = inf LOP =17y )

VOLUME 2, NO. 2, JUNE 2014

In order to determine optimal prediction p;, that
minimizes (17), we first define A,— 1 (P'~]~%)) as:

Apa (P77 = = inf LEEPT17) (18)
e

n n—1

and then define a comparison operator ‘>’ on A,(Pi~“y;) as
follows:

An(Py%yi) = An(Py%yj) = An(Py%yi) >

a 19
An(P;; a)’j) + Q(yj) (19)
where
v oy ifyi=05,
Q0w = { 1 —y; otherwise. (20

In (20), we chose 0.5 as it is the midpoint of the outcome

space [0,1]. Next, we define Xy(f;jl_a"l_l) as:

n—1— —1-

(n—1—a,n—1) _ A”(Pr:—l aYi) _A”(PZ—I ayj) +1 @21

Yi»Yj - 2

Using (21) in (18), (19), and (21), we compute Py, for

the k-outcome space (based on the last o outcomes) that
minimizes the worst-case regret as follows:

¥i if Ap(P"Z1 %)) > Ag(P"Z17%)),

) i n—1 n—1
L] 1 |
if Ap(P,Z i) # An(Po_ A
—1—a,n—1 - 11—
X)(Inyj b An(PZ—} “yi) >~ An(PZ—} YN

An(PyZiT0) = APy ),

n—1 n—1

i#j#4q

(22)

B. IMPLEMENTATION

We now describe how kSE can be implemented for predicting
servers’ workloads in a large-scale server system. We outline
a high-level implementation of kSE in Algorithm 2, which
requires the following inputs: a set of servers S, a training
dataset Dr containing workload data of each server in S for
the past T time steps, and a fixed parameter & which denotes
the number of past workload instances that would be taken
into consideration while minimizing the worst-case regret
function V; ,(&) for each server s. We begin the same way
as with WMC, by analyzing training dataset Dy to identify
salient statistical properties and patterns in servers workload
based on which we form a global ensemble of experts (lines
1-2). Lines 3-14 describe how optimal workload prediction
can be computed using kSE for each server s in a server
system.

In order to compute the optimal workload prediction for
server for a future time step ¢, we proceed as follows. We first
extract a subset fo ) from training dataset D7 such that DS )
contains the time-series workload data of server s for the past
« time steps, i.e., Df)f) = {Ps.t—1:Ps.t—=2+ - - - s Ps.i—a} (line 5).
Then for each expert e in the global ensemble £, we obtain its
workload predictions for server s for the past « time steps, and
then calculate its cumulative loss over all possible k outcomes
in Y, e, LOPI 1), ... LOP 1=y 1) (lines 6-9).

n—1
Having calculated the cumulative losses of all experts in £
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Algorithm 2: kSE Workload Prediction Algorithm

Input: Set of servers S, training dataset D7, fixed
parameter o
1 Perform statistical analysis of the dataset Dr;
2 Construct ensemble £ of M experts based on statistical
analysis results;
3 foreach s € S do
4 foreacht =T+ 1, T +2,...do

5 Extract workload dataset D(()f) of server s from
Dr;
6 foreach ¢ € £ do
Compute workload predictions
xs(’et)fl sy xs(i)fa of expert e for past « time
steps;
8 Calculate cumulative loss of expert e (for

last o time steps) over k outcomes in ), i.e.,
LEPZ0), o LEOPI ™y );
9 end

10 foreach y; € Y do
1 Set APy ") = — inf L7}
12 end
13 Compute final workload prediction p; ; as
vi AP > AaPiT ),
i #]

if A, (P11 %) # AP TOA
—l—a,t—1 _1— —1—
Xyt OV APIZI ) = AP T A
AdPIZ17%) = AP %),

i#]j#4q
14 end
15 Repeat Steps 511 until a stopping criterion is met;
16 end

over all possible outcomes in ), we proceed to find the
infimum of the loss term L§‘))(P§:}*°‘yi) over all experts for
each outcome, which is used to initialize AI(P;:}_“y,-) (lines
10-12). Finally, we compute the optimal workload prediction
Ds.; for server s at time step ¢ using (22) (line 13). Lines 3-14
can be repeated for workload predictions of server s € S for
future time steps until a stopping criterion is met (line 15).

