
IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Received 15 April 2013; revised 25 November 2013; accepted 10 December 2013. Date of publication 1 January 2014;
date of current version 30 July 2014.

Digital Object Identifier 10.1109/TETC.2013.2296537

Optimal Scheduling for Real-Time Jobs in
Energy Harvesting Computing Systems

MARYLINE CHETTO
IRCCyN Research Institute, University of Nantes, Nantes F-44321, France

CORRESPONDING AUTHOR: M. CHETTO (maryline.chetto@univ-nantes.fr)

ABSTRACT In this paper, we study a scheduling problem, in which every job is associated with a release
time, deadline, required computation time, and required energy. We focus on an important special case where
the jobs execute on a uniprocessor system that is supplied by a renewable energy source and use a rechargeable
storage unit with limited capacity. Earliest deadline first (EDF) is a class one online algorithm in the
classical real-time scheduling theory where energy constraints are not considered. We propose a semi-online
EDF-based scheduling algorithm theoretically optimal (i.e., processing and energy costs neglected). This
algorithm relies on the notions of energy demand and slack energy, which are different from the well known
notions of processor demand and slack time. We provide an exact feasibility test. There are no restrictions on
this new scheduler: each job can be one instance of a periodic, aperiodic, or sporadic task with deadline.

INDEX TERMS Real-time systems, energy harvesting, uniprocessor, optimal scheduling, earliest deadline
first, slack energy.

I. INTRODUCTION
Energy harvesting is a technology that allows to capture
otherwise unused ambient energy and convert it into electri-
cal energy which can be used immediately or later through
a storage unit [15], [27]. Ambient energy also known as
environmental energy is obtained from natural and human-
made sources that surround us in the environment (e.g. kinetic
energy produced by movements). This approach extends the
life of batteries (or eliminates them entirely) and decreases
maintenance. A variety of techniques are available for energy
harvesting, including solar, piezoelectricity, thermoelectric-
ity, and physical motions. Energy harvesting appears to be
a perfect match for wireless devices that otherwise rely on
battery power. Some of the main applications include self-
powered sensors in medical implants for health monitoring
and embedded sensors in structures such as bridges and build-
ings for remote monitoring. The compactness-surface area
and weight- that the device authorizes limits the yield of
power that mostly hovers at milliwatt.

Low power design of electronic systems came in the focus
of interest in the middle nineties. Power management tech-
niques have been proposed to achieve energy efficiency of
battery-powered devices. DPM (Dynamic Power Manage-
ment) [24] and DVFS (Dynamic Voltage and Frequency

Selection) [33] are the two conventional techniques that aim
to reduce the static respectively dynamic energy dissipation.
Nonetheless, these techniques alone do not prevent a bat-
tery from being replaced so that the device continues to
operate. Nowdays, a growing number of applications involve
many wireless sensors that may be deployed in wide areas
and possibly unattainable places. Such systems should be
designed to function perpetually without any human inter-
vention because either costly or impractical. As a conse-
quence, energy harvesting technology has been an area of
rapid development during the last decade [14]. The introduc-
tion of energy harvesting capabilities into embedded systems
such as wireless sensor networks introduces a lot of design
questions. Firstly, how to intelligently use harvesting abilities
so as to optimize its performance and lifetime? In other
words, how to dynamically adapt the processing activity so
as to subsist perpetually on a given energy source? Secondly,
how to dimension the energy storage unit (e.g. battery or
capacitor) and the harvester (e.g. solar panel) to guarantee an
acceptable performance under all environmental conditions?
Researchers also strive to design efficient power management
techniques which additionally adapt to real-time require-
ments that characterize a lot of energy harvesting computing
systems [28].

122

2168-6750 
 2014 IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. VOLUME 2, NO. 2, JUNE 2014



CHETTO: Optimal Scheduling for Real-Time Jobs in Energy Harvesting Computing Systems

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

A. THIS RESEARCH
In this paper, we focus on a system that consists of three
components: a processing element with unique voltage and
frequency, an energy harvester and a rechargeable energy
storage unit.

We address the scheduling issue for uniprocessor plat-
forms. We consider that the system allows for preemptions to
process jobs with real-time constraints. Jobsmust be executed
in a timely manner and any deadline failure has to be antici-
pated in order to avoid an intolerable damage. Our processing
model exhibits two major assumptions. Firstly, as in the most
popular model of real-time computing, every job is character-
ized by a release time, an execution requirement and a dead-
line. With such characterization, the job requires an amount
of processor time equal to its execution requirement between
its release time and its deadline. In our study, each job is
characterized in addition by an energy requirement which is
the amount of energy needed for its execution.We assume that
the energy requirement of a job does not necessarily have to
be proportional to its execution time. Secondly, as commonly
assumed in the real-time energy harvesting literature [21],
[25], the instantaneous consumption power of any job is no
less than the incoming power from the harvesting unit i.e.
the jobs are discharging. Guaranteeing that all deadlines are
met is one of the most important issues in Real-Time Energy
Harvesting (RTEH) systems. We have to adopt a scheduling
strategy that can always guarantee a predictable response
time for every job even in the face of energy limitations.
Another key consideration that affects power management
and scheduling in RTEH systems is that instead of mini-
mizing the energy consumption and maximizing the lifetime
achieved as in classical battery operated devices, the system
operates in an ‘‘energy neutral mode’’ by consuming only
as much energy as harvested [16]. So the resulting problem
we have to deal with is: How can we schedule the jobs so
as to guarantee their timing constraints perpetually by suit-
ably exploiting both the processor and the available ambient
energy?

B. PRIOR RESEARCH
Most prior research on scheduling of hard deadline jobs on
a single processor computing system assumes that jobs have
no energy requirements (see [5], [18] for surveys). Dertouzos
[11] shows that the Earliest Deadline First Algorithm (EDF)
is optimal. EDF schedules at each instant of time t, that job
ready for execution whose deadline is closest to t. But the
problem with EDF is that it does not consider future jobs
arrivals and their energy requirements. Energy shortage (i.e.
the situation where the energy is not sufficient to execute jobs
timely) should imperatively be anticipated to avoid deadline
misses. In [7], we prove that EDF is no longer optimal for
RTEH systems. Jobs are processed as soon as possible thus
consuming the available energy greedily. We usualy say that
EDF is work-conserving for released jobs. In other words,
the scheduler never idles the processor while there is a job

awaiting execution. Although non-competitive, EDF turns
out to remain the best non-idling scheduler for uniprocessor
RTEH platforms [7].
In an energy constrained system, it is sometimes necessary

not to dispatch a ready job if it will prevent future jobs to
meet their deadlines because of energy shortage. In [8], we
show that no online scheduler can be optimal. With possible
lookahead, we say that an online algorithm is lookahead-ld
if ld is the length of time segment that the scheduler can
foresee at any time [10]. Such a scheduler is also described as
semi-online. We prove that optimality can be obtained only
by semi-online schedulers with lookahead-D where D is the
longest relative deadline of jobs in the application [8]. In other
terms, an optimal scheduling algorithm that takes decisions at
run time requires clairvoyance for at least D time units from
any instant.

C. CONTRIBUTION
The aim of this work is to provide an analysis in the con-
text of dynamic-priority, preemptive, uniprocessor schedul-
ing with energy harvesting considerations. Specifically, this
paper integrates a general model for RTEH systems and
extends some notions as processor demand, processor load
and slack time to the energy domain with the notions of
energy demand, energy load and slack energy. We report
our findings concerning the study of the two following
issues.

1) Runtime scheduling: Given a RTEH system that is
known to be feasible, determine an online (or semi-
online) scheduling algorithm that schedules the system
to meet all deadlines.