It may be noted that this algorithm (as with Algorithm 1)
is easily extensible to multi-step predictions, as they can
be used for predictions of multiple time intervals either in
sequence or in parallel. This further increases the applicability
of the proposed kSE and WMC models to those scenarios
that require workload predictions over a window of time

intervals.

C. DISCUSSION

The kSE workload prediction model effectively deals with the
key issues of large scale workload prediction, i.e., extensive
workload non-stationarity and massive scale of online data,
in the following three ways.

158

First, any non-stationarity in the workload of server s at
time step # would cause the losses of experts (i.e., L (P/~))
to change, which would affect the value of A;(P.”%). The
updated At(Pf“) would, in turn, cause the ensemble pre-
diction p*>'*! to change in accordance with the workload
non-stationarity. For instance, in Example 1 of Section III-A,
when the underlying distribution of the workload of server s
changes from N] to A7, the expert(s) based on (or approx-
imately following) distribution Nj would show significant
increases in absolute loss, whereas the expert(s) based on
(or approximately following) distribution A, would show
decreases in loss. This would affect the value of A,(P.™%)
which, in turn, would induce adjustments in the ensemble
prediction p*/*! for the next time step. In this way, kSE
handles workload non-stationarity over time without any need
of hand-tuning or retraining of the prediction model.

Second, since we create and use one global ensemble for
workload predictions of all servers in the system, and the
optimal workload prediction of a server is computed based on
predictions of an expert in a way which minimizes the worst-
case regret, we are able to compute optimal workload pre-
dictions for each server without the need to assess and create
different prediction models for each server in the system.

Third, the computational cost of kSE is kept at a minimum
by following an online procedure for determining optimal
predictions, wherein only the last « workload instances (as
opposed to all n instances in SE) are taken into consideration.
These key advantages make kSE attractive for practical use in
large-scale workload prediction scenarios.

However, it may be noted that kSE is computationally more
expensive as compared to WMC, primarily because at each
time step ¢, kSE computes the cumulative loss of each expert
over the last « instances for each outcome in Y (i.e., Step 8
in Algorithm 2). But, as we will see in Section VI, kSE
outperforms WMC in terms of predictive accuracy on large
datasets.

VI. EXPERIMENTAL EVALUATION
In this section, we evaluate the effectiveness of the pro-
posed ensemble-based workload prediction models, kSE and
WMC, using datasets from a large enterprise data center.
We perform three kinds of experimental evaluation on these
workload prediction models: macro-averaged prediction error
evaluation, percentage-of-servers based evaluation, and scale-
and-composition based evaluation. In macro-averaged error
evaluation (see Section VI-B), we evaluate the macro-
averaged errors of kSE and WMC on large non-stationary
datasets of 1570 servers. We determine the macro-averaged
error of a prediction model by first computing the prediction
error of the model for each server, and then averaging the
errors over all servers in the data center. This gives a summary
statistic which indicates how effective a prediction model is
in predicting workloads of servers in the given data center.
In  percentage-of-servers based evaluation (see
Section VI-C), we analyze the percentage of servers in the
data center for which workload can be predicted, using
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each prediction model under consideration, within specific
error limits, e.g., <9 or <11. This kind of evaluation is of
significance while choosing a workload prediction model in
practical business scenarios.

Finally, in scale-and-composition based evaluation
(see Section VI-D), we show the impact of increases in
the number of servers in the data center on the predic-
tive performance of proposed kSE and WMC prediction
models. We also assess whether the composition of server
infrastructure, in terms of homogeneity and heterogen-
ity of servers, affects the predictive performances of kSE
and WMC.

A. DATASETS AND EXPERIMENTAL SETUP

We use datasets collected from a real data center consist-
ing of 2400 servers, of which we chose a subset of 1570
actively-utilized servers for our analyses. The data center
under consideration runs loads of various kinds, many of
which are CPU-intensive. Therefore, for the selected 1570
servers, we collected CPU workload data for a period of six
months using operating system-based software agents which
were installed on each server. Each software agent collected
one data point every ten minutes, for its server. This data
point gave the percentage of time in the previous ten minutes
for which that server’s CPU was in active state. These data
points were then aggregated to form hourly workload time
series.

The workload dataset of the selected 1570 servers was
analyzed to gain insights into important characteristics of the
datasets. The analyses revealed that most servers under con-
sideration had significant auto-correlation for lags of 67 and
7" day every week, indicating weekly trends in the dataset.
It was observed that such servers had lower workloads on the
6" and 7" day of the week as compared to the rest of the
days in the week. A few servers also showed significant auto-
correlation for a lag of the 3¢ day every month, indicating
a monthly trend in these servers. Apart from seasonality,
non-stationarity over time was observed frequently for many
servers, mainly due to reallocation of one or more cluster of
servers to different user-groups by the data center administra-
tors, reconfiguration of servers, etc. A detailed investigation
into workload of a random sample of 200 servers belonging to
different user groups also revealed massive non-stationarity
in the workloads across servers, due to differences in their
utilization.

We denote the large scale non-stationary dataset of
1570 servers as G(1570). It was manually ensured that only
actively-utilized servers were included in G(1570), many
of which have significantly non-stationary workloads. This
dataset was partitioned into a training dataset G-train(1570)
consisting of servers’ workload data for five consecutive
months, and a test dataset G-test(1570) consisting of work-
load data for one month.

In order to particularly ensure that the test dataset
G-test(1570) has significant non-stationarity with respect to
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the training dataset G-train(1570), we created a synthetic
test dataset G'-test(1570). Many servers in G(1570) showed
distinct patterns of low workloads during each weekend. So,
to create a synthetic test dataset with distinct non-stationarity,
we introduced an inverted trend of high workloads during
each weekend in G'-test(1570). As a result, the synthetic test
dataset G’-test(1570), with inverted high workload pattern for
weekends, becomes non-stationary with respect to the train-
ing set G-train(1570) that has distinctly low workload patterns
during weekends. It may be noted that in the real world the
distribution of a training dataset often differs to some extent
from the distribution of a test dataset, for various reasons.
Hence, it is important to perform this kind of evaluation in
order to assess the applicability of kSE and WMC in practical
scenarios.

In our experiments, we primarily use Mean Absolute
Percentage Error (MAPE) as the measure of prediction
accuracy but, for macro-averaged analysis (in Section VI-
B), we also use relative error and order statistics for an in-
depth analysis of predictive performance of the proposed
models. This kind of accuracy-based evaluation is useful in
scenarios like dynamic capacity provisioning [11], [12] of
server systems, wherein workload predictions are used to
enable decision-making regarding optimal capacity alloca-
tion to server server systems to achieve energy efficiency
and improve the sustainability of server systems. It is also
useful in predictive server consolidation [13]-[15], where
based on server workload predictions, decisions are taken
regarding consolidation of servers (that are predicted to have
low workloads in the near future), to efficiently manage
system resources and minimize energy consumption. In such
scenarios, the effectiveness of decisions depend highly on
the accuracy of workload predictions, which makes accuracy-
based evaluation of workload prediction methodologies desir-
able considering these scenarios.

For comparative evaluation of kSE and WMC, we use
three baseline prediction models: MA(4), MA(24) and ran-
dom walk model (RW). MA(4) and MA(24) are based on
the Moving Average (MA) model [55] with the order of
moving average as 4 (hours) and 24 (hours) respectively.
We do not use seasonal models as baselines, because such
models tend to perform poorly on synthetic test dataset
G’-test(1570) as the seasonal/weekly trend parameters
learned by such models from the training dataset
G-train(1570) are no longer valid in the test dataset
G’-test(1570) due to inversion of weekly trends. On
the other hand, MA models, ie., MA4) and MA(24),
are not affected significantly by inversion of trends in
G’-test(1570), and hence provide a fair comparison and con-
sistent performances across both test datasets, G-test(1570)
and G’-test(1570). Also, seasonal models (e.g., SARIMA)
typically require computationally-expensive retraining when-
ever seasonal trends change for a server under consideration,
which makes them infeasible for large-scale server systems,
whereas MA-based models do not require such retraining as
they are inherently incremental and online.
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1) Parameter Selection and Ensemble Formation

In WMC, parameter B influences the rates at which the
weights of experts are updated in response to their prediction
accuracies—the higher the value of 8, the lower the rate of
updates. In a large-scale workload prediction scenario, if the
workloads of most servers change slowly over time, then a
lower rate of update might be desirable, and 8 may be set to
a high value like 0.8 or 0.9. In our dataset, workloads of most
servers exhibit significant non-stationarity, implying the need
for relatively faster updates, and hence the value of 8 was set
to 0.5 in our experiments.