2) Feasibility test: Given the specifications of a RTEH
system, determine whether there exists a schedule that
meets all deadlines. Performing a feasibility test pro-
vides a yes or no answer depending on whether the job
set is feasible or not.

D. OUTLINE
The remainder of the paper is organized as follows.
The energy harvesting system model and assumptions are
presented in Section II. We give background materials in
Section III. New concepts and a new energy-aware schedul-
ing algorithm, namely ED-H, are presented in Section IV.
We prove the optimality of ED-H in Section V and we
establish an exact feasibility test in Section VI. Section VII
focusses on practical considerations. Related works are
described in Section VIII. Section IX summarizes this paper
and provides directions for future works.

II. MODEL AND TERMINOLOGY
A. SYSTEM MODEL
Hereafter, we describe the RTEH model that consists of
a computing element, a set of jobs, an energy storage
unit, an energy harvesting unit and an energy source
(see Fig. 1).

VOLUME 2, NO. 2, JUNE 2014 123



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING CHETTO: Optimal Scheduling for Real-Time Jobs in Energy Harvesting Computing Systems

FIGURE 1. A real-time energy harvesting system.

1) JOB MODEL
We consider a set of real-time jobs that are executed
on a single processing unit that supports only one oper-
ating frequency. Its energy consumption is only due to
dynamic switching energy. Consequently, it consumes neg-
ligible energy in the idle state when it does not execute jobs.
Jobs are processed exclusively with energy generated by the
energy source. The set of jobs is denoted by τ = {τi, i =
1, . . . , n}. All jobs can be preempted and later resumed at
any time with no time or energy loss associated with such
preemption. Furthermore, jobs are independent of each other.
A four-tuple (ri,Ci,Ei, di) is associated with a job τi. In this
characterization, job τi arrives at time ri called release time,
requires a worst case execution time of Ci time units and
has a worst case energy consumption of Ei energy units. We
assume that Ei is not necessarily proportional to Ci [13].
Executing any job of τ consumes at most eMax units of energy
during one unit time-slot and the actual energy consumption
in the slot is not known beforehand. A deadline occurs at
di units by which τi must have completed its execution. Let
dMax = max0≤i≤n di be the latest absolute deadline and
D = max0≤i≤n (di − ri) be the greatest relative deadline.
The energy consumed by jobs on the time interval [t1, t2)
is denoted by Ec(t1, t2). The energy consumed in any unit
time-slot is no less than the energy produced in the same
unit time-slot. We say that the jobs are ‘‘discharging’’ [3].
Consequently, the residual capacity of the energy storage unit
is never increasing every time a job executes.

2) ENERGY PRODUCTION MODEL
The energy produced by the source is not considered as
controllable. It is characterized by an instantaneous charging
rate Pp(t) that incorporates all losses. The energy produced
by such a power source in the time interval [t1, t2) is given as
Ep(t1, t2) =

∫ t2
t1
Pp(t)dt . We assume that the energy produc-

tion times can overlap with the consumption times. While the
source power is not necessarily a constant value, we assume
that we can predict it accurately for near future with negligible
time and energy cost.

3) ENERGY STORAGE MODEL
Our system uses an ideal energy storage unit (supercapacitor
or battery) with a nominal capacity C . C is expressed in

units of energy. The capacity may be less than the energy
consumption of some jobs. Let us define E(t) as the residual
capacity at time t i.e. the energy level in the storage unit at t .
Energy is wasted if the storage is fully charged at time t and
we continue to charge it. For simplicity, E(t) ≈ C stands for
C ≤ E(t) < C + eMax . In contrast, the energy storage is
considered as fully discharged at time t if 0 ≤ E(t) < eMax
denoted by E(t) ≈ 0. The storage unit is fully charged
initially (i.e. E(0) = C). The stored energy may be used at
any time later and does not leak any energy over time.

B. TYPES OF STARVATION
According to the RTEH model, a job τi can miss its deadline
if one of the two following situations occurs.

• Time starvation: when the job reaches its deadline at
time t , its execution is incomplete because the time
required to process it before deadline is not sufficient.
There is available energy in the storage unit when the
deadline violation occurs (i.e. E(t) > 0).

• Energy starvation: when the job reaches its deadline at
time t , its execution is incomplete because the energy
required to process it before deadline is not available.
The energy in the storage unit is exhausted when the
deadline violation occurs (i.e. E(t) ≈ 0).

C. TERMINOLOGY
We now give definitions we will be needing throughout the
remainder of this paper.
Definition 1: A schedule 0 for τ is said to be valid if the

deadlines of all jobs of τ are met in 0, starting with a storage
fully charged, with the energy generated by a given energy
source.
Definition 2: A system is feasible if there exists at least

one valid schedule for τ with the given energy source and
energy storage unit. Otherwise, it is infeasible.
In infeasible RTEH systems, the limiting factors are either,

both time and energy, only time or only energy.We focus here
on feasible systems only.
As in the classical scheduling theory, we say that a schedul-

ing algorithm is:

• optimal if it finds a valid schedule whenever one exists;
• online if it makes its decisions at run-time;
• semi-online if it is online with necessary lookahead on a
certain time interval;

• lookahead-ld if it is semi-online with lookahead on ld
time units;

• idling if it is allowed to keep the processor idle even
when there are pending jobs. Otherwise, it is non-idling
or work-conserving;

• clairvoyant if it has knowledge of the future.

We introduce a novel terminology which is peculiar to
energy constrained computing systems.
Definition 3: A schedule 0 for τ is said to be time-valid

if the deadlines of all jobs in τ are met in 0, considering that
∀i ∈ {1, . . . , n} ,Ei = 0.

124 VOLUME 2, NO. 2, JUNE 2014



CHETTO: Optimal Scheduling for Real-Time Jobs in Energy Harvesting Computing Systems

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Definition 4: A job set τ is said to be time-feasible if there
exists a time-valid schedule for τ .
Definition 5: A schedule 0 for τ is said to be energy-valid

if the deadlines of all jobs in τ are met in 0, considering that
∀i ∈ {1, . . . , n} ,Ci = 0.
Definition 6: A job set τ is said to be energy-feasible if

there exists an energy-valid schedule for τ .
Definition 7: A scheduling algorithm A is said to be

energy-clairvoyant if it needs knowledge of the future energy
production to take its runtime decisions.

III. BACKGROUND MATERIALS
A. EDF SCHEDULING
EDF is probably the most famous dynamic priority scheduler
[11], [17]. As a consequence of its optimality for preemptive
uniprocessor scheduling of independent jobs, the run-time
scheduling problem is perfectly solved if we assume there
exists no additional constraints on the jobs. EDF is the sched-
uler of choice since any feasible set of jobs is guaranteed to
have a valid EDF schedule.

In the most common way of EDF implementation, jobs
are executed as soon as possible. In that version of EDF, the
processor is never let inactive if at least one job is awaiting
for execution. Such implementation has been called Earliest
Deadline as Soon as possible (EDS) [6]. EDS is clearly an
on-line scheduler since it solely needs timing parameters of
the jobs which are currently ready for execution to take its
dispatching decisions. By opposition, the jobs can be sched-
uled as late as possible according to the so-called Earliest
Deadline as Late as possible (EDL) approach. Determination
of the start time of the next job to execute requires knowledge
of jobs that are currently ready and jobs that will arrive in the
future as well. Such a version of EDF turns out to be semi-
online since the EDL schedule build at any current time tc
needs information about jobs released between time tc and
time tc + D where D stands for the greatest relative deadline
of the application. This makes of EDL an online lookahead-D
scheduler [9]. Although the usual scheduling scheme is EDS,
EDL is very often considered for processor idle time analysis.

B. CLASSICAL CONCEPTS
In this subsection, we recall definitions for real-time schedul-
ing concepts.

1) STATIC ANALYSIS
Definition 8: The processor demand of a job set τ on the

time interval [t1, t2) is

h(t1, t2) =
∑

t1≤rk ,dk≤t2

Ck (1)

Definition 9: The static slack time of a job set τ on the
time interval [t1, t2) is

SSTτ (t1, t2) = t2 − t1 − h(t1, t2) (2)

SSTτ (t1, t2) gives the longest time that could be made
available within [t1, t2) after executing jobs of τ with release
time at or after t1 and deadline at or before t2.
Definition 10: The static slack time of a job set τ , SSTτ ,

is

SSTτ = min
0≤t1<t2≤dMax

SSTτ (t1, t2) (3)

Namely, the processor demand on [t1, t2) gives the amount
of execution time requested by all jobs with release time at
or after t1 and deadline before or at t2. When the set of jobs
utilizes the processor with a ratio less than 100%, there is
unused processor time, hence the notion of slack time. The
schedulability analysis for EDF needs to calculate the pro-
cessor demand for every time interval starting with a release
time and finishing with a deadline in order to check if there is
an overflow in the interval. This amounts to computing the so-
called static slack time SSTτ (t1, t2) with (3). In systems where
jobs may arrive at unpredictable times, we have to perform
the test (often called admission test) online so as to decide
whether the new occurring job is authorized to enter into the
system [5].

The processor load (as defined in the classical scheduling
theory with no energy consideration) shows the maximum
fraction of processor time requested in a given time interval.
Definition 11: The static processor load of a job set τ on

the time interval [t1, t2) is

USPτ (t1, t2) =
h(t1, t2)
t2 − t1

(4)

USPτ (t1, t2) gives the ratio of the total execution time to
the length t2 − t1, considering all jobs which are released at
or after t1 with deadline at or before t2.
Definition 12: The static processor load of a job set τ is

USPτ = sup
0≤t1<t2≤dMax

USPτ (t1, t2) (5)

Consequently, if the static processor load of τ is greater than
1, there should not exist a feasible scheduling algorithm for τ .
And we generally say that the system is overloaded [4]. More
precisely, wewill say that the system is in processor-overload.

2) DYNAMIC ANALYSIS
Let tc be the current time in the schedule produced for the job
set τ by a certain scheduling algorithm.
Definition 13: The slack time of a job τi at current time

tc is

STτi (tc) = di − tc − h(tc, di)− ATi (6)

where ATi is the total remaining execution time of uncom-
pleted jobs currently ready at tc with deadline at or before di.
STτi (tc) gives the available processor time after executing

uncompleted jobs with deadlines at or before di.
Definition 14: The slack time of a job set τ at current time

tc is

STτ (tc) = min
di>tc

STτi (tc) (7)

VOLUME 2, NO. 2, JUNE 2014 125



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING CHETTO: Optimal Scheduling for Real-Time Jobs in Energy Harvesting Computing Systems

We show in [6] that the slack time as computed with
(7) represents the maximum continuous processor time that
could be available from time tc while still guaranteeing the
deadlines of all the jobs. And it is obtained from the EDL
schedule produced at current time tc.

IV. THE ED-H SCHEDULING ALGORITHM
A. OVERVIEW OF THE SCHEDULING SCHEME
The intuition behind the scheduling algorithm we propose
for the RTEH model is to run jobs according to the ear-
liest deadline first rule. However, before authorizing a job
to execute, the residual energy capacity of the storage unit
must be sufficient to supply the awaiting highest priority job
for at least the next unit time-slot. Furthermore, the energy
consumption in that time-slot must guarantee the energy-
feasibility of all future occurring jobs. This can be verified
by considering their timing and energy requirements as well
as the replenishment rate of the storage unit. If one of these
conditions is not fulfilled, the processor has to idle so that
the storage unit recharges sufficiently. Roughly speaking,
this extension of EDF prevents energy starvation. Following
the idea described above, we present a modified EDF that
is dedicated to energy harvesting constrained jobs, called
ED-H scheduling algorithm.

B. CONCEPTS FOR THE RTEH MODEL
1) STATIC ANALYSIS
To formally present ED-H, we need to introduce novel con-
cepts particularly helpful when analyzing the feasibility of a
job set with both energy and deadline constraints: the energy
demand, the slack energy and the energy load.

Let rk , dk and Ek be release time, deadline and worst case
energy consumption of job τk respectively.
Definition 15: The energy demand of a job set τ on the

time interval [t1, t2) is

g(t1, t2) =
∑

t1≤rk ,dk≤t2

Ek (8)

Let Ep(t1, t2) be the amount of energy that will be produced
by the source between t1 and t2.
Definition 16: The static slack energy of a job set τ on the

time interval [t1, t2) is

SSEτ (t1, t2) = C + Ep(t1, t2)− g(t1, t2) (9)

SSEτ (t1, t2) gives the largest energy that could be made
available within [t1, t2) after executing jobs of τ with release
time at or after t1 and deadline at or before t2.
Definition 17: The static slack energy of a job set τ is

SSEτ = min
0≤t1<t2≤dMax

SSEτ (t1, t2) (10)

Intuitively, the static slack time of τ represents the length of
the interval starting at any instant during which the processor
could be idle continuously while still satisfying all the timing
constraints of τ . It represents also the maximum processing
surplus that could be accepted by τ at any instant. The static

slack energy of τ represents the additional energy that could
be consumed from any instant while still satisfying all the
energy and timing constraints of τ . We now extend the con-
cept of processor load to the energy domain.
Definition 18: The static energy load of a job set τ on the

time interval [t1, t2) is

USEτ (t1, t2) =
g(t1, t2)

C + Ep(t1, t2)
(11)

Definition 19: The static energy load of a job set τ is

USEτ = sup
0≤t1<t2≤dMax

USEτ (t1, t2) (12)

If the static energy load of τ is greater than 1, there should
not exist a feasible scheduling algorithm for τ because of
inevitable energy shortage in some time interval. We will say
that the system is in energy-overload.

2) DYNAMIC ANALYSIS
Hereafter, for short, the slack time (respectively the slack
energy) will actually refer to the dynamic slack time (respec-
tively the dynamic slack energy) as regards current time
tc in the schedule produced for τ by a certain scheduling
algorithm.
Definition 20: The slack energy of a job τi at current time

tc is

SEτi (tc) = E(tc)+ Ep(tc, di)− g(tc, di) (13)

Clearly, SEτi (tc) represents the maximum energy that
could be consumed within [tc, di) while guaranteeing enough
energy for jobs released at or after tc and deadline at or
before di. In other words, if there exists some job τi such that
SEτi (tc) = 0, executing any job with deadline after di between
tc and di will provoque energy starvation for τi.

Conventional EDF is greedy since it executes jobs as soon
as possible and spends the stored energy disregarding needs
of future jobs. So, a scheduler that withdraws energy from the
storage unit should not cause future energy starvation. If we
assume jobs to be scheduled according to the earliest deadline
rule, energy starvation on a job say τi can only be caused by
a job, say τj which executes before the release of τi such that
dj > di. Let us note that energy starvation of τi caused by τj
with dj ≤ di could not be avoided. Intuitively, clairvoyance
on jobs arrivals and energy production will help EDF to
anticipate possible energy starvation and deadline violation.
The main principle of ED-H is to authorize job executions
as long as no future starvation could occur. This leads us to
define the so-called preemption slack energy for current time
tc as the maximum energy that could be consumed by the
currently active job while still guaranteeing energy feasibility
for jobs that may preempt it.
Definition 21: Let d be the deadline of the active job at

current time tc. The preemption slack energy of a job set τ at
tc is

PSEτ (tc) = min
tc<ri<di<d

SEτi (tc) (14)

126 VOLUME 2, NO. 2, JUNE 2014



CHETTO: Optimal Scheduling for Real-Time Jobs in Energy Harvesting Computing Systems

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

C. DESCRIPTION OF THE ED-H SCHEDULER
In what follows, we consider a given set of jobs that is known
to be feasible for the RTEH model. Let Lr (tc) be the list
of uncompleted jobs ready for execution at tc. The ED-H
scheduling algorithm obeys the following rules.
• Rule 1: The EDF priority order is used to select the
future running job in Lr (tc).