TABLE 2. Macro-averaged MAPE analysis of prediction models
using real dataset, G-test(1570), and synthetic dataset with
increased non-stationarity, G’-test(1570).

Prediction Macro-averaged Error Difference
model G-test(1570) G’-test(1570) (in %)
kSE 8.05 8.3 -3.1

WMC 8.37 8.2 2.03
MA(4) 22.7 25.1 -105
MA(24) 26.4 28.3 -7.19

RW 29.4 30.7 -4.4

In kSE, parameter o denotes the number of most-recent
instances that would be taken into consideration for mini-
mizing the regret Vs ,(£) of ensemble £. In our experiments,
the value of « is set to (24 x7), implying one week of hourly
workload data points. Setting « to higher values may result in
more reliable server workload predictions, but would increase
the computational time required to execute kSE. On the other
hand, setting « to low values like 24 (implying just one day’s
hourly workload data points) may significantly decrease the
required computational time for kSE, but would adversely
affect the accuracy of the model.

RW

—+— ksE -
WMC . . A : L
go b FoMAM@) o
—5— Ma(24) ] ; ; /

Cumulative percentage of servers

=20
MAPE error

FIGURE 3. Percentage-of-servers based evaluation using real
dataset G-test(1570).

In order to determine the experts to be included in the
global ensemble, data analysis can be done on a smaller, ran-
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dom sample of servers using conventional time-series based
models like exponential smoothing, auto-regression and
ARIMA. Based on the analysis results, an initial set of experts
can be chosen and the predictive performance of the ensemble
can be assessed using a validation set [57]. Validation set may
contain workload data of all servers for a small time period,
e.g., a week. (We refer the readers to [57] and [58] for relevant
details). Depending on the performances of experts based
on a time-series model, say exponential smoothing, more
experts based on that model can be included (or excluded)
with varying statistical and time parameters. The updated set
of experts can again be assessed on the same validation set as
before, and after a few iterations, a final set of experts can be
formed. In our experiments, this procedure concluded in a set
of 90 experts which formed the global ensemble.

B. MACRO-AVERAGED PREDICTION ERROR ANALYSIS
ON LARGE SCALE NONSTATIONARY DATASET G(1570)

In this section, we present comparative evaluations of macro-
averaged prediction error of the ensemble-based prediction
models, kSE and WMC, and the baseline prediction mod-
els, MA(4), MA(24) and random walk (RW). In order to
do so, we trained each of these prediction models on the
G-train(1570) dataset and then tested them on G-test(1570)
and G'-test(1570) datasets.

Fig. 2 shows the macro-averaged errors of the kSE, WMC
and baseline prediction models, evaluated over real dataset
G-test(1570) as well as synthetic dataset G'-test(1570). Recall
that G'-test(1570) has greater non-stationarity due to inverted
trends of workloads that we introduced for each week-
end in the test period. It can be easily seen that for both
G-test(1570) and G'-test(1570) datasets, the macro-averaged
MAPE error of kSE and WMC is in the range of 8.05-8.37
which is significantly lower than the macro-averaged error of
22.7-30.7 for the baseline prediction models.

The detailed numerical results of macro-averaged MAPE
evaluation for each prediction model are shown in Table 2.
The table also shows a comparison (in percentage terms)
between macro-averaged MAPE computed over G-test(1570)
and G’-test(1570), so as to highlight the effect of additional
non-stationarity in G’-test(1570) on the prediction accuracy
of proposed and baseline prediction models. This percentage
comparison is illustrated pictorially in Fig. 2, where we see
that due to increased non-stationarity in G’-test(1570), the
macro-averaged error of kSE increases by 3.1%, but surpris-
ingly, the macro-averaged error of WMC decreases by 2.03%.
On the other hand, the macro-averaged error of baseline
algorithms MA(4), MA(24) and RW, show more significant
increases of 10.5%, 7.19% and 4.4% respectively.

We further evaluated the accuracies of proposed mod-
els using relative errors and order-statistics based metrics,
and present the evaluation results in Table 3. We first com-
%te the relative error of a prediction model for server s as

P —p “l, and then average it over all servers in order
to determlne macro-averaged relative error. In Table 3, it is
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FIGURE 2. (a) Macro-averaged error analysis using real dataset, G-test(1570), and synthetic dataset, G’-test(1570); (b) Percentage
difference in macro-averaged prediction error due to increased non-stationarity in G’-test(1570).