• Rule 2: The processor is imperatively idle in [tc, tc + 1)
if Lr (tc) = ∅.

• Rule 3: The processor is imperatively idle in [tc, tc + 1)
if Lr (tc) 6= ∅ and one of the following conditions is
satisfied:
1) E(tc) ≈ 0.
2) PSEτ (tc) ≈ 0.

• Rule 4: The processor is imperatively busy in [tc, tc + 1)
if Lr (tc) 6= ∅ and one of the following conditions is
satisfied:
1) E(tc) ≈ C .
2) STτ (tc) = 0.

• Rule 5: The processor can equally be idle or busy in
[tc, tc + 1) if Lr (tc) 6= ∅, 0 < E(tc) < C , STτ (tc) > 0
and PSEτ (tc) > 0.

Rules 3.1 and 3.2 say that the processor cannot be active if
either the energy storage unit is deplenished or executing any
jobwould prevent at least one future job from beeing executed
timely because of energy starvation i.e. the system has no
preemption slack energy at tc. Rules 4.1 and 4.2 say that the
processor cannot be inactive if either the energy storage unit is
fully replenished or making the processor idle would prevent
at least one job from beeing executed timely because of time
starvation i.e. the system has no slack time at tc. When the
storage unit is neither full nor empty and the system has both
slack time and preemption slack energy, rule 5 says that the
scheduler may decide on the processor state.

We notice that we never dispatch jobs when there is no
energy. We start charging the storage unit when, either it is
empty or there is not enough energy to guarantee the feasible
execution of all future occurring jobs. The charging process
is flexible since it authorizes to charge the storage unit during
any time period provided there is slack time and the storage
unit has not replenished. We only waste recharging power
when there are no ready jobs and the storage unit is full.

The above description of ED-H forgets the case where the
energy storage unit is fully replenished at tc (i.e. C ≤ E(tc) <
C + eMax) and the system has no preemption slack energy
(i.e. 0 ≤ PSEτ (tc) < eMax). In order not to waste energy by
idling the processor, we may advance the jobs and execute the
highest priority job in [tc, tc + 1). Thus, at most eMax energy
units are consumed after which the processor stays idle so that
the storage unit be fully replenished again. Consequently, the
ED-H scheduler continuously switches from the idle state
to the active state so that the effective average consumption
energy be equal to the production energywith accuracywithin
eMax . This results in wasted energy less than eMax units
until the completion of the job having a zero slack energy.

In contrast to the assumption that is claimed in [25], the
instantaneous consumption power of a running job cannot be
adjusted to fit the incoming environmental power.
We may derive various implementations from the above

ED-H scheme. It depends on the application of rule 5. Jobs
can be processed ASAP, ALAP or mixture of ASAP and
ALAP strategies. The rule for deciding when to start and
stop recharging with inserted idle time periods determines the
resulting ED-H variant. The only condition is to prevent from
negative slack time, negative slack energy and energy wasting
at every time instant.
Example 1: Let us consider two jobs τ1 and τ2 with release

times r1 = 0, r2 = 1, execution times C1 = 1, C2 = 3,
energy consumptions E1 = 2, E2 = 8, absolute deadlines
d1 = 8, d2 = 6. The energy storage unit has a capacity
C = 6 and we assume that E(0) = 4. The energy production
power is constant with Pp = 1. The maximum instantaneous
consumption power is known by eMax = 3.
First, by applying equation (13) we compute SEτ2 (0) =

E(0)+Ep(0, d2)−g(0, d2) = 4+6−8 = 2 as τ2 is the only job
with release time after time 0 and deadline before d1. Clearly,
SEτ2 (0) represents themaximum energy that can be consumed
by jobs from time 0 until the start time of τ2 without injuring
the energy feasibility of τ2. Equation (14) enables us to obtain
PSEτ (0) = 2 i.e. PSEτ (0) ≈ 0 since eMax = 3. From rule
3.2, the processor idles imperatively. Let us choose to let the
processor idle as long as possible.We compute the slack times
of τ1 and τ2 by formula (6). STτ1 (0) = d1− h(0, d1)−AT1 =
8 − (1 + 3) − 0 = 4 and STτ2 (0) = d2 − h(0, d2) − AT2 =
6 − 3 − 0 = 3. Hence, formula (7) gives STτ (0) = 3. Let
us compute the time instant, say tf when the storage will be
fully replenished. tf satisfies the following equation: E(0) +
Ep(0, tf ) = C which leads to tf = 2. The processor is let idle
until time 2 where E(2) = 6. The processor starts execute the
highest priority job τ2. We may decide to execute it as soon
as possible until completion. τ2 completes at time 5 where
E(5) = 1. As E(5) ≈ 0, the processor imperatively idles. We
may decide to recharge until there is no more slack time, say
at time instant d1−C1 i.e. 7 where E(7) = 3. τ1 completes at
deadline where E(8) = 1 (see Fig. 2). Notice that EDF would
execute τ1 first and lead to energy starvation for τ2 at time 2.

V. PROPERTIES OF ED-H SCHEDULING
A. OPTIMALITY ANALYSIS
We state the optimality of ED-H by proving that if ED-H
cannot schedule a given job set τ , then no other scheduling
algorithm is able to schedule it. We assume that the deadline
at d1 of job τ1 is missed and d1 is the first deadline of τ that is
missed in the ED-H schedule. This violation is due to one of
the two following reasons: either job τ1 lacks time (Lemma 1)
or job τ1 lacks energy (Lemma 2) to complete its execution
before or at deadline d1. The time starvation case is when
deadline d1 is missed with the storage not exhausted at d1.
The energy starvation case is when the storage is exhausted
at d1 and τ1 is not completed.

VOLUME 2, NO. 2, JUNE 2014 127



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING CHETTO: Optimal Scheduling for Real-Time Jobs in Energy Harvesting Computing Systems

FIGURE 2. ED-H scheduling.

Lemma 1: If d1 is missed in the ED-H schedule because
of time starvation, there exists a time instant t such that
h(t, d1) > d1 − t and no schedule exists where d1 and all
earlier deadlines are met.

Proof: Recall that we have to consider the time star-
vation case where d1 is missed with E(d1) > 0. Let t0 be
the latest time before d1 where the processor is idle. Conse-
quently, the processor is continuously busy between t0 and d1.
We have to examine the two following cases.
Case 1: There is no ready job at time t0.

Consequently, t0 coincides with the arrival of a job, say τ2
with release time r2 = t0 that verifies r2 ≤ r1.

Case 1a: d2 ≤ d1. τ2 is entirely processed before d2
because d1 is the first deadline to be violated and jobs are
scheduled according to the earliest deadline rule in ED-H.We
may have the following two cases.

Case 1a1: According to rule 4.2, the processor is busy
at time r2 because there is no slack time at r2 i.e. STτ (r2) = 0.
Thus, the slack time at r2 of τ1 is no less than 0. Consequently,
the processor demand on the time interval [r2, d1), given
by h(r2, d1) =

∑
r2≤rk ,dk≤d1 Ck is no less than d1 − r2.