TABLE 3. Macro-averaged relative error and order statistics analysis of prediction models using real dataset, G-test(1570), and
synthetic dataset, G’-test(1570).

Prediction Relative Error Median 90" percentile
model
G-test(1570) G'- G-test(1570) G’- G-test(1570) G'-
test(1570) test(1570) test(1570)
kSE 0.07 0.08 0.04 0.04 0.30 0.31
WMC 0.08 0.07 0.05 0.04 0.32 0.31
MA(®4) 0.20 0.23 0.10 0.11 0.50 0.53
MA(24) 0.23 0.25 0.11 0.13 0.55 0.58
RW 0.26 0.27 0.21 0.20 0.61 0.64
& where error is simply computed as ‘P"’m;p‘”‘. We present
a macro-averaged median and macro-averaged 907" percentile
e values of the error distribution for each prediction model in
c 2 Table 3, where we see that the macro-averaged median errors
u§ 0 of our proposed workload prediction models fall in the range
£ S i of 0.04-0.05, whereas macro-averaged median errors of the
E baseline models are comparatively higher, i.e., in the range of
§ -4 0.10-0.20. Similarly, 90" percentile errors of the proposed
E & models are in the range of 0.30-0.31, whereas the 90" per-
] ; centile errors of the baseline models are again significantly
8 o higher, in the range of 0.50-0.64.
-10 ' : : i : : : These results indicate that with increased non-stationarity
1 3 5 7 g 11 15 20

MAPE error

FIGURE 4. Percentage difference in cumulative number of
servers for each error limit, caused due to increased
non-stationarity of G’-test(1570).

shown that the proposed ensemble-based workload predic-
tion models have macro-averaged relative errors in the range
of 0.07-0.08, whereas the baseline models have signifi-
cantly higher macro-averaged relative errors in the range of
0.20-0.27. We also evaluated the proposed models based on
median and 907 percentile values of their error distributions,
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of workloads, the proposed ensemble-based workload pre-
diction models outperform the baseline models by a sig-
nificant extent. More specifically, kSE outperforms the
baselines as well as WMC (albeit by a small margin) in
terms of prediction accuracy. However, recall that kSE is
computationally more expensive than WMC. Therefore, in
large scale-workload prediction scenarios where predictive
accuracy is of utmost importance and computational cost
is not considered a constraint, KSE may be preferred to
WMC. On the other hand, in scenarios where computa-
tional time or resources are limited, WMC may be preferred
over kSE.
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TABLE 4. Prediction error evaluation with total number of servers in different error ranges using real dataset G-test(1570) and

synthetic dataset with increased non-stationarity G’-test(1570).

Dataset Prediction Range of MAPE error
model <1 1-3 3-5 5-7 7-9 9-11 11-15  15-20  >20
kSE 79 94 235 376 392 253 47 62 32
WMC 94 141 188 282 502 220 79 31 33

G-test(1570) MA(4) 31 47 15 78 94 126 392 332 455
MA(24) 16 32 1 16 93 48 314 455 595
RW 8 2 31 47 23 110 282 408 659
kSE 79 63 236 377 424 236 47 79 29
WMC 94 141 204 330 440 220 79 32 30

G'-test(1570) MA(4) 16 47 16 63 47 110 361 424 486
MA(24) 16 32 1 16 63 47 236 487 672
RW 8 2 32 47 24 110 251 394 702

C. PERCENTAGE-OF-SERVERS BASED EVALUATION ON
LARGE-SCALE NONSTATIONARY DATASET G(1570)

We now present detailed evaluation results of the proposed
ensemble-based prediction models based on the percentages
of servers for which workloads may be predicted within
specific error limits like <5, <11, etc. For this evaluation, we
use MAPE as the error measure for comparing the predic-
tive performances of the models. In business scenarios, this
evaluation is useful while making decisions on the choice of
workload prediction models for a given server infrastructure,
especially when a target prediction error limit is specified by
a third party or end-users.

Table 4 shows evaluations based on percentages of servers,
on the real dataset G-test(1570) and the synthetic dataset
G’-test(1570). We see that for G-test(1570), using kSE and
WMC leads to a majority of servers being in the error range
3-5, 5-7, 7-9, and 9-11 (highlighted in the table). This
implies that using the proposed ensemble-based prediction
models, we can obtain workload predictions with errors less
than 11 for a majority of servers in the data center. However,
this is not true for baseline prediction models, using which
prediction error of most of the servers are in higher ranges of
11-15, 15-20 and >20 (highlighted in Table 4).

In Fig. 3, we further analyze this difference quantitatively
by plotting the cumulative percentage of servers for each
error limit specified in Table 4. We see that, using kSE
and WMC, we obtain prediction errors of less than 11 for
approximately 91% of servers, whereas using the baseline
models, we achieve prediction errors of less than 11 for only
13%-24% of servers. This is an important result, as it shows
that using the proposed ensemble-based prediction models,
the workloads of approximately 91% of servers in the data
center can be predicted with accuracy greater than 89%,
whereas using baseline algorithms, the workloads of hardly
13%-24%, servers can be predicted with this accuracy. If
the desired error limit is moved to stricter values of 9 or 5,
the ensemble-based prediction models still outperform the
baseline models by a significant extent.

Table 4 also shows similar evaluation results on the syn-
thetic dataset G'-test(1570). We see that using kSE and WMC
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TABLE 5. Prediction error evaluation with changes in scale
and/or composition of server infrastructure.

PredictionMacro-averaged Error  Difference
model  over different datasets (in %)
Ght(270) G(1570)
kSE 8.43 8.3 -1.54
Increase e g1 8.37 2.79
mo o MA@) 244 25.1 2.87
SEIVers MA(24) 259 28.3 9.27
scale RW 29.9 30.7 2.68
Ghm(270) Ght(270)
Change kSE 8.41 8.43 0.24
in WMC 8.64 8.61 -0.35
servers’ MA(®4) 24.6 24.4 -0.81
composi- MA(24) 26 25.9 -0.38
tion RW 28.9 29.2 3.46
Ght(270) G(1570)
Change kSE 8.41 8.3 -1.31
in both WMC 8.64 8.37 -3.13
scale and MA®M4) 246 25.1 2.03
composi- MA(24) 26 28.3 8.85
tion RW 28.9 30.7 6.23

results in the prediction errors of a majority of servers being
less than 11, as compared to the baselines, in which a majority
of servers have MAPE in the ranges of 11-15, 15-20 and
>20 (highlighted in Table 4). In order to illustrate the effect
of added non-stationarity in G’-test(1570), we calculated for
each prediction model the percentage difference in the num-
ber of servers that is caused due to increased non-stationarity
in G’'-test(1570), and plot the results in Fig. 4. We see that
for an error limit of 11, the kSE and WMC prediction models
do not show significant decrease in the cumulative number
of servers, whereas the baseline models MA (4) and MA (24)
do show decreases of approximately 2% and 6% respectively.
For stricter error limits like 9 or 5, similar results can be seen
in Fig. 4. This indicates that the proposed workload prediction
models are comparatively more robust at handling increased
workload non-stationarity.
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FIGURE 5. (a)—(c) Macro-averaged error analysis for changes in scale and/or composition of servers; (d)—(f) Percentage difference in macro-averaged error due to

changes in scale and/or composition of servers.

D. PREDICTION ERROR EVALUATION CONSIDERING
SCALE AND COMPOSITION OF SERVER INFRASTRUCTURE
In this section, we discuss how we investigated if the predic-
tion accuracies of kSE and WMC tend to change when the
scale of server infrastructure is increased, and/or when the
composition of server infrastructure changes from homoge-
nous (in terms of operating systems and software applications
hosted) to heterogenous. In order to perform this evalua-
tion, we created two more datasets Ghm(270) and Ght(270)
where Ghm(270) consists of workload data of 270 homo-
geneous servers, and Ght(270) consisting of workload data
of 270 heterogenous servers. For this evaluation, we used
macro-averaged MAPE as the error measure for comparing
predictive performance of the proposed and baseline models.
We first evaluated the effect of increases in the num-
ber of servers on the predictive performances of kSE and
WMC, using the Ght(270) and G(1570) datasets. We show the
comparison results in Fig. 5(a), wherein we plot the macro-
averaged error for each prediction model over Ght(270) and
G(1570) datasets. We see that as the number of servers
increase from 270 in Ght(270) to 1570 in G(1570), the
macro-averaged error of kSE and WMC show a minor, but
definite, decrease, whereas the macro-averaged errors of
the baseline models, especially MA(24), show considerable
increases. This difference is further highlighted in Fig. 5(d),
where we show the percentage differences in macro-averaged
errors of the prediction models due to increase in the scale
of servers. We see that while kSE and WMC show minor
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decreases of approximately 1-3% in their macro-averaged
errors, the baseline prediction models show considerable
increases in their macro-averaged errors. Table 5 shows a
summary of this comparison, wherein we see that as a result
of increases in the number of servers, the macro-averaged
errors of kSE and WMC decreased by 1.54% and 2.79%
respectively, whereas macro-averaged error of the baseline
prediction models increased by 2.68-9.27%. This result indi-
cates that as the scale of server infrastructure increases, the
proposed workload prediction models perform significantly
better than the baseline prediction models.