This contradicts that d1 is violated. And no other scheduling
algorithm can produce a valid schedule on [r2, d1).

Case 1a2: According to rule 5, the processor is busy
at time r2 because 0 < E(r2) < C , STτ (r2) > 0 and
PSEτ (r2) > 0. Consequently, STτ1 (r2) > 0 i.e. h(r2, d1) =∑

r2≤rk ,dk≤d1 Ck is no more than d1−r2. This contradicts that
d1 is violated.

Case 1b: d2 > d1. No job released before r1 with
deadline greater than d1 including job τ2 is executed within
[r1, d1) because jobs are scheduled according to the earliest
deadline rule. Consequently, the maximum computation time
required by jobs in [r1, d1) is equal to the processor demand
h(r1, d1) =

∑
r1≤rk ,dk≤d1 Ck . Since d1 is violated, necessarily

h(r1, d1) > d1 − r1 because jobs are ordered by the earliest
deadline rule. And no other scheduling algorithm can produce
a valid schedule.
Case 2: There is at least one ready job at time t0.

The processor stops to be idle at time t0 if

Case 2a: The energy storage is fully replenished i.e.
E(t0) = C from rule 4.1.

Case 2b: The slack time of τ becomes zero i.e.
STτ (t0) = 0 from rule 4.2.

Case 2c: We may stop the processor at t0 by rule 5 if
0 < E(t0) < C , STτ (t0) > 0 and PSEτ (t0) > 0.
Whatever the stop condition, STτ (t0) ≥ 0. Since STτ1 (t0) ≥

STτ (t0), d1 − t0 ≥ h(t0, d1). h(t0, d1) represents the total
amount of computation time required by jobs with deadline
at or before d1 which are ready at time t0 and released within
[t0, d1). Since jobs are scheduled according to the earliest
deadline first rule in ED-H, and there is no idle time in [t0, d1),
d1 − t0 > h(t0, d1) contradicts that d1 is missed. Let us note
that the special case where the storage is fully replenished and
there is no slack energy is treated as rule 4.1. �
Lemma 1 states that there exists some interval [t, d1)where

the processor demand h(t, d1) is higher than the maximum
available processor time equal to d1−t that could be available
in that interval.
Lemma 2: If d1 is missed in the ED-H schedule because

of energy starvation there exists a time instant t such that
g(t, d1) > C + Ep(t, d1) and no schedule exists where d1
and all earlier deadlines are met.

Proof: Recall that we have to consider the energy star-
vation case where d1 is missed with E(d1) = 0. Let t0 be
the latest time before d1 where a job with deadline after d1
releases, no other job is ready just before t0 and the energy
storage unit is fully charged i.e. E(t0) = C . The initialization
time can be such time. The processor is idle within [t0 − 1, t0)
since no jobs are ready. As no energy is wasted except when
there are no ready jobs, the processor is busy at least from
time t0 to t0 + 1. We consider two cases:
Case 1: No job with deadline after d1 executes within

[t0, d1).
Consequently, all the jobs that execute within [t0, d1) have

release time at or after t0 and deadline at or before d1. The
amount of energy required by these jobs is g(t0, d1). As τ
is feasible, g(t0, d1) is no more than the maximum storable
energy plus all the incoming energy i.e. C + Ep(t0, d1). As
E(t0) = C , we conclude that all jobs ready within [t0, d1) can
be executed with no energy starvation which contradicts the
deadline violation at d1 with E(d1) = 0.
Case 2: At least one job with deadline after d1 executes

within [t0, d1).
Let t2 be the latest time where a job, say τ2, with deadline

after d1 is executed. As d1 is lower than d2 and jobs are exe-
cuted according to the earliest deadline rule in ED-H, we have
r2 < r1. At time t2, one of the following situations occurs.

Case 2a: The processor is busy all the times in [t2, d1). τ2
is preempted by a higher priority job, say τ3, with d3 ≤ d1.
From rule 4.2, PSEτ (r3) > 0 which implies that SEτ1 (r3) > 0
and in consequence g(r3, d1) < E(r3) + Ep(r3, d1). All jobs
that are executed within [r3, d1) have release time at or after
r3 and deadline at or before d1. Consequently, the amount
of energy they require is at most g(r3, d1). That contradicts
deadline violation and E(d1) = 0.

128 VOLUME 2, NO. 2, JUNE 2014



CHETTO: Optimal Scheduling for Real-Time Jobs in Energy Harvesting Computing Systems

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Case 2b: The processor is idle in [t3 − 1, t3) with t3 > t2
and busy all the times in [t3, d1).
The processor stops idle at time t3 imperatively by rule 4.1

if E(t3) = C . By hypothesis, there is no job waiting with
deadline at or before d1 at t3 because t0 is the latest one.
Furthermore, no job with deadline after d1 is executed after t2
and consequently after t3. In order not to waste energy, all the
energy which arrives from the source is used to advance jobs
with deadline after d1. The processor continuously commutes
from active state to inactive state. The storage is maintained
at maximum level until τ1 releases. Consequently, we have
E(r1) = C . As τ is feasible, g(r1, d1) ≤ C+Ep(r1, d1). Thus,
E(r1) + Ep(r1, d1) ≥ g(r1, d1). That contradicts deadline
violation and E(d1) = 0. �

Lemma 2 states that there exists some interval [t, d1)where
the energy demand g(t, d1) is higher than the maximum
energy equal toC+Ep(t, d1) that could be available in [t, d1).
We may draw Theorem 1, a major result for uniprocessor
scheduling with real time and energy harvesting constraints.
Theorem 1: The ED-H scheduling algorithm is optimal

for the RTEH model.
Proof:According to Lemma 1, if ED-H cannot schedule

a given set of jobs τ because of time starvation, then no
other scheduling algorithm is able to schedule it. Accord-
ing to Lemma 2, if ED-H cannot schedule a given set of
jobs τ because of energy starvation, then no other schedul-
ing algorithm is able to schedule it. As a conclusion, if
ED-H cannot schedule a given set of jobs τ for time or/and
energy starvation, then no other scheduling algorithm is able
to schedule it because time starvation and energy starvation
are the only two reasons for deadline violations. And we
conclude that ED-H is optimal. �

Optimality signifies that ED-H can produce a valid sched-
ule as long as there is no time interval with a length lower than
the processor demand and no time interval where the energy
demand is greater than the available energy. In other words,
any job set which is neither processor-overloaded nor energy-
overloaded should be feasible i.e. schedulable by ED-H.

B. CLAIRVOYANCE ANALYSIS
Now, let us show that ED-H is semi-online, more exactly
online with lookahead-D. In other words, taking a decision
at current time tc requires knowledge of the energy incoming
and jobs’arrivals on the next D unit time-slots at the most.
Recall that from our prior results [8], we know that no online
scheduling algorithm can be optimal if the lookahead param-
eter is less than D.
Lemma 3: Computation of the slack time at runtime can

be achieved by an online lookahead-D algorithm.
Proof: From formulae given in [9], STτ (tc) can be calcu-

lated from timing parameters of jobs with release time lower
than the deadline of the uncompleted highest priority job
ready at tc. An upper bound on the relative deadline of this job
is D. �
Lemma 4: Computation of the slack energy at runtime can

be achieved by an online lookahead-D algorithm.

Proof: The slack energy of a job τi given by (9) repre-
sents the maximum available energy in [tc, di) after execution
of higher priority jobs i.e. jobs with release time after tc and
deadline at or before di. Consequently, the slack energy of
τi is the largest energy that could be consumed in [tc, di) by
lower priority jobs i.e. jobs with a deadline greater than di.
Let d be the deadline of the highest priority job ready at time
tc. Clearly, d − tc < D. In order to calculate the amount of
energy that could be consumed by this job from time tc (i.e.
the slack energy of the system at tc), we only compute the
slack energy of the jobs that may preempt it i.e. the ones with
release time after tc and deadline less than d . And all these
jobs have a relative deadline at most equal to D. �
Theorem 2: The ED-H scheduling algorithm is online

lookahead-D.
Proof: We prove that every runtime dispatching deci-

sion requires clairvoyance for the next D unit time-slots at
most. According to ED-H, clairvoyance is required at time
tc for computing STτ (tc) or PSEτ (tc) only. From Lemma 3
and Lemma 4, ED-H is clearly an online lookahead-D
scheduler. �
One challenge is to make possible an accurate assessment

of the ambient energy at any current time for at least the next
D unit time-slots. In some applications, the energy source
may be modeled and the actual energy can be calculated off-
line. In some other applications, we can determine online a
lower bound on the energy produced on sliding windows.
These approximations come from appropriate measurements
and prediction methods [22].

VI. FEASIBILITY TEST
This section is concerned with the algorithm which, given a
job set τ is capable of answering the question: Is τ feasible?
Notice that τ is feasible if and only if there exists at least one
schedule for which all the deadlines can be met, given the
capacity C of the energy storage, and the source power Pp(t),
for 0 ≤ t ≤ dMax .
As we proved that ED-H is optimal, we have to obtain

conditions upon the RTEH system under which the ED-H
scheduling algorithm guarantees to meet all deadlines for
this set of jobs. We will show that the schedulability test for
ED-H reduces to test time-feasibility and energy-feasibility
separately.

A. TIME-FEASIBILITY
We first consider the time constraint case. In this case all
jobs have processing requirements only, i.e. for every job
τi ∈ τ , Ei = 0. We recall a basic result in the classical
scheduling theory which relates the processor demand in each
time interval with the length of this interval. Lemma 5 below
specifies a neccesary and sufficient time-feasibility condition
which comes down to a necessary feasibility condition in the
RTEH model.
Lemma 5: τ is time-feasible if and only if

SSTτ ≥ 0 (15)

VOLUME 2, NO. 2, JUNE 2014 129



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING CHETTO: Optimal Scheduling for Real-Time Jobs in Energy Harvesting Computing Systems

Proof: ‘‘If’’: Directly follows from Lemma 1.
‘‘Only If’’: See [31] �

Let us note that it suffices to compute the static slack
time for all intervals starting at a release time and finishing
at a deadline. Thus, the complexity of the time-feasibility
test is O(n2) since n2 time intervals must be tested. While
Lemma 5 is based on the slack time approach, the following
time-feasibility test provides the same condition with the load
approach:
Lemma 6: τ is time-feasible if and only if

USPτ ≤ 1 (16)

Informally, inequality (15) or (16) can be though of as a
requirement that the system not be processor-overloaded in
any time interval.

B. ENERGY-FEASIBILITY
Now, we consider the energy constraint case where jobs have
energy requirements only, i.e. for every job τi ∈ τ , Ci = 0.
In other words, each job executes instantaneously.
Lemma 7: τ is energy-feasible if and only if

SSEτ ≥ 0 (17)

Proof: ‘‘If’’: Directly follows from Lemma 2.
‘‘Only If’’: Since τ is energy-feasible, let us consider an
energy-valid schedule producedwithin [0, dMax). The amount
of energy demanded in each interval of time [t1, t2), g(t1, t2),
is necessarily less than or equal to the actual energy available
in [t1, t2) given by E(t1) + Ep(t1, t2). An upper bound on
E(t1) is the maximum storable energy at time t1, that is C .
Consequently, g(t1, t2) is lower than or equal toC+Ep(t1, t2).
This leads to ∀ [t1, t2) ⊂ [0, dMax), g(t1, t2) ≤ C + Ep(t1, t2)
i.e. SSEτ (t1, t2) ≥ 0. Thus, SSEτ ≥ 0. �
The energy-feasibility test can be expressed with the

energy load based formulation:
Lemma 8: τ is energy-feasible if and only if

UEτ ≤ 1 (18)

Proof: As proof of Lemma 8 since SSEτ (t1, t2) ≥ 0
amounts to UEτ (t1, t2) ≤ 1. �
We assume that the prediction of the ambient energy on

every time interval provides a fixed number of values. Thus,
the complexity of the energy-feasibility test is O(n2) since n2

intervals must be tested.

C. ED-H SCHEDULABILITY TEST
Hereafter, we present a test for the purpose of validating that
a given job set can indeed meet its deadlines, be given the
capacity of the energy storage unit and the incoming power
function. We give a necessary and sufficient condition for
ED-H schedulability and feasibility by virtue of optimality.
Theorem 3: τ is feasible if and only if

SSTτ ≥ 0 and SSEτ ≥ 0 (19)

Proof: ‘‘Only if’’: Suppose that τ is feasible. Thus, τ
is time-feasible and energy feasible. From constraint (15) in

Lemma 5 and constraint (17) in Lemma 7, it is the case that
constraint (19) is satisfied.
‘‘If’’: We suppose that constraint (19) is satisfied and τ is

not schedulable by ED-H. Let us show a contradiction. First,
we assume that τ is not schedulable by ED-H because of time
starvation. Lemma 1 states that there exists a time interval
[t0, d1) such that h(t0, d1) > d1−t0 i.e. d1−t0−h(t0, d1) < 0.
Thus, SSTτ < 0 and condition (19) in Theorem 3 is violated.
Second, we assume that τ is not schedulable by ED-H because
of energy starvation. Lemma 2 states that there exists a time
interval [t0, d1) such that g(t0, d1) > C + Ep(t0, d1) i.e.
C+Ep(t0, d1)−g(t0, d1) < 0. Thus, SSEτ < 0 and condition
19 in Theorem 3 is violated. �
In other terms, Theorem 3 states that τ is feasible if and

only if τ is time-feasible and energy-feasible.
A criterion that can be used to measure the performance

of scheduling algorithms is the schedulable utilization. Simi-
larly to [18], we define the schedulable processor utilization
(respectively energy utilization) of a scheduling algorithm as
follows: A scheduling algorithm can produce a valid schedule
of any job set if the total processor load (respectively energy
load) is equal to or less than the schedulable processor utiliza-
tion (respectively energy utilization) of the algorithm. Conse-
quently, the higher the schedulable processor utilization and
the higher the schedulable energy utilization, the better the
scheduling scheme.
The following theorem gives the feasibility test with the

load based formulation.
Theorem 4: τ is feasible if and only if

UPτ ≤ 1 and UEτ ≤ 1 (20)

Theorem 4 clearly shows that ED-H provides the high-
est possible schedulable processor utilization and energy
utilization. In other words, the processor can be continu-
ously busy in certain time interval(s), consuming both the
entire capacity of the storage unit and all the energy drawn
from the environment while meeting all the deadlines. This
explains why no scheduling algorithm can be better than
ED-H.
Remark: In [25], Moser et al present an optimal solu-

tion (called LSA) to the same scheduling problem as we
do here. Nevertheless, their processing model assumes that
the energy consumption and the execution time of every job
behave proportional. Let constant Pmax such that Ci =

Ei
Pmax

.
Consequently, g(t1, t2) = Pmax × h(t1, t2). It can easily be
verified that the above feasibility test given by equations (19)
comes down for this special case to the LSA schedulability
test reported in [25].