In order to demonstrate the effect of changes in composi-
tion of server infrastructure (in terms of homogeneity and het-
erogeneity of servers) on the performances of kSE and WMC,
we use the Ghm(270) and Ght(270) datasets. The evaluation
results are shown in Fig. 5(b) and Table 5 wherein we see
that none of the prediction models show significant increases
or decreases in their respective macro-averaged errors. We
compute the percentage differences in macro-averaged errors
of prediction models, and plot the same in Fig. 5(e), and
see that none of the prediction algorithms (except RW) show
greater than 1% difference in their macro-averaged errors.
This indicates that the composition of server infrastructure
does not have any notable impact on the performance of kSE,
WMC and baseline prediction models.

For the sake of completeness, we also computed changes
in the accuracies of the kSE and WMC prediction models
when scale and nature of composition of server infrastructure

163



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Singh and Rao: Ensemble Learning for Large-Scale Workload Prediction

are simultaneously changed. We performed this evalua-
tion by comparing macro-averaged errors of the prediction
models using workload data of 270 homogenous servers
in Ghm(270), and 1570 heterogenous servers in G(1570).
Fig. 5(c) and (f) and Table 5 show the results of this com-
parison wherein we see that kSE and WMC show decreases
of 1.3% and 3.1% respectively in macro-averaged errors,
whereas the baseline prediction models show considerable
increases of 2.03-8.84% in macro-averaged errors, primarily
due to increases in the number of servers.

To summarize, the experimental evaluation of proposed
kSE and WMC workload prediction models indicate the
following:

1) Inalarge data center with 1570 servers, kKSE and WMC
achieved significantly lower macro-averaged errors of
8.05-8.37% as compared to errors of 22.7-30.7% for
the baseline prediction models, indicating the effective-
ness of proposed workload prediction models in large-
scale scenarios.

2) Using kSE and WMC, workloads of approximately
91% of servers in a large real data center can be pre-
dicted with accuracy greater than 89%, whereas using
baseline algorithms, the workloads of only 13-24% of
servers can be predicted with similar accuracy.

3) As the scale of server infrastructure increases, the
macro-averaged errors of the proposed kSE and
WMC prediction models show minor decreases of
1.54-2.79%, whereas the macro-averaged errors of
baseline prediction models increase considerably by
2.68-9.27%. This implies that as the number of servers
is increased in a server system, kSE and WMC can
easily outperform the baseline prediction models.

4) Changes in the nature of composition of server infras-
tructure, in terms of homogenity or heterogenity of
servers, does not significantly affect the accuracy of
workload prediction models under consideration.

VIl. CONCLUSION

In this work, we addressed the problem of large-scale
workload prediction by extending and adapting two online
ensemble learning methods, i.e., Weighted Majority and Sim-
ulatable Experts. In doing so, we developed a generic theo-
retical extension of the classical Simulatable Experts, from
binary outcome space to k-outcome space, thereby making
Simulatable Experts suitable for any k-class learning prob-
lem. We demonstrated the effectiveness of the proposed
ensemble learning algorithms using large datasets of 1570
servers, and showed that using the proposed algorithms,
workloads of approximately 91% servers can be predicted
with accuracies greater than 89%, whereas using baseline
algorithms, workloads of only 13-24%, servers can be pre-
dicted with similar accuracies. In future, we see scope for
other enriched variants of Weighted Majority (like Dynamic
Weighted Majority [48]) and/or Simulatable Experts to be
adapted to yield further benefits in terms of accuracy and
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computational efficiency in the large-scale workload pre-
diction problem, and also the applicability of the proposed
ensemble-based methods in grid and cloud environments.
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