VII. PRACTICAL CONSIDERATIONS
In this section, we consider the implications of the ED-H
scheduling algorithm for practical harvesting system design.
Most of prediction methods track past harvested energy and
use them to predict future energy availability [15]. Various
prediction models have been investigated in [21]. For exam-
ple, the moving average technique predicts future values

130 VOLUME 2, NO. 2, JUNE 2014



CHETTO: Optimal Scheduling for Real-Time Jobs in Energy Harvesting Computing Systems

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

based on the averages of the past observations, giving equal
weight to all past data. The exponential smoothing technique
uses different weight factors for past values that depend on
the distance from the current time. The experiment reported
by Liu et al. highlight the important impact of the energy
prediction technique on the resulting performance measured
in terms of deadline miss rate. It is obvious that higher the
accuracy of the prediction mechanism, higher the time and
memory overhead incurred by its implementation. Nonethe-
less, more limited its negative impact on the performance
of the actual ED-H scheduler compared with theoretical
optimal ED-H.

RTEH systems encompass various application areas. Their
common characteristics are the periodic activities that mostly
involve sampling a sensor, processing the sensed value, trans-
mitting data, sending data to an actuator, etc. It follows that
the parameters of jobs are well known before the system
becomes operational since they are the instances of a fixed
set of periodic taks.

Feasibility checking aims to predict whether time and
energy will be enough to meet the timing requirements.
Generally, the basic steps in the design of real-time systems
are to perform an off-line check and to schedule and dis-
patch the jobs at runtime. For RTEH systems, the check-
ing can be done off-line when all the jobs are instances
of periodic tasks and the energy profile is precisely char-
acterized for all the application lifetime such as constant
over time. Otherwise, the checking should be realized at
runtime in dependance with the horizon of the prediction
technique.

Under the planning-based approach, time is divided in
windows. The schedulability checking is performed at run-
time for each window. It detects future deadline miss and
anticipates by deciding how to manage the transient shortage
of energy or processor overload that will occur in the next
window. For example, we may trade off quality for timeliness
by executing back-up jobs with shorter execution times and
lower energy requirements [6]. A best-effort technique with
no online checkwould lead to deadline failures with both time
and energy wasting.

VIII. RELATED WORK
The technical challenges to achieve energy autonomy and
to make energy harvesting systems work effectively are
described in [15] and [16]. Works of Kansal et al. focus
on solar energy harvesting sensor nodes. A framework is
presented for dynamically adapting the duty cycle of the node,
using measurement of the deviations in energy values from
an estimated model of the energy source. The method was
evaluated in 2005 on the Heliomote platform. However, the
above works do not target at real-time applications where jobs
execute with deadline constraints.

The problem of scheduling RTEH systems has gained little
attention. In 2001, Allavena et al. [3] propose an optimal
claivoyant scheduler restricted to a set of independent peri-
odic tasks in a frame (all the tasks have the same dead-

line and repetition period). The power scavenged by the
energy source is constant and all jobs consume energy at
a constant rate. This work has been extended to processors
provided with DVFS technology and tasks with multiple
versions [30].
In 2006, Moser et al. give a variant of EDF, called Lazy

Scheduling Algorithm (LSA) [25]. LSA provides an optimal
online solution with time lookahead-D on the energy incom-
ing. Theory and simulations show that LSA outperforms EDF
up to 45% in terms of achievable capacity savings [26].
More recent research works can be found in [19]–[21] and
[23] where extensions of LSA with DVFS permit to improve
the deadline miss rate and energy saving. The so-called
HA-DVFS algorithm exploits the slack time of the jobs to
slow down their execution whenever possible or speeds up
their execution in order to use overflowing harvested energy.
The proposed EDF based power management techniques use
various slack management algorithms that permit to consume
the slack time by inserting idle periods and thus refilling the
energy storage. The above studies use a similar model of the
power source as we do but consider that the total energy
consumption of every job is proportional to its execution
time (cf remark in Section VI-C). In real facts, instanta-
neous power consumed by jobs varies along time depending
on circuitry and devices required by their execution (e.g.
the power consumption when transmitting data differs from
when receiving data) [13], [28]. This observation has moti-
vated the study reported here which applies to a general
model.
The issue of dynamic priority scheduling of periodic task

sets was also investigated in [12]. The EDeg heuristic that
uses slack time and slack energy concepts is presented with
no schedulability test and no formal performance assessment
for it. EDeg makes a significant performance enhancement
in comparison to EDF in the light of simulation results even
if the harvested energy is needlessly wasted in some specific
situations.
Research on fixed priority scheduling for RTEH systems

is recent [1], [2]. An optimal scheduler, namely PFPasap, is
proposed. However, only periodic tasks as well as a constant
source power are considered.

IX. CONCLUSION
There are growing needs for energy harvesting capabilities
in a variety of applications such as military, health and
environmental (battlefield surveillance, tele-monitoring of
human physiological data, forest fire detection, etc.) due to
the limitation of traditional battery power. Achieving per-
petual and self-sustaining operation of an embedded device
is becoming an important topic of research. The main issue
is to perform, in one hand effective utilization of pro-
cessor time and, in the other hand effective utilization of
available and future energy resource with avoiding energy
depletion.
This paper has considered an online scheduling problem

arising from any kind of real-time energy harvesting sys-

VOLUME 2, NO. 2, JUNE 2014 131



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING CHETTO: Optimal Scheduling for Real-Time Jobs in Energy Harvesting Computing Systems

tem which must schedule jobs under deadline constraints.
Most prior theoretical research concerning this problem
imposed that either the jobs are instances of periodic tasks
or there is a linear relationship between execution time and
energy consumption. In this work, we have removed these
assumptions.

We have presented a novel energy-aware scheduling algo-
rithm, namely ED-H, proved to be optimal and appropriate
for the scheduling of real time jobs in general. ED-H is
idling and takes decisions that result from slack time and
slack energy online computations. This makes ED-H very
flexible in the determination of busy v.s inactive periods.
We have formulated a schedulability test for ED-H which
decouples the time and energy constraints. This test says
us that ED-H is able to feasibly schedule any job set as
long as both the processor load and the energy load are no
more than one. We outline that ED-H could be applied to a
set of jobs composed from the instances of periodic or/and
sporadic tasks. Moreover, our approach to job scheduling
does not require a model of energy replenishment and applies
to any energy source provided the prediction be possible at
runtime.

Our algorithm is also applicable to a wide range of practical
problems which are not necessarily in the field of computer
science. For example, it could be employed for dynamic
power management on large machines such as electric vehi-
cles where the harvested energy must be provided for motors
notably.

For future work, we will explore:

• adaptation of the proposed scheduling scheme to fixed
priority environments. This would suppose to modify
computation formulae for the slack time and the slack
energy accordingly;

• extension of ED-H to support DVFS technology;
• dimensionning i.e. calculation of the smallest capac-
ity for the energy storage unit, the smallest harvester,
etc. This kind of analysis refers to sensitivity analysis.
Determining the so-called critical scaling factor [32]
is obviously of economic interest in the design of any
energy harvesting embedded device.

REFERENCES
[1] Y. Abdeddaim and D. Masson, ‘‘Real-time scheduling of energy

harvesting embedded systems with timed automata,’’ in Proc. 18th
IEEE Int. Conf. Embedded Real-Time Comput. Syst. Appl., Aug. 2012,
pp. 31–40.

[2] Y. Abdeddaim, Y. Chandarli, and D. Masson, ‘‘The optimality of
PFPasap algorithm for fixed-priority energy-harvesting real-time sys-
tems,’’ in Proc. 25th Euromicro Conf. Real-Time Syst., Jul. 2013,
pp. 47–56.

[3] A. Allavena andD.Mosse, ‘‘Scheduling of frame-based embedded systems
with rechargeable batteries,’’ in Proc. Workshop Power Manag. Real-Time
Embedded Syst., 2001, pp. 1–8.

[4] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier,
et al., ‘‘On the competitiveness of on-line real-time task scheduling,’’
in Proc. Real-Time Syst. Symp., 1991, pp. 106–115.

[5] G. Buttazzo, Hard Real-Time Computing Systems: Predictable Schedul-
ing Algorithms and Applications. Berlin, Germany: Springer-Verlag,
2005.

[6] H. Chetto and M. Chetto, ‘‘Some results of the earliest deadline scheduling
algorithm,’’ IEEE Trans. Softw. Eng., vol. 15, no. 10, pp. 1261–1270,
Oct. 1989.

[7] M. Chetto andA.Queudet, ‘‘A note on EDF scheduling for real-time energy
harvesting systems,’’ IEEE Trans. Comput., Jan. 2013.

[8] M. Chetto and A. Queudet, ‘‘Clairvoyance and online scheduling
in real-time energy harvesting systems,’’ Real-Time Syst., Oct. 2013,
DOI:10.1007/s11241-013-9193-1.

[9] M. Chetto-Silly, ‘‘The EDL server for scheduling periodic and soft
aperiodic tasks with resource constraints,’’ Real-Time Syst., vol. 17, no. 1,
pp. 87–111, 1999.

[10] B. Coleman and W. Mao, ‘‘Lookahead scheduling in a real-time
context,’’ in Proc. 6th Int. Conf. Comput. Sci. Informat., 2002,
pp. 205–209.

[11] M.-L. Dertouzos, ‘‘Control robotics: The procedural control of
physical processes,’’ in Proc. Int. Fed. Inf. Process. Congr., 1974,
pp. 807–813.

[12] H. El Ghor, M. Chetto, and R. H. Chehade, ‘‘A real-time schedul-
ing framework for embedded systems with environmental energy har-
vesting,’’ J. Comput. Electr. Eng., vol. 37, no. 4, pp. 498–510,
2011.

[13] R. Jayaseelan, T. Mitra, and X. Li, ‘‘Estimating the worst-case energy con-
sumption of embedded software,’’ in Proc. 12th IEEE Real-Time Embed-
ded Technol. Appl. Symp., Apr. 2006, pp. 81–90.

[14] X. Jiang, J. Polastre, and D.-E. Culler, ‘‘Perpetuel environmentally pow-
ered sensor networks,’’ in Proc. 4th Int. Symp. Inf. Process. Sensor Netw.,
2005, pp. 463–468.

[15] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, ‘‘Power management
in energy harvesting sensor networks,’’ ACM Trans. Embedded Comput.
Syst., vol. 6, no. 4, p. 32, 2007.

[16] A. Kansal, J. Hsu, M. Srivastava, and V. Raqhunathan, ‘‘Harvesting aware
power management for sensor networks,’’ in Proc. 43rd ACM/IEEE Des.
Autom. Conf., Sep. 2006, pp. 651–656.

[17] C.-L. Liu and J.-W. Layland. ‘‘Scheduling algorithms for multiprogram-
ming in a hard real-time environment,’’ J. Assoc. Comput. Mach., vol. 20,
no. 1, pp. 46–61, 1973.

[18] J. W. S. Liu. Real-Time Systems. Englewood Cliffs, NJ, USA: Prentice-
Hall, 2000, pp. 1–592.

[19] S. Liu, Q. Qiu, and Q. Wu, ‘‘Energy aware dynamic voltage and frequency
selection for real-time systems with energy harvesting,’’ in Proc. Des.,
Autom. Test Eur., 2008, pp. 236–241.

[20] S. Liu, Q. Wu, and Q. Qiu, ‘‘An adaptive scheduling and voltage/frequency
selection algorithm for real-time energy harvesting systems,’’ in Proc.
ACM/IEEE Des. Autom. Conf., 2009, pp. 782–787.

[21] S. Liu, J. Lu, Q. Wu, and Q. Qiu, ‘‘Harvesting-aware power
management for real-time systems with renewable energy,’’ IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 8, pp. 1473–1486,
Aug. 2012.

[22] J. Lu, S. Liu, Q. Wu, and Q. Qiu, ‘‘Accurate modeling and prediction of
energy availability in energy harvesting real-time embedded systems,’’ in
Proc. Int. Conf. Green Comput., 2010, pp. 469–476.

[23] J. Lu and Q. Qiu, ‘‘Scheduling and mapping of periodic tasks on multi-
core embedded systems with energy harvesting,’’ in Proc. Int. Conf. Green
Comput., 2011, pp. 1–6.

[24] Y.-H. Lu, L. Benini, and G. De Micheli, ‘‘Low-power job scheduling
for multiple device,’’ in Proc. Int. Workshop HW/SW Co-Des., 2000,
pp. 39–43.

[25] C. Moser, D. Brunelli, L. Thiele, and L. Benini, ‘‘Real-time scheduling
for energy harvesting sensor nodes,’’ Real-Time Syst., vol. 37, no. 3,
pp. 233–260, 2007.

[26] C. Moser, ‘‘Power management in energy harvesting embedded systems,’’
Ph.D. dissertation, Comput. Eng. Group, ETHZurich, Zürich, Switzerland,
2009.

[27] S. Priya and D.-J. Inman, Energy Harvesting Technologies. New York, NY,
USA: Springer-Verlag, 2009.

[28] V. Raghunathan, S. Ganeriwal, and M. Srivastava, ‘‘Emerging techniques
for long lived wireless sensor networks,’’ IEEE Commun. Mag., vol. 44,
no. 4, pp. 108–114, Apr. 2006.

[29] C. Renner and V. Turau, ‘‘CapLibrate: Self-calibration of an energy har-
vesting power supply with supercapacitors,’’ inProc. 23rd Int. Conf. Archit.
Comput. Syst., 2010, pp. 1–10.

132 VOLUME 2, NO. 2, JUNE 2014



CHETTO: Optimal Scheduling for Real-Time Jobs in Energy Harvesting Computing Systems

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

[30] C. Rusu, R. Melhem, and D. Mosse, ‘‘Multiversion scheduling in recharge-
able energy-aware real-time systems,’’ inProc. 15th Euromicro Conf. Real-
Time Syst., 2003, pp. 95–104.

[31] M. Spuri, ‘‘Analysis of deadline scheduled real-time systems,’’ INRIA,
Projet Reflecs, Le Chesnay, France, Tech. Rep. RR-2772, Jan. 1996.

[32] S. Vestal, ‘‘Fixed-priority sensitivity analysis for linear compute time
models,’’ IEEE Trans. Softw. Eng., vol. 20, no. 4, pp. 308–317, Apr. 1994.

[33] F. Yao, A. Demers, and S. Shenker, ‘‘A scheduling model for reduced
CPU energy,’’ in Proc. 36th IEEE Symp. Found. Comput. Sci., Oct. 1995,
pp. 374–382.

MARYLINE CHETTO received the Docteur de
3ième cycle degree in control engineering and
the Habilitée à Diriger des Recherches degree in
computer science from the University of Nantes,
France, in 1984 and 1993, respectively. From 1984
to 1985, she held the position of an Assistant Pro-
fessor of computer science with the University of
Rennes 1, while her research was with the Institut
de Recherche en Informatique et Systèmes Aléa-
toires, Rennes. In 1986, she returned to Nantes

and is currently a Professor with the Institute of Technology, University of
Nantes. She is conducting her research at the IRCCyN Institute. She has pub-
lishedmore than 100 journal articles and conference papers in the area of real-
time operating systems. Her current research interests include scheduling and
power management for real-time energy harvesting applications.

VOLUME 2, NO. 2, JUNE 2014 133


